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Summary 

Objectives 

Medical data are a valuable resource from which novel and potentially useful knowledge can be 

discovered by using data mining. Data mining can assist and support medical decision making and 

enhance clinical management and investigative research.  

The objective of this work is to propose a method for building accurate descriptive and predictive 

models based on classification of past medical data. We also aim to compare this method with other well 

established data mining methods and identify strengths and weaknesses. 

Method 

We propose T3, a decision tree classifier which builds predictive models based on known classes, by 

allowing for a certain amount of misclassification error in training in order to achieve better descriptive 

and predictive accuracy. We then experiment with a real medical data set on stroke, and various 

subsets, in order to identify strengths and weaknesses. We also compare performance with a very 

successful and well established decision tree classifier. 

Results 

T3 demonstrated impressive performance when predicting unseen cases of stroke resulting in as 

little as 0.4% classification error while the state of the art decision tree classifier resulted in 33.6% 

classification error respectively. 

Conclusions 

This paper presents and evaluates T3, a classification algorithm that builds decision trees of depth 

at most three, and results in high accuracy whilst keeping the tree size reasonably small. T3 

demonstrates strong descriptive and predictive power without compromising simplicity and clarity.  We 

evaluate T3 based on a real stroke register data and compare it with C4.5, a well-known classification 

algorithm, showing that T3 produces significantly more accurate and readable classifiers. 

 

Key words: Knowledge Based Systems, Medical Data Mining, Decision Tree Classification, Computer-

Assisted Decision Making 
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1. Introduction 

Nowadays, many organisations generate and collect huge amounts of data, which traditionally used to 

be analysed manually. However, many hidden and potentially useful relationships may not be identified 

by the analyst. This explosive growth of data requires an automated way to extract useful knowledge.  

Data mining aims to discover novel, interesting, and useful knowledge and patterns from databases. The 

discovered knowledge can then be applied in the corresponding domain to increase working efficiency 

and improve the quality of decision-making [1]. Data mining applications have already been proven to 

provide benefits to many areas of medicine, including diagnosis, prognosis and treatment [2]. 

Classification is a data mining technique which addresses the problem of constructing a predictive 

model for a class attribute given the values of other attributes and some examples of records with known 

classes [3]. Decision Trees are one of the most well-established classification methods. Their intuitive 

nature matches the user’s conceptual model without loss of accuracy [4]. 

When it comes to selecting a decision tree classifier though, the task is not an easy one, as a clear 

winner simply does not exist [5]. Important qualities for such a selection are classification and 

generalisation accuracy and tree size. In this paper we describe T3 [6], an improved version of an existing 

algorithm T2 [7].  T3 builds decision trees of depth at most three. T3 builds trees larger than T2 and 

adopts a less greedy approach in the tree-building phase, resulting in stronger predictive power without 

compromising simplicity and clarity. This is demonstrated using a comprehensive comparative study 

based on real medical data [8]. 

The remainder of the paper is organised as follows: in Section 2, we discuss the problem and present 

the data set from the medical domain; Section 3 gives a brief description of C4.5, a popular classification 

algorithm, and T3 which improves the tree building process; comparison and evaluation of the 

performance of the two algorithms, based on extensive experiments on the medical data set is done in 

Section 4; discussion, conclusions and future work are presented in Section 5. 

 

2. Description of the Problem Domain 

According to the World Health Organisation international collaborative study [9], the definition of 

“stroke” is as follows: “Rapidly developing clinical signs of focal or global disturbance of cerebral 

function, lasting more than 24 hours or leading to death with no apparent cause other than that of 

vascular origin”. 

Worldwide, there are about 4.6 million deaths from strokes each year [10] and this makes it the 

leading cause of death in virtually all countries. There are 550,000 hospitalisations and 150,000 deaths 

attributable to stroke in the United States alone [11]. In 1990, strokes accounted for more than 76,000 

deaths in the UK, 12% of the total (9% for males and 15% for females), and some 92% were in people 

over 65 years old [8]. Over 30% of stroke patients will die within the first year from the event [12]. The 

majority of stroke patients survive, but only one third make a good recovery and thus, strokes are a major 

cause of chronic disability which results in lower quality of life and increased expenses for nursing care 

and social support. Strokes are a large contributor to the total cost of health care, 5% of all such 
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expenditure [8] whereas the total cost of strokes was estimated to be $30 billion in the US alone in 1993 

[12]. People most likely to have a stroke are older people as well as those with certain medical problems, 

like hypertension and diabetes; lifestyle factors such as diet, drinking alcohol, smoking and exercise also 

affect the risk of stroke [13]. 

The case study we use in this paper has been developed in cooperation with the Medical School of the 

University of Manchester as part of a previous project [8, 14].  The problem addressed in that project was 

that of building models, that use data related to the medical history of people, which may describe and 

predict when stroke occurs and what the consequences of a stroke might be. 

Real data selected from a computer-based Stroke Register were used. The Stroke Register was 

collected from the geographical area of East Lancashire, U.K., from notes completed by the patients 

themselves and also by the General Practitioners (GPs) who interviewed the patients. The information 

collected is related to stroke, personal habits, family and personal medical history, and area of residence. 

Patients, deceased or alive, were included as cases if they met the following criteria: 

• Age less than 80 years at the time of stroke, 

• Ordinary residence in the study area and registered with a participating GP, 

• First-ever stroke occurred during the defined study interval 

Patients with a first-ever stroke under 80 years old at the time of stroke were selected as cases 

because strokes for patients under 80 years old can be regarded as preventable. 

Subjects were included as “controls” if they met all the following criteria: 

• Alive on the date of event (the index date) of the corresponding case, 

• Ordinary residence in the study area and registered with a participating GP, 

• Without a history of stroke before the index date 

These were considered the most important attributes by the GPs and the data mining experts because 

of previous experience with similar case studies.  

The GP practice computerised age-sex register was used to search for all patients of the same sex and 

age within two years of the date of birth of the index case in the same surgery, giving a list of subjects 

who might have been eligible for controls. Two were randomly selected from the list and their notes were 

found. If they did not have a documented history of stroke, they were selected as controls. 

All relevant details before the index date were collected from the notes of both index cases and 

controls by the research nurse or a study physician using a standardised data collection form. All systolic 

and diastolic pressure readings with their dates of measurement, lifestyle advice, details of hypertension 

treatment, and other data were obtained from the Practice notes. Thus there were 70 attributes per patient. 

East Lancashire, England, includes the towns of Blackburn and Burnley, and the surrounding semi-

rural and rural areas covering a total population of 534,287 in the 1995 General Practice register. There 

were 118 General Practices with a total of 276 GPs. The final version of the Stroke Register that was 

developed consists of 795 patients, one third (265) of whom in fact suffered from stroke, i.e. “cases” and 

two thirds are people who did not, i.e. “controls”.  

Some who had a stroke died and some survived it. Thus, we decided to build two models, one for 

stroke and one for surviving stroke. Out of the original seventy attributes presented in the database, 
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twenty-seven were selected to be used for building the model. There were a further ten attributes derived 

from the original 70 following doctors’ advice and guidelines. The rest were deemed irrelevant (like 

postcode for example) or strongly correlated to others (e.g. age and date of birth). A comprehensive list of 

all these attributes is included in Table 1. 

The data set mainly used for experimentation was Med_123 which consists of 795 records of people, 

265 of whom had suffered a stroke in the past. “Stroke” is the two-valued class attribute. Thus, the set has 

a baseline error of 33.3%, i.e. 66.6% of the records belong to the majority class, (no stroke). The set 

consists of 37 attributes, 11 being continuous, 4 binary, 20 ternary, and 2 having at least 5 different 

values. There are many missing values however (15980 in total, meaning that 52% of the attribute values 

are missing). Only 5% of hypertension data were missing from the notes whereas the proportion of 

missing information for medical history was large. However, we have analyzed the effect of these missing 

values, which illustrated their potential risks. It should be noted that values indicated as “not mentioned” 

were considered as “missing” values. A set called above50 with 13 attributes and 2252 missing values in 

total was derived by excluding all the attributes which have more than 50% missing values. The attributes 

in above50 are: Ethnic, Sex, Age, Source of referral, Smoking Status, Alcohol Any, Alcohol Status, 

Height, Weight, CP100at_3m, CP100_3m, asbp1_at, and adbp1_at. The baseline error for above50 is also 

33.3%. 

We also used a med_newlive set that had the same attributes, being different only in that the class 

attribute was this time “lived” (‘lived after stroke or not within two months of the date of the stroke 

diagnosis’) instead of “stroke”. Because of some missing values for that attribute, we had to exclude 124 

records from the data set, thus leaving 671 with which to work. We used both cases and controls for the 

classification process because these relate to all the possible values of the classifying attributes. The 

number of missing values for this set is 13275. The baseline error for med_newlive is 11.9%. Table 2 

shows the properties of the data sets used. 

 

3. Classification Algorithms Description 

The aim behind the experimentation was that some of the attributes might be predictive of the class 

attribute (“stroke” in the first two data sets, “lived” in the third). Building classification trees is a useful 

method suitable for this type of study. However, there are several algorithms that produce such trees; 

C4.5 [15] and SLIQ [16] are reported to be of the best performing in this area. T3 is an algorithm that 

results in small but accurate trees [6]. T3 outperforms SLIQ and achieves results comparable to C4.5 

when using public domain data sets [17]. Thus we decided to make a comparative analysis using C4.5 and 

T3, the main features of both are described below. 

3.1 C4.5 

C4.5 adopts a depth-first strategy, using the gain ratio, as a split criterion, resulting in reduced bias in 

favour of many-valued attributes, as compared to algorithms that use the information gain [15]. The 

algorithm, however, was also considered to be biased in favour of continuous attributes, this being the 

reason for improvements proposed later [18]. Splits in continuous values are binary, dividing the search 

space into two disjoint parts. 
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Unknown values are not treated as extra ones. They are ignored in the training phase resulting in 

classification errors. The probability of various possible results is estimated in the case of unknowns 

during testing. C4.5 employs a pruning technique that replaces subtrees with leaves, thus reducing 

overfitting. The accuracy achieved by C4.5 in a number of data sets was high compared to other 

algorithms [15, 18]. For our experiments we used both the pruned and the unpruned version of an 

implementation of C4.5 written in C++ running in UNIX [19]. 

3.2 T3  

T3 [20] is an algorithm based on T2 [7]. T3 calculates optimal decision trees up to depth 3 by using 

two kinds of decision splits on nodes. Discrete splits are used on discrete attributes, where the node has as 

many branches as there are possible attribute values. Interval splits are used on continuous attributes 

where a node has as many branches as there are intervals. The number of intervals is restricted to be 

either at most as many as the number of existing classes plus one, if all the branches of the decision node 

lead to leaves, or to be at most 2 otherwise. The attribute value "unknown'' is treated as a special attribute 

value. Each decision node (discrete or continuous) has an additional branch, which takes care of unknown 

attribute values. In fact this way of treating unknown attributes is reported to perform better than that of 

C4.5 [21].  

In the tree-building phase, at each node, all attributes are examined, in order to select one on which a 

split will be performed for the node. When the attribute is discrete, the relative frequencies of all of its 

possible values are calculated. For continuous attributes, the same approach would be inefficient because 

of the number of possible values and the resulting low frequencies of them. For that reason, local 

discretisation is used. Finally a split is performed on an attribute if it results in maximum accuracy. 

Consequently T3 produces a tree hierarchy, which determines how important is an attribute in the 

classification process, in contrast to C4.5 which uses the gain ratio. 

To carry out this local discretisation of a continuous attribute, its values have to be partitioned into 

multiple intervals. The set of intervals that minimises the classification error is found by a thorough 

exploration instead of heuristically applying recursive binary splitting. The search for these intervals is 

computationally expensive, so T3 restricts decision trees to three levels of tests, where only the third level 

employs non-binary splits of continuous attributes. 

T3 does not use a pruning technique. Instead it uses a parameter called Maximum Acceptable Error 

(MAE). MAE is a positive real number less than 1, used as a stopping criterion during building the tree. 

T2 was observed to use a greedy approach when building the tree, thus further splitting at a node would 

stop only if the records already classified in this node, belonged to a single class.  

However, this greedy approach is not optimal, because minimising the error in the leaf nodes does not 

necessarily result in minimising the overall error in the whole tree. In fact, it was proved that a strategy 

choosing locally optimal splits necessarily produces sub-optimal trees [22]. It should be noted here that 

classification error indicates how many instances of a training set have been incorrectly classified, while 

generalisation error indicates how many instances of a testing set have been incorrectly classified. 

Furthermore even minimising classification error does not always cause minimisation of the 

generalisation error due to overfitting.  
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By introducing MAE, we allow the user to specify the level of purity in the leaves and to stop further 

building of the tree at a potential node split. We set MAE to have 4 distinct values, namely 0.0, 0.1, 0.2 

and 0.3, meaning that splitting at a node stops even if the error in that node is equal to or below a 

threshold of 0, 10, 20 or 30 per cent respectively.  

More precisely, building the tree would stop at a node in two cases. In the first case, building stops 

when the maximum depth is reached, i.e. 3 when T3 is used or 2 when T2 is used. In the second case, 

building stops at that node only when all the records remaining there to be classified belong to the same 

class in a minimum proportion of 70, 80, 90 or 100%. We used eight different versions of T3 in our 

experiments, four with maximum depth two and MAE set to 0, 0.1, 0.2 and 0.3 respectively; and four 

with maximum depth three and MAE set to 0, 0.1, 0.2 and 0.3 respectively. For the rest of this paper, we 

use the following naming convention: Tx.y is the version of T3 with maximum depth x and MAE set to 

0.y. The T3 implementation used for the experiments was written in Visual C++ running on Windows 

[23]. 

 

4. Experimental Results and Evaluation 

Initially we ran T3 and C4.5 against Med_123 and it was shown that T3 outperformed C4.5. The best 

tree was built by T3.0 of size 39 with 0% classification error. The pruned version of C4.5 resulted in a 

trivial tree (size 1) and the unpruned version in a tree of size 226 with 25.5% classification error. Thus, 

the model built by C4.5 was both very complicated and inaccurate. The model built by T2.y was simpler 

than the one built by T3.y resulting in only one misclassification error that seems to be due to noise. It 

was also observed that “Admission to Hospital” and “Most Recent Stroke” were two attributes appearing 

high in the tree hierarchy, alongside “Sex” and “Age”.  

We then split the data set randomly into a training set of 530 records and a test set of 265 records. 

The distribution was equal, resulting in a training set of baseline error of 33.2%, and a test set of 33.6%. 

The results were similar to the ones obtained previously. This time, T3.2 built the best (i.e. having a 

minimum sum of classification and generalisation error) tree of size 54, with 0% classification and 0.4% 

generalisation error. C4.5 unpruned built a tree of size 186 with 20.9% classification and 34.7% 

generalisation error; pruning resulted once more in a trivial tree of one node. The models built this time 

by T3 were nearly identical to the ones built previously. High accuracy was preserved and remained 

maximal even for prediction. C4.5 did slightly better than before, but still much worse than T3. 

As mentioned above, “admission to hospital” and “most recent stroke” were attributes important for 

the classification process but were deemed to be strongly related to the class attribute. In fact, these two 

attributes were missing in all of the control data, which explains the perfect classification. Thus we 

decided to exclude these attributes, in search for more “interesting” rules. We then carried out 

experiments with two more data sets, (Med_123-ah and Med_123-mrs), produced by excluding one of 

each of the two attributes at a time. Results shown that excluding just one of the two attributes would 

simply increase the “importance” of the other, thus eventually we decided to exclude both attributes in a 

data set called Med_123-am. In this case, the most important attributes ensued to be “Alcohol Status”, 

“History Any”, “Past MI”, “asbpt_s” and “Age”.  
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Overall, we observed that, for Med_123-ah, the best tree was built by T3.0 (size 19 with 0% 

classification error), while C4.5-unpruned resulted in a tree of size 194 with 26.3% classification error. 

Similarly for Med_123-mrs, the best tree was built by T3.0 (size 30 and 0.1% classification error), while 

C4.5-unpruned resulted in a tree of size 226 and 25.4 % classification error. Finally, for Med_123-am 

T3.0 resulted in a tree of size 50 with 14.6% classification error, while C4.5-unpruned resulted in a tree of 

size 194 with 26.2% classification error. The results are summarised in Table 3. 

We then used another data set: med_newlive which has 671 records of 37 attributes and results still 

favoured T3. In fact T3.0 built a tree of size 92 with 5.1% classification error, while C4.5-unpruned 

resulted in a tree of size 58 with 11.2% error which is twice as bad as T3. The most important attributes 

here ensued to be “Smoke Status”, “Most Recent Stroke”, “Admission to Hospital” and “Alcohol Status”. 

By splitting the set into a training subset of 447 records and a test subset of 224 records 

(med_newlivet) we achieved the following results: best version of T3 was T3.0, which built a tree of size 

85, having the classification and generalisation error 3.4% and 16.5 % respectively. C4.5-unpruned built a 

tree of size 49 with 8.3% and 14.7% error. 

By analysing the results acquired from med_newlive and Med_123 sets, we hypothesized that T3 

achieved here much higher accuracy than C4.5, contrary to evidence from previous work where 

performance was comparable [6], because of the large amount of missing values in the data sets. 

To verify this hypothesis, we excluded from Med_123 all the attributes having more than 50% 

missing values, resulting in a set we named above50, which has 13 attributes and 2252 missing values in 

total (for results see Table 4). The 50% threshold was selected in order to exclude attributes that appeared 

to be missing from records belonging to “controls” rather than “cases”. Our hypothesis was verified as 

C4.5 unpruned resulted in the lowest classification error (21.0 %) while T3.0 did not do any better than 

23.6%. However, the size of the tree for T3.0 was only 76 as compared to 220 for C4.5 unpruned. The 

most important attributes here ensued to be “Smoke Status”, “Alcohol Status” and “Source of Referral”. 

Once again we split the set into training and test sets (above50t). This time results were comparable 

as C4.5 unpruned resulted in a tree of size 144, with 21.9% classification error and 38.5% generalisation 

error while T3.0 built a tree of size 73, with 21.3% and 40.8% classification and generalisation error 

respectively. 

 

5. Discussion and Conclusions  

This work highlights the strengths and weaknesses of C4.5, a well-established decision tree 

classification algorithm, and T3, an improved version of another algorithm, when using real life medical 

data sets. From the experiments reported in section 4, it is clear that T3 can perform very well, especially 

if the objective is known. If simplicity is the main quality we are looking for then small tree size is 

required. When a good model of existing collected data is sought, then low classification error is the 

objective. Finally, when strong predictive power is required, it is low generalisation error that is required. 

The best performing algorithm in terms of classification error was T3.0 in 8 out of 9 cases. It resulted 

in 6.69% average classification error, while C4.5’s best version (unpruned) resulted in 20.06% error on 

average. The best performing algorithm in terms of generalisation error, excluding trivial trees of size 
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one, was T2.0, with 17.17% error on average, while C4.5’s best version (unpruned) resulted in 29.3% 

error on average. Finally, the best performing algorithm in terms of tree size, again excluding trivial trees, 

was T2.0, which generated trees of average size of 19.25, while T3.0 and C4.5 unpruned generated trees 

of average size of 56.62 and 162.87 respectively. 

We also notice that C4.5 pruned resulted in trivial trees in 7 out of 9 cases, and even when it did not 

(above50 and above50t), accuracy was still significantly low. On the other hand, C4.5 unpruned produced 

much larger trees than any version of T3 in 7 out of 9 cases. This means that models built by C4.5 are 

nearly always more complex despite accuracy being lower when compared to T3. As for T3, we can 

conclude that when building trees of size 2, classification error is high because of the simplicity of the 

model while generalisation error is rather low, because of the fact that it avoids overfitting the data.  

A well known issue in the context of classification is where the induced tree may overfit the data and 

essentially learn the training set too well, thus resulting in poor performance of the classifier on a test set. 

Established approaches to avoid overfitting are to either pre-prune the tree, i.e. halt tree construction at 

some depth, or post-prune the tree, i.e. remove branches from a fully grown tree. In the context of the 

work here and the results obtained using T3, this tree-pruning occurs naturally as with T3 the depth of the 

tree is limited. 

As it is clear from the results, whereas the error was low in the original data sets (0.1% at most) by 

excluding two attributes we reached an error of 14.6%, showing that these two have a strong predictive 

power. This feature however was not captured by C4.5.  

Consequently T3 provided an accurate and predictive model of the data. It also highlighted the 

important and /or correlated attributes for further investigation. For example, all attributes known to affect 

the risk of stroke [13], such as age, hypertension, alcohol and smoking were picked up by T3. Other 

factors identified by T3, such as history of stroke in first degree relatives or history of myocardial 

infarction can be verified by experts, while others can be either attributed to the nature of the data (most 

recent stroke, admission to hospital) or can help to formulate new hypotheses (sex, source of referral). An 

alternative in order to identify correlated attributes would be the use of statistics and feature selection as a 

pre-processing step. 

A separate issue highlighted by this work is that of how to handle missing values. C4.5 adopts the 

rather drastic solution of ignoring these, while T3 takes these into account as a separate attribute value 

and achieves higher accuracy. Both approaches have merits and one could argue that neither should be 

used without consulting the domain experts. On the one hand, excluding  missing values, as these appear 

in older or less relevant data, is the solution adopted in [24, 25], where missing data ranged between 40% 

and 56.6%. On the other hand, one should recognise that missing data is an eventuality of most real data 

sets and choosing to ignore this can only weaken the benefits from data mining and statistical analysis. 

According to Hand et al.: “It is a rare data set that does not have such problems ... Of course, all of these 

problems also arise in standard statistical applications (though perhaps to a lesser degree with small, 

deliberately collected data sets) but basic statistical texts tend to gloss over them.” [26]. Furthermore, 

Kurgan et al. recognise that: “In spite of the very high number of missing values, our system generated 

interesting results. They included finding some relationships that were already known to the experts, and 
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which validated correctness of the approach. In addition, the system generated new and clinically 

important knowledge about the disease” [25]. For a more comprehensive discussion about treating 

missing values in medical studies the interested reader is referred to [27]. Here, the authors argue that 

excluding missing values might bias results and conclude that “there are fundamental limits on the ability 

of statistical methods to compensate for such problems”. 

However, one should not forget that even though data mining can provide assistance in making the 

diagnosis or prescribing the treatment, it cannot replace the physician’s intuition, experience and 

interpretive skills [2, 27]. In short, data mining is not aiming to replace medical professionals and 

researchers, but to complement and support their efforts to save human life [24]. 

To conclude, T3 has given very encouraging results when using real data; however further evaluation 

would be useful, using different data sets to verify these findings. For example a comparison of fuzzy 

inference, logistic regression, and classification trees (CART) concluded that the accuracy rates achieved 

(less than 84%) are not sufficiently large to justify use of these methods in daily practice from a clinical 

point of view [28]. A recent comparison of neural networks, decision trees and logistic regression, the 

most commonly used statistical method, indicated that the decision tree (C5 an improved version of C4.5) 

is the best predictor [24].  T3 could demonstrate higher predictive ability as demonstrated by the results 

presented here. Another study used a combination of logistic regression and decision trees for the 

prediction of mortality for intensive care patients. The study showed that the hybrid model provides better 

prognostic performance than the global logistic regression model [29].  

Other ideas that would improve T3, as a full-scale medical decision support system, would be the 

introduction of a pre-processing stage to eliminate attributes which are irrelevant or predict missing 

values in case there are many. Feedback from users who are experts in their domain should also be 

collected to fine tune the system especially in the light of specialised evaluation of the decision trees 

themselves. Interesting or even novel patterns might be observed by medical experts. Finally, a user-

friendly interface that would suggest which version is to be used depending on the nature of the data and 

the task in hand would enhance the systems performance. 
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List of Tables 

 

 

Table 1: Attribute description 

Attribute Type Description and Values 

Ethnic  ternary 1. Caucasian, 2. Indian subcontinent, 3. Other 

Sex  binary 1. Male, 2. Female 

Age continuous Numeric attribute. Age at the time of stroke 

Admission    six values Specifies when a patient was admitted to the hospital. 1. Within 24 

hours, 2. Within a week, 3. Within a month, 4. More than one 

month, 5. Not admitted, 6. Already in hospital at time of stroke 

Most recent stroke 

diagnosis recorded 

six values 1. Unknown type of stroke, 2. Unspecified cerebral infarction, 3. 

Embolic infarction, 4. Thrombotic infarction 5. Subarachnoid 

haemorrhage, 6. Infracerebral haemorrhage 9. Other 

Source of referral ternary 1. GPs, 2. Clinical Audit Team, 3. District Liaison Team 

Aspirin since  ternary Was aspirin prescribed prior the stroke (1. Yes, 2.  No, 9. N/A) 

Past Angina  ternary Suffered from Angina (1, 2, 9) 

Past T.I.A  ternary Suffered from past Transient Ischemic Attack (1, 2, 9) 

Past M.I.   ternary Suffered from previous Myocardial Infarction (1, 2, 9) 

Past A.F.  ternary Suffered from past Atrial Fibrillation (A.F.) (1, 2, 9) 

Past others  ternary Suffered from other cardiovascular disease (1, 2, 9) 

Past Known Diabetes ternary Known diabetes of the patient (1, 2, 9) 

Post Found Diabetes  ternary Diabetes found post the stroke (1, 2, 9) 

Past Renal Failure  ternary Suffered from Renal failure (1, 2, 9) 

Past Obesity  ternary Suffered from Obesity (1, 2, 9) 

Past Migraine  ternary Suffered from Migraine (1, 2, 9) 

Post Obesity  ternary Suffered from Obesity post the stroke(1, 2, 9) 

Past P.E.  ternary Suffered from Pulmonary Embolism (P.E.) (1, 2, 9) 

Past V.T.  ternary Suffered from Venous Thrombosis (V.T.) (1, 2, 9) 

History Any  ternary Any history of a stroke in a first degree relative (1, 2, 9) 

History M.I  ternary Any history of a Myocardial Infarction (MI) in a first degree relative 

(1, 2, 9) 

Smoking Status  binary Smokes 1.Yes, 2. No 

Alcohol Any  ternary Any record of alcohol consumption prior to the event? (1, 2, 9) 

Alcohol Status  ternary The patient drinks alcohol: 1. Never, 2. occasionally, 3. regularly  

Height  continuous The height of a patient in centimetres. 

Weight  continuous The weight of a patient in kilos. 
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Derived attributes Type Description and Values 

CP100at_3m binary Patient whose BPs (SBP/DBP) have been raised (SBP>=160 and 

DBP>=95 mmHg) on >= 2 times within 3 months, (Yes=1, No=0) 

CP100_3m binary Patient whose BPs (SBP/DBP) have been raised (SBP>=160 or 

DBP>=95 mmHg) on >= 2 times within 3 months, (Yes=1, No=0) 

asbpr_ra continuous Avg. SBP from first recorded to first raised BP, not including this. 

adbpr_ra continuous Avg. DBP from first recorded to first raised BP, not including this 

asbpt_s continuous Avg. SBP from first treatment to when this treatment stopped 

adbpt_s continuous Avg. DBP from first treatment to when this treatment stopped 

asbps_re continuous Avg. SBP from last treatment to last recorded BP before stroke 

adbps_re continuous Avg. DBP from last treatment to last recorded BP before stroke 

asbp1_at continuous Avg. SBP from first raised BP to last recorded BP for all subjects 

adbp1_at continuous Avg. DBP from first raised BP to last recorded BP for all subjects 
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Table 2: Data sets and their properties used in experimentation  

    Attributes 

     No of distinct  

Dataset No of  

Records 

Missing 

values 

Classes Conti-

nuous 

2 3 >=5 Total 

Med_123 795 15980 2 11 4 20 2 37 

above50 795 2252 2 5 4 4 0 13 

med_newlive 671 13275 2 11 4 20 2 37 
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Table 3: Experimental results (part I) 

Data set Med_123  

37 att 

795 rec 

Med_123t  

37 att 

795 (530/265) rec 

Med_123-ah 

36 att 

795 rec 

Med_123-mrs  

36 att 

795 rec 

Med_123-am 

35 att 

795 rec 

 tree 

size  

class. 

error 

% 

 tree 

size  

class. 

error 

% 

gen. 

error 

% 

tree 

size  

class. 

error 

% 

 tree 

size  

class. 

error 

% 

 tree 

size  

class. 

error 

% 

  

T2.0 18 0.1  18 0.2 0.8 12 0.1  15 0.3  10 16.9  

T2.1 18 0.1  18 0.2 0.8 14 0.1  15 0.3  10 16.9  

T2.2 18 0.1  18 0.2 0.8 14 0.1  15 0.3  10 16.9  

T2.3 18 0.1  18 0.2 0.8 14 0.1  15 0.3  10 16.9  

T3.0 39 0  39 0 0.8 19 0  30 0.1  50 14.6  

T3.1 76 0  76 0 1.1 41 0  56 0.1  50 14.6  

T3.2 56 0  54 0 0.4 41 0  56 0.1  50 14.6  

T3.3 49 0  50 0 1.5 41 0  52 0.1  44 15  

C4.5unpr. 226 25.5  186 20.9 34.7 194 26.3  226 25.4  194 26.2  

C4.5pr. 1 33.3  1 33.2 33.6 1 33.3  1 33.3  1 33.3  

N.B. “bold: best value of column” 
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Table 4: Experimental results (part II) 

Data set med_newlive  

37 att 

671 rec  

med_newlivet  

37 att 

671 (447/224) rec 

above50  

13 att 

795 rec 

above50t  

13 att 

795 (530/265) rec 

 tree 

size  

class. 

error 

% 

 tree 

size  

class. 

error 

% 

gen. 

error 

% 

tree 

size  

class. 

error 

% 

 tree 

size  

class. 

error 

% 

gen. 

error  

%  

T2.0 26 8.8  24 6.5 15.2 20 29.3  21 28.7 35.5 

T2.1 26 8.8  24 6.5 15.2 20 29.3  21 28.7 35.5 

T2.2 1 11.9  1 10.7 14.3 20 29.3  21 28.7 35.5 

T2.3 1 11.9  1 10.7 14.3 20 29.3  13 29.4 35.1 

T3.0 92 5.1  85 3.4 16.5 76 23.6  73 21.3 40.8 

T3.1 66 5.8  60 3.8 18.3 76 23.6  73 21.3 40.8 

T3.2 1 11.9  1 10.7 14.3 76 23.6  69 21.7 40.8 

T3.3 1 11.9  1 10.7 14.3 63 24.9  50 24.3 37.4 

C4.5unpr. 58 11.2  49 8.3 14.7 220          21.0  144 21.9 38.5 

C4.5pr. 1 11.9  1 10.7 14.3 7 31.4  23 29.2 38.1 

N.B. “bold: best value of column” 

 


