
Noname manuscript No.
(will be inserted by the editor)

T3C: Improving a Decision Tree Classification
Algorithm's Interval Splits on Continuous Attributes

Panagiotis Tzirakis · Christos Tjortjis

Received: date / Accepted: date

Abstract This paper proposes, describes and evaluates T3C, a classification
algorithm that builds decision trees of depth at most three, and results in
high accuracy whilst keeping the size of the tree reasonably small. T3C is an
improvement over algorithm T3 in the way it performs splits on continuous
attributes. When run against publicly available data sets, T3C achieved lower
generalisation error than T3 and the popular C4.5, and competitive results
compared to Random Forest and Rotation Forest.

Keywords Data mining · Classification · Decision Trees · Interval Splits

Mathematics Subject Classification (2000) MSC 68T05

1 Introduction

Classification produces a function that maps a data item into one of several
predefined classes, by inputting a training data set and building a model of
the class attribute, based on the rest of the attributes. Decision Trees is a clas-
sification method with intuitive nature which matches the users' conceptual
model without loss of accuracy (Berry and Linoff 2004). However, no clear
winner exists (Tjortjis and Keane 2002) amongst decision tree classifiers when
taking into account tree size, classification and generalisation accuracy. This

P. Tzirakis
Department of Computer Science, University of Crete, Voutes Campus, 700 13 Heraklion,
Crete, Greece

C. Tjortjis
School of Science and Technology, International Hellenic University, 14th km Thessaloniki
- Moudania, 57001 Thermi, Greece
Tel: +30 2310 807576
Fax: +30 2310 474590
E-mail: c.tjortjis@ihu.edu.gr

2 Panagiotis Tzirakis, Christos Tjortjis

work focuses on reducing generalisation error, which is the number of instances
that have been misclassified in the test set. We focus on reducing the gener-
alization error because this allows for better prediction, i.e. classification of
unseen cases. We are more interested in generalization error because we want
to see how the algorithm performs in new, unseen, data, rather than improving
classification accuracy by overfitting the data (Murthy and Salzberg 1995).

This paper introduces T3C, which on average outperforms the popular al-
gorithm C4.5 (Quinlan 1993; Quinlan 1996) as well as T3 (Tjortjis and Keane
2002; Tjortjis et al. 2007), whilst improving T3's performance, even when com-
pared with state-of-the-art meta classifiers such as Rotation Forest (Rodriguez
et al. 2006) or advanced decision tree classifiers like Random Forest (Breiman
2001). T3C builds small decision trees with depth at most 3. The main differ-
ence between T3C and T3 is that T3C splits continuous attributes with four
nodes instead of three.

In the remaining of the paper C4.5, T3, Rotation Forest and Random Forest
are briefly described in section 2, including a comparison of their performance,
as described in the literature, enriched by new experiments. T3C is detailed in
section 3, along with key concepts on how T3C differs from T3. Experimental
results are presented in section 4 and discussed/evaluated in section 5. Finally
conclusions and directions for future work are given in section 6.

2 Background

Classification is a method aiming at classifying records into one of the many
classes which are predefined (Hubert and Van der Veeken 2010; Mozharovskyi
et al. 2015). Given a well defined number of classes and a set of pre-classified
samples, classification aims at creating a model that can be used for classify-
ing future unknown data. More precisely, classification can be described as a
function of two steps (Witten et al. 2011):

– Step 1: Learning. In this step a model is built which describes a predefined
set of classified data. The training data are being used by a classification
algorithm in order to build the model. The records of the training set are
selected using the holdout method; given data are randomly partitioned
into two independent sets: the training set (normally 2/3 of the records)
for model construction and the test set (normally 1/3 of the records) for
accuracy estimation. The model which is determined is known as classifier
and is represented by classification rules, decision trees or mathematical
formulae.

– Step 2: Classification. In this step, test data belonging to known in advance
classes are used in order to calculate the accuracy of the model. There are
several methods to assess the accuracy of a classifier. Training data are
chosen randomly and independently. The model classifies each one of the
training samples. Afterwards, using the test data, the class that data belong
to, is compared to the class predicted by the model. The classification
accuracy of the model is the percentage of the sample data that were

Title Suppressed Due to Excessive Length 3

classified correctly by the classifier. Generalization accuracy is the number
of correct instances divided by the total number of instances in the test
set. Generalization (and similarly classification) error is defined as follows:

generalization error = 1− generalization accuracy

In addition to accuracy, other measures of goodness exist for classifica-
tion (Han et al. 2010). For instance, we can use sensitivity (i.e. True Positive
recognition rate), specificity (i.e. True Negative recognition rate), precision
(i.e. what percentage of records that the classifier labelled as positive are ac-
tually positive), recall (i.e. completeness what percentage of positive records
did the classifier label as positive), F measure or F1-score (i.e. the harmonic
mean of precision and recall). For multiple class datasets the F1-score can be
found with the following formulae:

F1Score =
2 ∗ precision ∗ recall
precision+ recall

precision =
1

|C|

C∑
i=1

tpi
tpi + fpi

recall =
1

|C|

C∑
i=1

tpi
tpi + fni

where |C| is the number of classes, tpi are the true positives, fpi are the
false positives and fni are the false negatives for class i.

2.1 Decision Tree Classifiers

Decision trees is one of the most effective and widespread methods for pro-
ducing classifiers from data (Tjortjis and Keane 2002; Quinlan 1993; Breiman
2001; Breiman et al. 1984; Quinlan 1986; Aba and Breslow 1998; Auer et al.
1995; Gehrke et al. 1998). There are a large number of decision tree algorithms
that have been studied in data mining, machine learning and statistics. Like
other classifiers, decision trees grow trees from training data and then their
accuracy is measured by using test data. Some of the best known, high per-
formance algorithms are: C4.5 (Quinlan 1993), T3 (Tjortjis and Keane 2002),
Rotation Forest (Rodriguez et al. 2006), and Random Forest (Breiman 2001).
The following subsections summarise key concepts for these four algorithms.

4 Panagiotis Tzirakis, Christos Tjortjis

2.1.1 Rotation Forest

In order to create the training data for a base classifier Rotation Forest does
the following (Rodriguez et al. 2006):

1. It splits the feature set randomly in K subsets.
2. Principal Component Analysis (PCA) is applied to each subset

In order to preserve the variability information in the data all principal
components are retained. That results in K axis rotations in order to form new
features for a base classifier. Diversity is promoted through feature extraction
for each base classifier. Decision trees are chosen here because they are sensitive
to rotation of the feature axes, hence the name ”forest”. Accuracy is sought
by keeping all principal components and also using the whole data set to train
each base classifier.

2.1.2 Random Forest

Random Forest is a combination of decision trees, so that each tree can depend
on the values of a random vector that was selected independently from the
distribution of a random forest. According to Breiman (Breiman 2001):

Definition 1 A random forest is a classifier consisting of a collection of tree-
structured classifiers h(x, k), k = , ..., where the k are independent identically
distributed random vectors and each tree casts a unit vote for the most popular
class at input x.

Generalization error of a forest depends on the strength of each tree in
the forest and the correlation between them. Choosing a random selection of
features to split each node results in comparable error rate of the algorithm
AdaBoost (Freund and Schapire 1995) and is more ”powerful” when dealing
with noise.

2.1.3 C4.5 and C5

C4.5 was introduced by Quinlan (Quinlan 1993), in order to evolve ID3 (Quin-
lan 1986). C4.5 tries to find small decision trees. In order to choose which
attribute to split C4.5 uses the maximum value of the GainRatio defined by:

GainRatio =
Gain(A)

SplitInfo(A)
(1)

The SplitInfo(A) is given by the formula:

SplitInfo(A) = −
c∑

i=1

|Si|
|S|

log2
|Si|
|S|

(2)

where S1 through Sc are the c subsets of examples resulting from parti-
tioning S by the c-valued attribute A.

Title Suppressed Due to Excessive Length 5

Gain(A) formula is:

Gain(A) = Entropy(S)−
∑

u∈V alues(A)

|Su|
|S|

Entropy(Su) (3)

where Values(A) is the set of all possible values for attribute A, Su is the
subset of S for which attribute A has value u and entropy is defined as follows

Entropy(S) = −
k∑

i=1

freq(Ci, S)

|S|
log2

freq(Ci, S)

|S|
(4)

where freq(Ci, S) indicates the number of instances in S that belong to
class Ci.

A modern implementation of Quinlan's decision tree algorithm exists in
C5.0, which can be found at (RuleQuest 2013). The splitting of discrete at-
tributes is different between C4.5 and C5.0, resulting in C5.0 rulesets having
noticeably lower error rates on unseen cases for such datasets.

2.1.4 T2 and T3

T2 (Auer et al. 1995) is a classification algorithm which calculates optimal
decision trees up to depth two and uses two kinds of decision nodes:

1. Discrete splits on a discrete attribute, where the node has as many branches
as there are possible attribute values, and

2. Interval splits on continuous attributes. A node, which performs an interval
split, divides the real axis into intervals and has as many branches as there
are intervals. The number of intervals is restricted to be either at most as
many as the user specifies, if all the branches of the decision node lead to
leaves, or to be at most 2 otherwise. The attribute value unknown is treated
as a special attribute value. Each decision node (discrete or continuous)
has an additional branch, which takes care of unknown attribute values.
T2 builds the decision tree satisfying the above constraints and minimizing
the number of misclassifications of cases in the data.

T2 was compared with C4.5 (Tjortjis and Keane 2002). The results have
shown that T2 produces smaller trees with approximately the same classifica-
tion and generalization error as C4.5.

T3 improves T2 by:

1. Introducing the Maximum Acceptable Error (MAE), this allows some clas-
sification error (the number of instances that have been misclassified in the
training set) at each node, thus reducing overfitting. T2 uses MAE of 0%
as a stopping criterion during tree building, whilst in T3 MAE ranges be-
tween 0% and 30%, and is user specified. If MAE is less than the specified
at a given node, then tree building stops and the node is returned.

2. Allowing trees to grow at a maximum depth of three. The user specifies
the depth of the tree: the deeper it is the more accurate the classification.

6 Panagiotis Tzirakis, Christos Tjortjis

T3 improves T2 in both classification and generalization error. More pre-
cisely, in 9 out of 15 datasets T3 has lower generalization error. That is ex-
pected because T3 grows bigger trees with less overfitting. It is worth men-
tioning that T3 did not improve T2 in datasets that contain only continuous
attributes.

2.2 Performance comparison

In this section we present experimental results for T3, T3C, C4.5, Random
Forest (RaF) and Rotation Forest (RoF). We kept C4.5 as it was shown to
produce accurate results in the original paper (Tjortjis and Keane 2002) and
included Random Forest and Rotation Forest as these were shown to produce
even better results in recent works (Rodriguez et al. 2006; Breiman 2001; Tatsis
et al. 2013). We used the same 23 data sets; 22 publicly available from the
UCI repository (Lichman 2013) and one medical set (Tjortjis et al. 2007), as
are used in (Tjortjis and Keane 2002) to conduct experiments.

Table 1 shows the generalization error (%) for each of these five algorithms.
The first group of nine data sets contains only discrete attributes. The second
group of seven data sets contains both discrete and continuous attributes,
and the last group of seven data sets contains only continuous attributes.
In table 1 the last column indicates whether the dataset contains discrete
(D), continuous (C) or both discrete and continuous (C/D). These data sets
are presented in more detail in Table 2 . Table 1 depicts generalisation error
for the five algorithms across 23 data sets. We use bold to indicate the best
performing algorithm for each data set. All in all, T3 was best in six out of 23
cases, whilst T3C was best in eight out of 23, C4.5 in three, Random Forest
in five and Rotation Forest in ten out of 23 data sets, including five out of
7 data sets containing only continuous attributes. From these results we can
conclude that T3 performs comparably well against C4.5 as well as against
newer classification algorithms like Random Forest and Rotation Forest.

3 T3C, an Improved Version of T3

Despite its simplicity and its ability to produce reasonably accurate results, T3
has one deficiency. It does not improve T2s accuracy for datasets that contain
only continuous attributes. That was expected because T3 does not interfere
in the way T2 splits continuous attributes. This motivated us to change the
way T3 splits continuous attributes.

We use pseudo code to present the main functions of T3C. The first func-
tion is BuildTree with signature:

Tree BuildTree (ItemNo Fp, ItemNo Lp, int Dep, ClassNo PreviousClass)

Algorithm 1 shows the pseudo code for this tree building function.

Title Suppressed Due to Excessive Length 7

Table 1 Generalization error for 23 data sets

Data set T3 T3C C4.5 RaF RoF Type

Breast-Cancer 27.95 27.95 2.8 32.6 27.4 D
Chess 6.51 6.51 0.5 1.8 0.7 D
Lenses 30.36 30.36 37.5 37.5 62.5 D
Monk1 0.0 0.0 23.4 50.0 50.0 D
Monk2 32.99 32.99 34.7 30.3 10.4 D
Monk3 0.0 0.0 2.8 50.0 50.0 D
Mushroom 0.0 0.0 0.0 0.0 0.0 D
Soybean-large 14.71 14.71 10.5 9.7 4.4 D
Vote 5.83 5.83 3.0 0.0 3.0 D
Lymphography 25.53 25.53 22.6 0.0 4.0 C/D
Hypotheroid 1.03 1.03 0.9 0.7 1.0 C/D
Hepatitis 17.92 17.92 19.4 19.0 6.5 C/D
Crx 14.24 14.24 15.3 14.8 15.2 C/D
Australian 14.65 12.92 14.6 26.7 15.8 C/D
Cleve 22.04 22.04 23.5 32.5 9.4 C/D
Med 123 0.75 0.75 33.4 17.3 15.4 C/D
Iris 4.75 4.75 6.1 6.0 4.0 C
Heart 29.32 29.32 19.3 18.9 16.7 C
Breast 5.34 5.34 5.9 4.3 3.9 C
Diabetes 27.04 26.24 27.4 28.5 26.6 C
Pima 24.8 24.8 25.5 20.3 19.9 C
Waveform-21 31.26 31.17 23.7 20.5 18.1 C
Waveform-40 30.38 30.38 24.4 22.1 19.0 C

Algorithm 1 Tree BuildTree
1: if Fp..Lp is empty then
2: terminate and return a leaf node, which has PreviousClass as the winning class, and

relative frequency and error rate as 0.
3: else(i.e. if there remain items for processing)
4: calculate the class distribution of this list of items, select the winning class and

initialise the relative frequency of this class, by dividing the number of occurrences of
this class by the total number of class occurrences in this set.

5: Create a new leaf called Node for this set, using this winning class, and the relative
frequency and error rate, which have been calculated before.

6: if error rate ≤ MAE or Dep=0 then
7: return this Node and terminate
8: else
9: build BestNode with Node, using the function Build described below.

10: Release the Node created
11: return BestNode, and terminate

The second most important function is the function Build with signature:

Tree Build (ItemNo Fp, ItemNo Lp, int Dep, Tree Root)

Build constructs the optimal decision tree with depth at most Dep for the
given list of items.

Algorithm 2 shows the pseudo code.

8 Panagiotis Tzirakis, Christos Tjortjis

Algorithm 2 Tree Build
1: Create a copy of the Root called BestNode
2: for all the attributes do
3: if Special Status of the attribute is IGNORE then
4: continue
5: if the attribute under examination is continuous then
6: build a Node using Build2Contin (builds a sub-tree based on a continuous at-

tribute split) for that attribute
7: elseit is discrete
8: build Node using Build2Discr (builds a sub-tree based on a discrete attribute

split)

9: if the error of Node is less than the error of BestNode (i.e. the root) then
10: release BestNode
11: set BestNode := Node
12: return BestNode

The Special Status in line 3 is initialized when the attributes are read and
determines whether the status of an attribute is discrete or ignore, i.e. missing
value.

Two sub-algorithms that are used above are theBuild2Cont andBuild2Discr.
The signature for the latter is the following:

Tree Build2Discr(ItemNo Fp, ItemNo Lp, Attribute Att, int Dep, Tree Root)

Algorithm 3 shows the pseudo code.

Algorithm 3 Tree Build2Discr
1: BestNode is a copy of Root
2: for each possible value V of attribute Att do
3: Group data (Fp...Lp) according to V and find Kp for the last of them
4: Create a branch for the value V using BuildTree(Fp,Kp,Dep − 1, Root− >

BestClass)
5: Compute error for each branch and add it to the total error of BestNode
6: Fp = Kp + 1

7: return BestNode

The signature for the Build2Cont algorithm is the following:

Tree Build2Cont(ItemNo Fp, ItemNo Lp, Attribute Att, int Dep, Tree Root)

Algorithm 4 shows the pseudo code. The function SecondSplitContin finds
the best decision tree when splitting a continuous attribute in the first level
and a continuous attribute in the second level. The function SecondSplitDiscr
finds the best decision tree when splitting a continuous attribute in the first
level and a discrete attribute in the second level.

As mentioned before, the main difference between T3 and T3C is the way
T3C splits continuous attributes. The following changes were applied to tree
building:

Title Suppressed Due to Excessive Length 9

Algorithm 4 Tree Build2Cont
1: if Dep = 1 then
2: Call SecondSplitContin(Fp, Lp, None, Att)
3: return IntervalTest
4: else
5: Sort instances according to Att
6: Find Kp, the first instance which has a known value for the attribute Att
7: if Kp ¿ Lp then
8: return Root
9: else

10: for each attribute Att1 do
11: if Special Status of the Att1 is IGNORE then
12: Continue
13: if Att1 is continuous then
14: Call SecondSplitContin(Kp, Lp, Att, Att1)

15: if Att1 is discrete then
16: Call SecondSplitDiscr(Kp, Lp, Att, Att1)

17: Find the best split BestSplit between Kp and Lp and
18: Split node BestNode according to BestSplit
19: Create three nodes-children for the BestNode
20: return BestNode

1. T3 splits nodes for continuous variables into three nodes: two nodes that
occur by splitting the real axis in one point and a third node for unknown
variables. T3C splits nodes for continuous variables into four nodes: the
node that corresponds to unknown variables and three other nodes that
occur by splitting the real axis in two points.
As mentioned above the real axis is split in two points (assume k1 and k2).
By doing so, three intervals occur. That is (−∞,k1),[k1,k2) and [k2,+∞)
The distance between k1 and k2 should be greater than 0.15 in order for
the four nodes to be created, otherwise the split becomes just as that of
T3. This 0.15 value was calculated empirically via experimental study. This
constraint is vital to the algorithm because in some datasets the algorithm
would find that the next best split is very close to the k1 value. This was
observed in the training phase. In this case the interval [k1,k2) may contain
few or no instances and will not generalize very well. While developing T3C
we observed that the distance between k1 and k2 may be as little as 10−4

resulting in trees with high generalization error. We tried different values,
including 0.05, 0.1, 0.2, 0.5, 1, and 1.5, for this distance and we selected
a threshold of 0.15 as it produced the best results. If the split does not
improve accuracy then T3's split is selected instead.

2. At the lowest level of the tree for continuous variables, T3 produces as
many nodes (leaves) as the number of classes plus one (for unknowns).
T3C produces for continuous variables as many nodes as the number of
classes plus one at the bottom two levels of the tree.

10 Panagiotis Tzirakis, Christos Tjortjis

Table 2 The data sets used for experimentation

Data set Records Classes Attributes Total
(training/test) Cont. Discrete

< 5 ≥ 5

Breast-cancer 286 (257/29) 2 0 5 4 9
Chess 3196 (2876/320) 2 0 36 0 36
Lenses 24(21/3) 3 0 4 0 4
Monk1 556 (500/56) 2 0 6 0 6
Monk2 601 (541/60) 2 0 6 0 6
Monk3 554 (499/55) 2 0 6 0 6
Mushroom 8124 (7312/812) 2 0 11 11 22
Soybean 683 (615/68) 19 0 33 2 35
Vote 435 (391/44) 2 0 16 0 16
Lymphography 148 (133/15) 4 3 14 1 18
Hypotheroid 3163 (2847/316) 2 7 18 0 25
Hepatitis 155 (139/16) 2 6 13 0 19
Crx 690 (621/69) 2 6 7 2 15
Australian 690 (621/69) 2 6 6 2 14
Cleve 303 (273/30) 2 6 7 0 13
Med 123 794 (715/79) 2 10 22 0 32
Iris 150 (135/15) 3 4 0 0 4
Heart 270 (243/27) 2 13 0 0 13
Breast 699 (629/70) 2 10 0 0 10
Diabetes 768 (691/77) 2 8 0 0 8
Pima 768 (691/77) 2 8 0 0 8
Waveform-21 5000 (4500/500) 3 21 0 0 21
Waveform-40 5000 (4500/500) 3 40 0 0 40

4 Experimental results

We compare T3C's generalisation error to that of T3 as reported in the liter-
ature (Tjortjis and Keane 2002). We used the same 23 data sets; 22 publicly
available from the UCI repository (Lichman 2013) and one medical set (Tjortjis
et al. 2007), as these are used in (Tjortjis and Keane 2002) to conduct exper-
iments. Table 2 lists these sets, along with their number of records (and their
split into training and test sets), their number of classes and their number of
attributes (and their split into continuous, discrete with less than five distinct
values and discrete attributes with five or more distinct values). Nine out of
the 23 sets contained only discrete attributes, so no difference in performance
was expected in comparison to T3, given that T3C affects performance on
data sets including continuous attributes. These datasets have the following
characteristics:

1. Different number of attributes. It is important to test the tree size our
algorithm creates and how it is related to the number of attributes of the
datasets.

2. There are datasets that contain only discrete attributes, only continuous
attributes and both continuous and discrete data. These different kinds of
attributes will provide us with insights into how our algorithm performs
on these situations.

Title Suppressed Due to Excessive Length 11

We performed 10 hold-out runs with initial random seed on each run and
we report the average Training/Generalization error, Tree size and F-measure
along with the standard deviation. Table 3 shows results for T3 and T3C when
applied to the 14 out of 23 data sets which include continuous attributes. For
each data set, the table shows respectively: tree size, classification and general-
ization error and F-measure for T3 and for T3C, along with the improvement
on generalization error as a percentage:

Improv = 1− T3CGen.error

T3Gen.Error
(5)

Numbers in bold indicate which algorithm performed better in terms of
generalization error, which is the focus of this work. The bottom-line shows the
average improvement of T3C over T3: 1.08%. We observe that T3C improves
generalization error for three out of the 14 data sets. The average improvement
of T3C over T3 for these three sets is 5% in terms of generalization error (and
1.1% in terms of generalization accuracy). We observe that these data sets
have either no discrete attributes (Diabetes, Waveform-21), or at least two
discrete attributes with five or more distinct values (Australian).

12 Panagiotis Tzirakis, Christos Tjortjis
T
a
b
le

3
E

x
p

er
im

en
ta

l
re

su
lt

s
fo

r
T

3
C

a
n

d
T

3
.

D
a
ta

se
t

T
3
C

T
3

Im
p
r
o
v

T
re

e
S

iz
e

C
la

ss
.(

%
)

G
en

.(
%

)
F

1
(%

)
T

re
e

S
iz

e
C

la
ss

.(
%

)
G

en
.(

%
)

F
1
(%

)
G

en
.

L
y
m

p
h

o
g
ra

p
h
y

1
2
.9

±
4
.6

3
1
8
.9

8
±

1
1
.9

5
2
5
.5

3
±

7
.2

9
4
8
.0

3
±

7
.0

9
1
2
.9

±
4
.6

3
1
8
.9

8
±

1
1
.9

5
2
5
.5

3
±

7
.2

9
4
8
.0

3
±

7
.0

9
0
.0

0
H

y
p

o
th

er
o
id

1
0
.8

±
0
.6

3
0
.6

1
±

0
.0

9
1
.0

3
±

0
.2

6
8
9
.0

1
±

2
.7

9
1
0
.8

±
0
.6

3
0
.6

1
±

0
.0

9
1
.0

3
±

0
.2

6
8
9
.0

1
±

2
.7

9
0
.0

0
H

ep
a
ti

ti
s

2
7
.6

±
1
.7

2
3
.6

±
0
.6

7
1
7
.9

2
±

5
.4

3
4
7
.3

3
±

5
.4

7
2
7
.6

±
1
.7

2
3
.6

±
0
.6

7
1
7
.9

2
±

5
.4

3
4
7
.3

3
±

5
.4

7
0
.0

0
C

rx
9
.1

±
5
.7

0
1
4
.1

8
±

0
.5

9
1
4
.2

4
±

1
.9

0
8
5
.3

8
±

2
.2

1
9
.1

±
5
.7

0
1
4
.1

8
±

0
.5

9
1
4
.2

4
±

1
.9

0
8
5
.3

8
±

2
.2

1
0
.0

0
A

u
st

ra
li
a
n

1
0
.5

±
6
.1

9
1
4
.1

1
±

0
.8

1
1
2
.9
2
±

1
.9

9
8
6
.8

5
±

1
.8

3
1
0
.9

±
6
.3

3
1
4
.1

1
±

0
.8

1
1
4
.6

5
±

2
.1

8
8
6
.8

5
±

1
.8

3
9
.1

2
C

le
v
e

3
6
.1

±
7
.4

1
1
1
±

1
.0

4
2
2
.0

4
±

6
.2

9
8
0
.4

2
±

5
.4

7
3
6
.1

±
7
.4

1
1
1
±

1
.0

4
2
2
.0

4
±

6
.2

9
8
0
.4

2
±

5
.4

7
0
.0

0
M

ed
1
2
3

1
7
.4

±
2
.5

4
0
.0

4
±

0
0
.7

5
±

0
.5

8
9
9
.4

4
±

0
.0

1
1
7
.4

±
2
.5

4
0
.0

4
±

0
0
.7

5
±

0
.5

8
9
9
.4

4
±

0
.0

1
0
.0

0
Ir

is
1
1
.7

±
0
.9

5
1
.5

±
0
.8

7
4
.7

5
±

2
.3

1
9
5
.4

9
±

2
.3

1
1
1
.2

±
0
.9

1
0
.9

±
0
.7

4
4
.7

5
±

2
.3

1
9
5
.4

9
±

2
.3

1
0
.0

0
H

ea
rt

4
±

0
2
2
.4

±
1
.3

5
2
9
.3

2
±

4
.0

7
7
3
.4

4
±

2
.9

5
4
±

0
2
2
.4

±
1
.3

5
2
9
.3

2
±

4
.0

7
7
3
.4

4
±

2
.9

5
0
.0

0
B

re
a
st

1
0
.2

±
0
.4

2
3
.3

6
±

0
.4

9
5
.3

4
±

1
.9

8
9
5
.8

±
1
.4

5
1
0
.2

±
0
.4

2
3
.3

6
±

0
.4

9
5
.3

4
±

1
.9

8
9
5
.8

±
1
.4

5
0
.0

0
D

ia
b

et
es

1
1
.6

±
0
.3

1
2
1
.7

2
±

1
.2

2
6
.2
4
±

2
.1

8
8
0
.9

6
±

1
.2

9
4
.1

±
0
.1

4
2
1
.7

2
±

1
.2

2
7
.0

4
±

2
.2

3
8
0
.9

6
±

1
.2

9
0
.8

P
im

a
1
1
.1

±
0
.5

6
2
1
.5

5
±

1
.0

4
2
4
.8

±
2
.4

2
8
1
.8

7
±

2
.0

5
1
1
.1

±
0
.5

6
2
1
.5

5
±

1
.0

4
2
4
.8

±
2
.4

2
8
1
.8

7
±

2
.0

5
0
.0

0
W

a
v
ef

o
rm

-2
1

1
4
±

0
2
8
.3

±
0
.2

6
3
1
.1
7
±

0
.6

1
6
8
.9

3
±

0
.6

1
1
4
±

0
2
8
.3

±
0
.2

6
3
1
.2

6
±

0
.6

8
6
8
.9

3
±

0
.6

1
0
.0

0
W

a
v
ef

o
rm

-4
0

1
4
±

0
2
7
.9

2
±

0
.3

2
3
0
.3

8
±

0
.9

1
6
9
.7

±
0
.8

4
1
4
±

0
2
7
.9

2
±

0
.3

2
3
0
.3

8
±

0
.9

1
6
9
.7

±
0
.8

4
0
.0

0
A

v
g

im
p

ro
v
em

en
t

0
.7

1

Title Suppressed Due to Excessive Length 13

4.1 T3C vs. C4.5

We performed 10 hold-out runs with initial random seed on each run and
we report the average Training/Generalization error, Tree size and F-measure
along with the standard deviation. Table 4 shows results for T3 and C4.5 when
applied to the 14 out of 23 data sets which include continuous attributes, and
has similar format to table 4. The bottom-line shows the average improvement
of T3C over C4.5: 2.29% in terms of generalization error (and 4.52% in terms
of generalization accuracy). We observe that T3C demonstrates better gener-
alization error than C4.5 for nine data sets, and worse error for five out 14
sets.

It is noted that the tree size of C4.5 is extremely large for the data cases
Waveform-21 and -40 (410 in comparison to 0-36 for the other data cases),
but not for T3C. These data sets were created using a Data-Generator and all
their attributes include noise. It appears that T3C is more resistant to noise
than C4.5.

14 Panagiotis Tzirakis, Christos Tjortjis
T
a
b
le

4
E

x
p

er
im

en
ta

l
re

su
lt

s
fo

r
T

3
C

a
n

d
C

4
.5

D
a
ta

se
t

T
3
C

C
4
.5

Im
p
r
o
v

si
ze

C
la

ss
.(

%
)

G
en

.(
%

)
F

1
(%

)
si

ze
C

la
ss

.(
%

)
G

en
.(

%
)

F
1
(%

)
G

en
.

L
y
m

p
h

o
g
ra

p
h
y

1
2
.9

±
4
.6

3
1
8
.9

8
±

1
1
.9

5
2
5
.5

3
±

7
.2

9
4
8
.0

3
±

7
.0

9
1
8
.8

±
5
.2

9
9
.2

3
±

2
.5

2
2
.6

±
5
.2

6
4
.5

5
±

1
5
.8

3
-1

2
.9

6
H

y
p

o
th

er
o
id

1
0
.8

±
0
.6

3
0
.6

1
±

0
.0

9
1
.0

3
±

0
.2

6
8
9
.0

1
±

2
.7

9
8
.2

±
1
.0

3
0
.6

2
±

0
.0

8
0
,9

±
0
.1

7
9
0
.1

6
±

2
.1

2
-1

4
.4

4
H

ep
a
ti

ti
s

2
7
.6

±
1
.7

2
3
.6

±
0
.6

7
1
7
.9
2
±

5
.4

3
4
7
.3

3
±

5
.4

7
1
1
.4

±
6
.1

7
8
.5

3
±

3
.1

0
1
9
.4

±
5
.2

7
3
9
.8

1
±

1
2
.8

3
7
.5

3
C

rx
9
.1

±
5
.7

0
1
4
.1

8
±

0
.5

9
1
4
.2
4
±

1
.9

0
8
5
.3

8
±

2
.2

1
3
1
.8

±
1
2
.7

5
9
.4

2
±

1
.7

9
1
5
.1

±
3
.6

5
8
3
.6

1
±

3
.7

7
5
.7

A
u

st
ra

li
a
n

1
0
.5

±
6
.1

9
1
4
.1

1
±

0
.8

1
1
2
.9
2
±

1
.9

9
8
6
.8

5
±

1
.8

3
3
5
.9

±
1
7
.3

9
.3

6
±

2
.1

1
1
4
.6

±
2
.4

7
8
7
.1

2
±

2
.2

5
1
1
.5

1
C

le
v
e

3
6
.1

±
7
.4

1
1
1
±

1
.0

4
2
2
.0
4
±

6
.2

9
8
0
.4

2
±

5
.4

7
2
8
.2

±
6
.1

4
8
.8

3
±

1
.3

7
2
3
.5

±
3
.7

2
7
9
.1

6
±

3
.1

7
6
.2

1
M

ed
1
2
3

1
7
.4

±
2
.5

4
0
.0

4
±

0
0
.7
5
±

0
.5

8
9
9
.4

4
±

0
.0

1
1
±

0
3
3
.2

8
±

1
.1

1
3
3
.4

±
2
.1

5
7
9
.9

±
1
.5

9
9
7
.7

5
Ir

is
1
1
.7

±
0
.9

1
1
.5

±
0
.8

7
4
.7
5
±

2
.3

1
9
5
.4

9
±

2
.3

1
6
.2

±
1
.0

3
2
.0

1
±

1
.4

9
6
.1

±
3
.0

3
9
4
.0

3
±

3
.0

5
2
2
.1

3
H

ea
rt

4
±

0
2
2
.4

±
1
.3

5
2
9
.3

2
±

4
.0

7
7
3
.4

4
±

2
.9

5
2
7
.4

±
7
.2

2
7
.4

7
±

2
.8

0
1
9
.3

±
3
.5

2
8
0
.5

9
±

3
.3

2
-5

1
.9

2
B

re
a
st

1
0
.2

±
0
.4

2
3
.3

6
±

0
.4

9
5
.3
4
±

1
.9

8
9
5
.8

±
1
.4

5
1
9
±

6
.1

8
1
.8

±
0
.5

8
5
.9

±
0
.8

6
9
5
.4

1
±

0
.7

3
9
.4

9
D

ia
b

et
es

1
1
.6

±
0
.3

1
2
1
.7

2
±

1
.2

2
6
.2
4
±

2
.1

8
8
0
.9

6
±

1
.2

9
3
6
.2

±
1
5
.6

4
1
5
.5

8
±

2
.9

7
2
7
.4

±
3
.0

6
7
9
.2

±
2
.1

8
4
.2

3
P

im
a

1
1
.1

±
0
.5

6
2
1
.5

5
±

1
.0

4
2
4
.8

±
2
.4

2
8
1
.8

7
±

2
.0

5
3
4
.2

±
1
3
.0

3
1
6
.2

±
3
.3

3
2
5
.5

±
1
.7

1
8
0
.7

7
±

1
.7

4
2
.7

5
W

a
v
ef

o
rm

-2
1

1
4
±

0
2
8
.3

±
0
.2

6
3
1
.1

7
±

0
.6

1
6
8
.9

3
±

0
.6

1
4
1
3
±

2
4
.2

7
4
.1

1
±

0
.8

8
2
3
.7

±
1
.2

7
7
6
.3

8
±

1
.2

4
-3

1
.5

2
W

a
v
ef

o
rm

-4
0

1
4
±

0
2
7
.9

2
±

0
.3

2
3
0
.3

8
±

0
.9

1
6
9
.7

±
0
.8

4
4
4
3
.6

±
1
8
.8

3
2
.5

6
±

0
.7

0
2
4
.4

±
1
.1

3
7
5
.6

2
±

1
.1

4
-2

4
.5

1
A

v
g

im
p

ro
v
em

en
t

2
.2

9

Title Suppressed Due to Excessive Length 15

Table 5 Experimental results for T3C and Rotation Forest

Data set T3C Rotation Forest Improv
Class.(%) Gen.(%) F1(%) Class.(%) Gen.(%) F1(%) Gen.

Lymphography 18.98 ± 11.95 25.53 ± 7.29 48.03 ± 7.09 1.74 ± 0.53 17.7 ± 6.64 59.71 ± 16.33 -44.24
Hypotheroid 10.8 ± 0.63 0.61 ± 0.09 1.03 ± 0.26 89.01 ± 2.79 1.2 ± 0.19 87.15 ± 2.62 14.17
Hepatitis 3.6 ± 0.67 17.92 ± 5.43 47.33 ± 5.47 2.06 ± 1.56 15.8 ± 4.46 55.8 ± 10.0 -13.42
Crx 14.18 ± 0.59 14.24 ± 1.90 85.38 ± 2.21 2.97 ± 0.76 14.4 ± 3.05 84.45 ± 2.95 1.11
Australian 14.11 ± 0.81 12.92 ± 1.99 86.85 ± 1.83 3.34 ± 0.94 13.8 ± 1.76 87.67 ± 1.52 6.38
Cleve 11 ± 1.04 22.04 ± 6.29 80.42 ± 5.47 1.1 ± 0.52 18.5 ± 4.89 83.5 ± 4.2 -19.14
Med 123 0.04 ± 0 0.75 ± 0.58 99.44 ± 0.01 3.3 ± 1.08 8.6 ± 1.56 93.74 ± 1.19 91.28
Iris 1.5 ± 0.87 4.75 ± 2.31 95.49 ± 2.31 0.2 ± 0.42 4.1 ± 2.15 96.1 ± 1.84 -15.85
Heart 22.4 ± 1.35 29.32 ± 4.07 73.44 ± 2.95 1.52 ± 0.75 18.1 ± 3.33 83.6 ± 2.99 -61.99
Breast 3.36 ± 0.49 5.34 ± 1.98 95.8 ± 1.45 1.08 ± 0.39 3.4 ± 1.31 97.3 ± 1.06 -57.06
Diabetes 21.72 ± 1.2 26.24 ± 2.18 80.96 ± 1.29 11.32 ± 1.80 24.5 ± 1.49 82.04 ± 1.58 -7.10
Pima 21.55 ± 1.04 24.8 ± 2.42 81.87 ± 2.05 12.67 ± 1.97 23.8 ± 2.66 82.37 ± 2.35 -4.20
Waveform-21 28.3 ± 0.26 31.17 ± 0.61 68.93 ± 0.61 0.39 ± 0.08 15.7 ± 0.82 84.27 ± 0.83 -98.54
Waveform-40 27.92 ± 0.32 30.38 ± 0.91 69.7 ± 0.84 0.02 ± 0.03 15.7 ± 0.44 84.33 ± 0.45 -93.50
Avg improvement -21.58

4.2 T3C vs. Rotation Forest

We performed 10 hold-out runs with initial random seed on each run and we re-
port the average Training/Generalization error and F-measure along with the
standard deviation. Table 5 shows results for T3 and Rotation Forest when
applied to the 14 out of 23 data sets which include continuous attributes, and
is formatted similar to table 4. Numbers in bold indicate which algorithm
performed better in terms of generalization error. The bottom-line shows the
average deterioration of T3C over Rotation Forest: 21.58% (and 4.44% in terms
of generalization accuracy). We observe that T3C demonstrates better gener-
alization accuracy than Rotation Forest for four data sets, worse accuracy for
the remaining ten out 14 sets. Still T3C improves T3, which was outperformed
by Rotation Forest 10 out 14 times and an average deterioration over Rotation
Forest at 51.00% in terms of generalization error (and 4.94% in terms of gen-
eralization accuracy). The results showed that Rotation Forest overwhelms
T3C in datasets that contain continuous attributes only. In contrast, T3C
outperforms Rotation Forest in four out of seven datasets that contain both
discrete and continuous attributes. From those results we can conclude that
T3C splits discrete attributes more thriftily than Rotation Forest. The oppo-
site happened in datasets that contain only continuous attributes as Rotation
Forest wins T3C.

4.3 T3C vs. Random Forest

As mentioned before, Random Forest demonstrated better results than T3C.
We performed 10 hold-out runs with initial random seed on each run and we re-
port the average Training/Generalization error and F-measure along with the

16 Panagiotis Tzirakis, Christos Tjortjis

Table 6 Experimental results for T3C and Random Forest

Data set T3C Random Forest Improv
Class.(%) Gen.(%) F1(%) Class.(%) Gen.(%) F1(%) Gen.

Lymphography 18.98 ± 11.95 25.53 ± 7.29 48.03 ± 7.09 0 ± 0 18 ± 5.97 53.38 ± 11.76 -41.83
Hypotheroid 0.61 ± 0.09 1.03 ± 0.26 89.01 ± 2.79 0.03 ± 0 1.2 ± 0.17 86.84 ± 2.26 14.17
Hepatitis 3.6 ± 0.67 17.92 ± 5.43 47.33 ± 5.47 0.1 ± 0.31 15.5 ± 3.54 50.56 ± 12.76 -15.61
Crx 14.18 ± 0.59 14.24 ± 1.90 85.38 ± 2.21 0.06 ± 0.09 13.8 ± 3.06 84.77 ± 3.24 -3.19
Australian 14.11 ± 0.81 12.92 ± 1.99 86.85 ± 1.83 0 ± 0 13.3 ± 1.28 88.4 ± 1.54 2.86
Cleve 11 ± 1.04 22.04 ± 6.29 80.42 ± 5.47 1.1 ± 0 18.5 ± 3.56 83.5 ± 3.37 -19.14
Med 123 0.04 ± 0 0.75 ± 0.58 99.44 ± 0.01 13.07 ± 0.68 33.4 ± 2.19 79.71 ± 1.64 97.75
Iris 1.5 ± 0.87 4.75 ± 2.31 95.49 ± 2.31 0 ± 0 5.1 ± 1.68 95.04 ± 1.69 6.86
Heart 22.4 ± 1.35 29.32 ± 4.07 73.44 ± 2.95 0 ± 0 18.4 ± 3.47 83.03 ± 3.32 -59.35
Breast 3.36 ± 0.49 5.34 ± 1.98 95.8 ± 1.45 0 ± 0 3.82 ± 1.39 97.0 ± 1.10 -39.79
Diabetes 21.72 ± 1.2 26.24 ± 2.18 80.96 ± 1.29 0 ± 0 24 ± 2.60 82.04 ± 2.10 -9.33
Pima 21.55 ± 1.04 24.8 ± 2.42 81.87 ± 2.05 0 ± 0 24.2 ± 2.39 81.79 ± 2.02 -2.48
Waveform-21 28.3 ± 0.26 31.17 ± 0.61 68.93 ± 0.61 0 ± 0 15.2 ± 0.51 84.81 ± 0.50 -107.07
Waveform-40 27.92 ± 0.32 30.38 ± 0.91 69.7 ± 0.84 0 ± 0 15 ± 0.70 85.01 ± 0.70 -102.53
Avg improvement -19.16

standard deviation. Table 6 shows results for T3 and Random Forest when
applied to the 14 out of 23 data sets which include continuous attributes, and
the format is similar to table 4. Numbers in bold indicate which algorithm per-
formed better in terms of generalization error. More precisely, in ten out of 14
datasets Random Forest had lower generalization error than T3C, and in four
out of 14 T3C gave lower generalization error. T3C demonstrated an average
deterioration over Random Forest at 19.16% in terms of generalization error
(and an average deterioration of 1.49% in terms of generalization accuracy).

It is also notable that in datasets that contain both discrete and contin-
uous attributes T3C gives lower generalization error in three out of seven
datasets and Random Forest gives lower generalization error in four out of
seven datasets. That occurred due to the high ability of T3C in splitting dis-
crete attributes.

4.4 Discrete attributes

Observing the above results we conclude that T3C is doing well on data sets
containing discrete variables. For that reason, it is appropriate to compare
T3C on data sets containing only discrete variables to see the performance in
these data sets. The results of the comparison are shown in the Table 7. For
each data set, the table shows the generalization error for T3C, C4.5, Random
Forest, Rotation Forest and for C5, respectively.

From Table 7, we conclude that T3C gave better results in three out of
nine cases, which demonstrates the strength of the algorithm in relation to the
others. C4.5 gave better results in four out of nine cases, Random Forest gave
better results in four out of nine cases, Rotation Forest in three out of nine
cases and C5 in only two cases. From this, we can conclude that T3C gave good

Title Suppressed Due to Excessive Length 17

Table 7 Experimental results for datasets with only discrete attributes

Data set T3C C4.5 Random Forest Rotation Forest C5.0

Breast-cancer 27.95 28.15 32.17 28.67 28.16
Chess 6.51 0.94 1.06 0.88 0.94
Lenses 30.36 21.61 33.39 34.29 45.89
Monk1 0 6.21 0.89 8.59 0
Monk2 32.99 30.74 53.69 6.64 33.67
Monk3 0 0 0 0 0
Mushroom 0 0 0 0 0.25
Soybean-large 14.71 5.02 0.13 1.15 12.69
Vote 5.83 3.27 0 1.29 5.28

results compared to the other algorithms. In particular, on dataset Monk1,
T3C has a much smaller generalization error than the other algorithms, apart
from C5.

On these nine data sets Rotation Forest gives an average generalization
error of 6.50%. C4.5 comes second with 8.36%, whilst Random Forest and
T3C follow with average generalization error of 11.01% and 11.03%, respec-
tively. Finally C5 appears to be slightly over-fitting the data with an average
generalization error of 12.34%.

5 Performance evaluation

From the comparison of T3 and T3C we can conclude that T3C performed
better than T3. In particular, T3C improved T3 on generalization error by
1.08% on average for all datasets including continuous attributes. This was
expected because T3C has a greedier approach when the tree decides to split
continuous attributes. As it was discussed in section 3, one more node is used
when a continuous attribute is being split. Despite this T3C does not produce
much bigger trees because of the other two changes we introduced. Actually
for 14 data sets it produced an average 0.55 nodes more than T3.

If we combine findings presented in Tables 4, 5, 6 and 7 we can conclude
that T3C performs well regarding generalization error.

For instance, T3C also improves T3 by 0.71% on average for all datasets
(Tables 3 and 7), and 1.05% better generalization error on data sets including
continuous attributes. It should be also noted that T3C improves T3 also in
terms of classification error by 0.74% on average for all datasets (Tables 3
and 7), and 1.16% better classification error on data sets including continuous
attributes (and 0,42% better F measure). Also, regarding generalization error,
T3C is better than C4.5 by 5.87% on average for all datasets including con-
tinuous attributes (Table 4), and produces trees with an average 65,28 nodes
less than C4.5. It is worth mentioning that T3C improved C4.5 in datasets
that contain both discrete and continuous attributes (better in 5 out of 7
sets), whilst achieving better generalization error in 4 out of 7 data sets with
only continuous attributes. On the other hand, C4.5 achieved better gener-

18 Panagiotis Tzirakis, Christos Tjortjis

alization accuracy in 5 out of 9 data sets with only discrete attributes. T3C
had also comparable performance to Random Forest. More specifically, T3C
improved Random Forest for datasets that contain both discrete and contin-
uous attributes by 17,96%, but was worse than Random Forest by 43,78% for
datasets that contain only continuous attributes as well as worse by 1,39% for
datasets that contain only discrete attributes(Tables 6 and 7) .

As for the comparison between T3C and Rotation Forest, T3C demon-
strated an average 31.78% worse performance than Random Forest in terms
of generalization accuracy, for all data sets (Tables 5 and 7). As with Rotation
Forest results, T3C performed better in datasets that contain both discrete and
continuous attributes. More precisely, in four out of seven datasets T3C had
lower generalization error than Random Forest. That did not occur in datasets
that contain only continuous attributes, as Random Forest performed better
in these datasets.

As we can see T3C performed better than T3, C4.5, comparably to Random
Forest and worse than Rotation Forest, in terms of generalization error.

6 Conclusions and future work

Experimental results have shown that T3C improves T3 in terms of generaliza-
tion accuracy without producing big trees and without overfitting. Specifically,
T3C improved T3 on datasets that contain continuous attributes. Moreover,
T3C improves C4.5 in terms of generalization error (and tree size). When
comparing T3C with Random Forest, T3C yields comparable generalization
error, and worse generalization error compared to Rotation Forest. T3C has
the advantage of producing small trees and performs well when only discrete
attributes are present (best performer in 4 out of 9 such data sets, better
even than C5). Concluding, although T3C improves on T3, and C4.5, further
improvements can be made. For instance, T3C can further improve the way
it splits continuous attributes. It would be challenging to consider a split on
continuous attributes with more than five nodes and with trees of depth more
than three. Also T3C can be parameterized it terms of which goodness mea-
sure we require to improve on. Increasing depth improves classification accu-
racy; reducing splits could improve generalization accuracy. Moreover, further
work can be done focusing on area under ROC curve, sensitivity/specificity
or precision/recall improvements. Finally, further experiments involving other
decision tree classification algorithms could help establish guideline on algo-
rithm selection depending on the nature and the characteristics of the dataset
at hand.

References

Aba, D. W. and Breslow, L. A. (1998). Comparing simplification procedures
for decision trees on an economics classification. Technical report, DTIC
Document.

Title Suppressed Due to Excessive Length 19

Auer, P., Holte, R. C., and Maass, W. (1995). Theory and applications of
agnostic pac-learning with small decision trees. In Theory and Applications
of Agnostic PAC-Learning with Small Decision Trees, pages 21–29. Morgan
Kaufmann, San Francisco.

Berry, M. J. and Linoff, G. S. (2004). Data mining techniques: for marketing,
sales, and customer relationship management. John Wiley and Sons, New
York.

Breiman, L. (2001). Random forests. Mach. Learn., 45(1):5–32.
Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification

and Regression Trees. Wadsworth and Brooks, Monterey, CA.
Freund, Y. and Schapire, R. E. (1995). A desicion-theoretic generalization of

on-line learning and an application to boosting(1995). In Computational
learning theory, pages 23–37. Springer.

Gehrke, J., Ramakrishnan, R., and Ganti, V. (1998). Rainforest-a framework
for fast decision tree construction of large datasets. In VLDB, volume 98,
pages 416–427.

Han, J., Kamber, M., and Pei, J. (2010). Data Mining: Concepts and Tech-
niques. Morgan Kaufmann, San Francisco.

Hubert, M. and Van der Veeken, S. (2010). Robust classification for skewed
data. Advances in Data Analysis and Classification, 4(4):239–254.

Lichman, M. (2013). UCI machine learning repository.
Mozharovskyi, P., Mosler, K., and Lange, T. (2015). Classifying real-world

data with the DDα -procedure. Advances in Data Analysis and Classifica-
tion, pages 1–28.

Murthy, S. and Salzberg, S. (1995). Decision tree induction: How effective is the
greedy heuristic? In In Proceedings of the First International Conference on
Knowledge Discovery and Data Mining, pages 222–227. Morgan Kaufmann,
San Francisco.

Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1):81–
106.

Quinlan, J. R. (1993). C4. 5: programs for machine learning, volume 1. Morgan
kaufmann, San Francisco.

Quinlan, J. R. (1996). Improved use of continuous attributes in c4.5. Journal
of Artificial Intelligence Research, 4:77–90.

Rodriguez, J., Kuncheva, L., and Alonso, C. (2006). Rotation forest: A
new classifier ensemble method. IEEE Trans Pattern Anal Mach Intell,
28(10):1619–1630.

RuleQuest (2013). www.rulequest.com/, last accessed july 2015.
Tatsis, V. A., Tjortjis, C., and Tzirakis, P. (2013). Evaluating data mining

algorithms using molecular dynamics trajectories. International journal of
data mining and bioinformatics, 8(2):169–187.

Tjortjis, C. and Keane, J. A. (2002). T3: an improved classification algorithm
for data mining. Lecture Notes Computer Science, 2412:50–55.

Tjortjis, C., Saraee, M., Theodoulidis, B., and Keane, J. A. (2007). Using t3,
an improved decision tree classifier, for mining stroke related medical data.
Methods of Information in Medicine, 46(5):523–529.

20 Panagiotis Tzirakis, Christos Tjortjis

Witten, I., Frank, E., and Hall, M. (2011). Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, San Francisco.

