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Abstract: We propose an approach for quantifying the biological relatedness 
between gene products, based on their properties, and measure their similarities 
using exclusively statistical NLP techniques and Gene Ontology (GO) 
annotations. We also present a novel similarity figure of merit, based on the 
vector space model, which assesses gene expression analysis results and  
scores gene product clusters’ biological coherency, making sole use of their 
annotation terms and textual descriptions. We define query profiles which 
rapidly detect a gene product cluster’s dominant biological properties. 
Experimental results validate our approach, and illustrate a strong correlation 
between our coherency score and gene expression patterns.
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1 Introduction 

Essentially, bioinformatics can be seen as the meta-science of organising and  
analysing the data produced by biological experiments. Recent advances in experimental 
technology and methodology, such as DNA microarrays, have made it possible to 
simultaneously monitor the expression levels of thousands of genes in parallel during 
important biological processes and across large collections of samples. This provides 
insights into gene functionality and their regulatory mechanisms. Microarrays enable 
researchers to identify and comprehend genes and their respective functions that would 
have otherwise remained hidden and the process of their discovery would have been a 
bewildering task. 

High-throughput multidimensional experiments, however, induce and heavily  
rely on massive amounts of generated information. The patterns measured during  
such experiments are very often explained retrospectively by examining and analysing 
the underlying biological properties of the respective gene products composing the  
data set. Thus, the amount of scientific discoveries, hypotheses and cross-references, 
stored mainly in raw text format across a number of specialised systems, is growing 
rapidly. The grand challenge of cross-referencing data and results for such experiments 
with existing biomedical knowledge and information remains arduous and perplexing. 

Integrating the existing biological knowledge and biomedical literature in such 
experiments is vital for efficiently and thoroughly comprehending the data involved. 
Researchers have argued towards the effectiveness of deploying computational methods 
that incorporate external information sources to assist the interpretation and organisation 
of such experiments (Altman and Raychaudhuri, 2001). In their work, Bolshakova et al. 
(2005) stress that the automated integration of the existing background knowledge is 
fundamental to support the generation and validation of hypotheses about the function  
of gene products during large-scale biological experiments. External information  
sources include ontology-based knowledge, primary and secondary sequence databases 
and medical literature. Published scientific text contains a distilled version of the most 
biologically significant discoveries and is a potent source of information for integrating in 
experiments (Raychaudhuri et al., 2003a). 

Owing to the very diverse and detailed nature of large-scale biological experiments  
and biomedical research, no noticeable common pattern exists amongst the vast amounts 
of online information stored in existing repositories. Information and findings from 
biological experiments are almost always represented as raw text, using a large set of 
different formats, spread across a number of online information repositories. This is  
done by a number of scientists across the world, with diverse scientific and cultural 
backgrounds. Finally, searching these vast information repositories to retrieve accurate 
results is a non-trivial operation that often requires manual tweaking. 

It is clear from the overview given here that the process of retrieving, indexing and 
eventually making use of existing biomedical information from online repositories for 
such large data sets is a non-trivial operation, which requires large amounts of time, 
processing resources and most often human intervention. Glenisson et al. (2004) in their 
review of online information sources describe the knowledge discovery process as 
‘cyclic’, i.e., requiring several iterations between heterogeneous information sources to 
extract a reliable hypothesis. For example, linking large-scale microarray experiments to 
existing knowledge stored in public literature, such as MEDLINE, still requires numerous 
queries, extensible user intervention and is essentially a laborious process. 
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Several solutions yielding fruitful results exist, but they often rely on the integration 
of information from a number of external information sources such as MEDLINE 
(Schuler et al., 1996), making them less flexible and in many cases organism-oriented. 
Given that biomedical literature contains discussions of gene relations in a variety of 
contexts, it is apparent that solutions based mainly on medical literature, such as 
MEDLINE abstracts and raw text, offer a broader notion of similarity between gene 
products. The raw text retrieved from such diverse sources most often includes additional 
information, which might not be directly relevant to the experiment or the scope of the 
research performed, thus effectively lowering the accuracy of the local information 
repository constructed. On the other hand, GO annotation terms are specific, and 
explicitly denote a gene product’s molecular function, the biological process to which it 
participates or the molecular component in which it resides (GOC, 2002). More 
specifically, the biological process ontology refers to the biological objective in which 
the gene product contributes, the molecular function ontology refers to the biochemical 
activity properties a gene product possesses, and finally the cellular component ontology 
refers to the place where the gene product resides within the cell. Extensive use of  
GO annotation terms should thus yield more specific biomedical information and a  
more accurate measure of gene product correlation. A more detailed overview of these 
approaches can be found in Section 2. 

We demonstrate how statistical text processing techniques can be deployed solely  
on GO and the information therein and yield fruitful results as well. Our main goal is to 
develop a methodology that can summarise and exploit the vast amounts of  
existing knowledge stored within the GO to support the analysis of the results from  
large-scale high-throughput biology experiments while minimising the amount of 
resources and human intervention required for doing so. 

The main contributions of this paper are: 

• It proposes an approach in which textual profiles are created for each gene product. 
These textual profiles are created using information extracted from the GO and 
describe gene products’ biological properties. The textual profiles created have a 
higher degree of consistency when compared with other methods, given the 
controlled and strict nature of GO. 

• It provides a complete framework for assessing and quantifying the biological 
relatedness between individual gene products, as well as clusters of gene products 
based on their associated textual profiles constructed. This contributes to creating an 
automated method for linking together the vast amounts of existing knowledge with 
minimal user intervention. 

• In contrast to other methodologies, our method only requires the complete GO tree 
structure and does not rely on additional information sources. Given that the GO is 
composed by a controlled vocabulary following very strict standards, this effectively 
eliminates the problems caused due to lack of standards other solutions face such as 
dealing with multiple data formats and with a diverse set of text encoding schemes. 
As a direct implication, our approach requires substantially less time and processing 
resources when compared with other solutions and minimises the requirement for 
human intervention. 
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• We validate our approach by performing experiments on a well-known gene 
expression data set and illustrate the strong correlation between our figure of merit
for a cluster’s biological coherency and gene expression patterns. 

To keep terminology and semantics consistent, as much as possible, with these defined 
and used in the Saccharomyces Genome Database (SGD) and GO, throughout  
the paper, we use the term ‘gene products’; this refers to both protein coding genes  
and RNA genes. 

The remaining of the paper is organised as follows: Section 2 reviews related work. 
Section 3 details the methods used in the proposed approach. Section 4 presents 
experimental results. Section 5 discusses and evaluates the results and concludes the 
paper with directions for further work. 

2 Related work 

Information retrieval, text mining and statistical natural processing methods have  
been recently deployed to discover and assess the biological similarity between 
individual pairs and clusters of genes based on the biological literature. The majority of 
methods use biomedical databases containing textual information on gene products such 
as MEDLINE (Schuler et al., 1996) and SWISS_PROT (Bairoch and Boeckmann, 1992). 
Additionally, several methods use the GO annotation as source of knowledge, for both 
analysing and evaluating results from large-scale biological experiments, also yielding 
good results. 

Raychaudhuri et al. (2003b) have recently developed the Neighbour Divergence per 
Gene (NDPG) concept, to assess the functional coherency of a group of genes, by 
utilising knowledge from public repositories, such as MEDLINE. NDPG is able to 
rapidly assess whether a subgroup of genes share common biological properties, such as a 
common biological function or involvement in the same biological process, by automatic 
analysis of scientific text. Given a set of genes, NDPG assigns a numerical score 
indicating how functionally coherent the set is, from the perspective of the published 
literature available. The method achieved accurate results when applied to a data set from 
the yeast organism with 79% recall and 100% precision. 

NDPG requires a corpus of articles related to the genes composing the experiment,  
as well as a reference index linking the genes to their respective articles. Gathering this 
information, however, is a non-trivial and time-consuming process. Additionally, NPDG 
does not actually identify the common biological function a set of genes share, but only 
discovers its existence. One has to manually or automatically scan the higher scoring 
articles of a gene group to determine their common biological properties. 

Based on the GO annotation ontology, Gibbons and Roth (2002) developed a method 
to judge the quality of gene expression clustering methods. They devised a figure of 
merit, the z-score, which is based on mutual information shared between the result  
of a clustering algorithm and existing gene annotation on the SGD (Cherry et al., 1998). 
The z-score indicates the ‘randomness’ of the results from a clustering algorithm in 
respect to existing biological knowledge available through gene annotation. 

By deploying their method on a collection of yeast data sets including the  
Cho et al. (1998) and Eisen et al. (1998) data set, they were able to conclude that the 
enrichment of clusters with biological functions is reversely proportional to the total 
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number of clusters. When calculating the optimal number of clusters for ratio-based  
gene expression measurements originating from two-colour hybridisation cDNA array 
(Duggan et al., 1999), the Euclidean distance metric produced high accuracy results 
while for non-ratio-based measurements the Pearson correlation coefficient was the 
optimal choice. Overall, Self-Organising Maps produced the best results for both 
measurement types for higher cluster numbers. 

Glenisson et al. (2003) evaluated the vector space representation (Raghavan and 
Wong, 1986) in text-based clustering of genes. They encode information from a wide 
range of sources for gene textual annotation, in a typical bag-of-words representation 
following the vector space model. 

From the MIPS (Mewes et al., 2002) catalogue, they selected three biologically 
distinct functional groups and constructed a data set of 116 genes in total. The first group 
holds genes that encode lysosomal proteins, the genes involved in the second group are 
involved in translation control and finally the third group is related to amino acid 
transport. For all gene products, their respective information is retrieved from a number 
of sources. 

More specifically, information gathered from the SGD and SWISS_PROT is pooled 
together into a local database system denoted by Yeast Cards (YC). Additionally, more 
domain-specific knowledge is added by parsing a collection of MEDLINE abstracts 
relevant to the gene products in question. For each gene product, a profile is constructed 
by fusing together the information gathered, which essentially contains all the textual 
information that is associated with that specific gene product. Similarity between pairs of 
documents is measured as the cosine of the angle between their corresponding normalised 
vectors. Normalisation of vectors is applied by dividing the Term Frequency (TF) value 
associated with a term by the maximum TF value within the vector. 

By deploying a number indexing schemes, including Boolean (bool), TF and Inverse 
Document Frequency (TF-IDF), they were able to evaluate the effectiveness of each  
data source with regard to gene clustering. A number of quality metrics such as the 
silhouette coefficient and the Rand index were used to assess cluster quality. When 
deploying the local YC database and expanding it with MEDLINE abstracts, the majority 
of genes were correctly clustered and more accurate results were obtained. However, 
constructing the individual gene profiles is a time-consuming and laborious process as 
three individual information sources are used. Additionally, each source contains a 
respectable amount of textual data, which might be irrelevant to the experiment but is 
nonetheless retrieved and parsed. 

Lord et al. (2003) used a similar approach when they explored the semantic similarity
between GO terms by making use of Resnik’s notion of shared information content
(Resnik, 1999). Their approach was validated by assessing the correlation between the 
above-mentioned notion of semantic similarity and sequence similarity as derived  
from the SWISS_PROT database. The accurate results they obtained, as well as the  
high correlation scores between terms and sequence, justify the use of GO as the sole 
information source of medical and biological knowledge. 

A similar line of attack was followed by Couto et al. (2007) who studied the 
correlation between semantic similarities on GO and similarities extracted from Pfam.
Pfam (Bateman et al., 2002) is a database, which illustrates protein families, assigned to 
UniProt proteins and contains a mixture of manually curates and automatically generated 
protein families. Their work augments the concept of deploying the concept of semantic 
similarity between terms belonging to the GO ontology. 
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Similarity between annotation and literature has also been shown to augment 
sequence similarity searches. In their work, Chang et al. (2001) augmented PSI-BLAST 
with similarity scores calculated over the annotations and MEDLINE references cited by 
entries retrieved by the individual sequence similarity searches (Altschul et al., 1997). 
The similarity scores were then utilised to prune the results obtained to those most 
semantically similar to the query sequence. 

Similarly, Wang et al. (2004) investigated the correlation between gene expression 
and similarity based on information extracted from the Gene Ontology (GO) taxonomies.  
The notion of integrating information extracted from the GO and infusing it into an 
automated process of validating functional associations between gene products is 
presented in Azuaje et al. (2005). 

Finally, Karypis (2004) describe a method of textual analysis of documents associated 
with pairs of genes and describe how their approach can be utilised for discovering, 
identifying and annotating functional relationships among genes. By performing local 
and global analysis between MEDLINE abstracts, they demonstrated that sets of genes 
connected by the same global contexts are functionally similar. 

3 Methods 

3.1 Constructing gene profiles 

Ontologies is one of the most widespread form for the representation of knowledge  
in the bioinformatics community. An ontology is the specification of the key concepts in 
a given field of operations combined with the description of the relationships that exist 
amongst these concepts. In the majority of cases, an ontology is composed of a  
strictly controlled vocabulary. Additionally, the relationships between the concepts are 
established as axioms that capture the network structure of the knowledge that they 
model. 

Several different ontologies have been developed in the past years and have been 
widely used in bioinformatics such as the Unified Medical Language System (UMLS) 
(Barnett et al., 1998) and the GO. The GO ontology consists of a widely accepted and 
standardised gene annotation vocabulary used by scientists to express and define in a 
clear and concise manner certain biological attributes about a specific gene. GO consists 
of three separately structured ontologies called molecular function, biological process and 
cellular component. Biological process refers to the biological objective to which the 
gene or gene product contributes. The molecular function ontology denotes the 
biochemical activity of a gene and finally, the cellular component refers to the place in 
the cell where the gene product resides. 

Like all ontologies, GO is structured in a manner that specific terms are considered 
children of broader terms. Additionally, to appropriately model biological data, the 
structure developed also supports many-to-many relationships in a manner that potential 
nodes within the ontology can have multiple parent and children relationships.  
The selected terms are organised into Directed Acyclic Graphs (DAG), forming a 
complete network of interconnected terms describing the biological properties of a gene. 
Edges between individual GO terms can represent the relationship of ‘is a’ or ‘is a  
part of’, denoting that a child term is either a part of the parent term or a much more 
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specific example of the parent term. Hence, GO can be considered as a distilled version 
of existing medical and biological knowledge regarding a specific gene product. 

Every GO term follows the True Path Rule (TPR): “the pathway from a child term all 
the way up to its top-level parent(s) must always be true”. If a specific child term 
describes a gene product, then all its parents also apply to that gene product.  
By exploiting this rule, we are able to construct more accurate and concise gene profiles 
since additional GO terms are assigned to each gene product. 

For example, consider that the gene product APN1 has been associated with the 
GO:0006281 annotation term indicating that it takes part in the biological process of 
DNA repair. By exploiting the TPR, we are able to associate APN1 with all the terms 
within the path from GO:0006281 to GO:0008150, as they all apply to that specific gene 
product as well. This complete path from the DNA repair annotation term up to the  
top level parent for the biological process taxonomy within GO, and the respective gene 
annotation terms are illustrated in Figure 1. 

Figure 1 A complete path from the DNA repair annotation term up to the top level parent 
(AmiGO tree view) (see online version for colours) 

We used the SGD database to construct a smaller gene subset, consisting of 88 genes 
from three biologically distinct groups. The first group contains genes related to the  
DNA metabolism biological process, the second group is related to the process of 
transport and finally genes composing the third group are involved in the yeast 
sporulation process. This is done by simply parsing the provided gene lists with literature 
curation information as provided by the SGD. In the event that a gene product has 
multiple GO annotation terms assigned to it, we retain the one that is relevant to the 
scope of the experiment and reject the others. A detailed summary of the gene product 
subset that was constructed can be seen in Table 1. 

For every gene product, the path from its assigned GO term up to the root node of the 
ontology is extracted. This is easily achieved by querying a local version of the latest GO 
relational database port and parsing the results. For this purpose, we used a monthly 
backup of the GO relational database dump, which is provided by the Gene Ontology 
Consortium at www.godatabase.org/dev/database/. This effectively assigns a set of GO 
terms to the gene product. For every GO term assigned to the gene, the definition field is 
extracted from the GO ontology and appended to the genes textual profile. For example, 
as seen in Figure 1, the textual profile constructed for the APN1 will include the textual 
information extracted from the definition fields from the GO:0008150, GO:0009987, 
GO:0044237, GO:0006139, GO:0006259 and GO:0006281 annotation terms, which were 
previously associated with the gene product by exploiting the TPR. Finally, gene profiles 
are additionally enriched by including the textual descriptions of each GO term 
associated with them from the previous operation. This action accommodates our work 
regarding the identification of the dominant biological properties within a potential 
cluster of genes, detailed in Section 4.2. 
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Table 1 A summary of the respective GO terms that compose the yeast subset used 

Biological group Term name No. of genes 
Sporulation 13 Sporulation
Sporulation (sensu funghi) 19 
Amino acid transport 15 
Aromatic amino acid transport 1 
Basic amino acid transport 7 

Transport

Neutral amino acid transport 4 
DNA repair 5 
Mismatch repair 11 
Bypass DNA synthesis 1 
Error-free DNA repair 4 

DNA metabolism 

Postreplication repair 8 

The process for extracting textual information from the database and constructing the 
gene profile for each gene product is described by the following steps: 

1 First, we extract from the database all the terms up to the root node of the biological 
process ontology to identify the GO annotation term the gene product is assigned to. 

2 Then, we extract from the database the definition field of the term for each of the 
individual terms extracted in Step 1. 

3 Finally, we construct the text profile of each gene by concatenating the definition 
fields of all the annotation terms the gene product is associated with. 

The above process is easily automated in such as a manner that manual intervention and 
fine-tuning are kept to a minimum. This is a clear advantage over existing approaches,  
as our approach uses a single information source, thus minimising the need for data 
cleansing and formatting. 

The textual profile constructed for the TAT2 gene product can be seen in Table 2, 
where only the top scoring features along with their values are presented. 

When assigning GO terms to individual gene products, GO curators must specify an 
evidence code along with the association that indicates the manner as to which  
specific association was made. The three most commonly used evidence codes in the GO 
are Traceable Author Statement (TAS), Inferred from Sequence Similarity (ISS) and 
Inferred by Electronic Annotation (IEA). Of the most commonly used evidence codes, 
‘Traceable Author Statement’ (TAS) is generally regarded as the highest standard of 
evidence (Lord et al., 2002). TAS is assigned then the given association between a gene 
product and a GO annotation term can be clearly traced through medical literature and 
detailed experiments along with their results have been published and are widely known. 
GO associations assigned that this evidence code is expected to contain the highest level 
of accuracy. In our effort to scrutinise our data set and increase the quality of our results 
as much as possible, we only consider TAS assigned GO terms in our work. 
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Table 2 Textual profile constructed for the TAT2 gene product 

Feature Value 
Process 5.000 
Cellular 4.000 
Transport 4.000 
Level 2.000 
Direct 4.000 
Amino 7.000 
Amin 2.000 
Acid 6.000 
Occur 2.000 
Cell 8.000 
Movement 4.000 
Neutral 2.000 

The textual profiles constructed are then stripped of any punctuation symbols and 
newline control characters and Porter’s (1980) stemming algorithm is deployed to 
canonise the terms according to morphological and inflexional endings. Using the 
predefined stopword list supplied with the doc2man application (Karypis et al., 2004), 
common words are also removed from the text profiles. Both operations help in reducing 
the overall dimensionality and dependency between the terms involved. This approach 
creates a text profile for each gene product composed of approximately 150 terms. 

Common problems associated with natural language processing and information 
retrieval include synonym and polysemy identification. Synonyms are different terms 
conveying the same meaning or referring to the same object (e.g., ‘tumour’ and ‘tumor’). 
Polysemy refers to words conveying different meanings according to the context  
they appear in (e.g., ‘CD’ as compact disc or cytosine deaminase or Crohn’s disease). 
Since the GO ontology follows a strict standard for every term used and the respective 
information associated with it, these problems were not identified within the text 
processed and no further action was needed. 

3.2 Vector space model representation 

We encoded the individually constructed gene text profiles using a bag-of-words 
following the vector space model paradigm. The vector space model effectively encodes 
an entire document into a k-dimensional vector, which represents the terms found within 
the document and their occurrence. The grammatical structure of the document is 
generally ignored and terms are individually extracted, therefore making this approach 
also known as bag-of-words. The vector space model has been considered as one of the 
driving forces in the field of information retrieval and indexing and despite its simplicity 
is still used widely today in a very large and diverse set of conditions (Radev et al., 2005; 
Platzer and Dusdar, 2005). 

In the vector space model representation, a document is represented by a  
weighted vector (also known as a profile) of which each individual component 
corresponds to a single term from the entire set of terms within the constructed 
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vocabulary (Baeza-Yates and Ribeiro-Neto, 1999). For every term found in the 
document, a value denotes its presence and is represented by a weight within  
the documents profile as shown in equation (1). 

1 2( , , , ).i i i iNd w w w=  (1) 

Each weight wij within the document vector d of document i represents the weight of term 
j from the vocabulary of size N.

The individual weights representing terms found within the document are calculated 
during the indexing operation. A number of popular indexing schemes exist and were 
taken into consideration (Korfhage, 1999). For example, the Boolean weighting scheme 
is defined as: 

BOOL 1 if , otherwise 0.ij j i ijw t d w= ∈ =  (2) 

Similarly, the IDF, TF-IDF and ln(TF)-IDF allow for a partial matching of corresponding 
terms and can be defined as: 

IDF log ,ij
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n
å õ

= æ ö
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TF-IDF log ,ij ij
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Nw f
n
å õ

= æ ö
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ln(TF)-IDF ln( ) log ,ij ij
i

Nw f
n
å õ

= æ ö
ç ÷
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where fij is the number of occurrences of tj in di and is defined as Term Frequency (TF). 
TF works under the assumption that all terms that occur frequently within a document are 
important. The logarithmic frequency, however, called Inverse Document Frequency 
(IDF), proportionally downweights the terms that occur very often within the whole data 
set since it assumes that a higher occurrence translates into common terms with  
less or no impact. N represents the total number of documents and ni is the number of 
documents containing the term i in the entire collection. 

We have tested different indexing schemes during the process of our experiments. 
Similar to Glenisson et al., however, we faced a number of problems while indexing the 
vast amounts of existing knowledge in the form of raw text contained within each  
textual profile. Owing to the very large vocabulary constructed, we observed an 
incremental rise in time and processing power requirements, when processing very large 
data sets. We, therefore, chose IDF over TF-IDF, which is a reasonable choice for 
indexing medium-sized documents of up to 200 terms length. Automatic indexing of the 
profiles as well as stop word elimination was performed by using the doc2mat script;  
a part of the CLUTO toolkit (Karypis et al., 2004). 

3.3 Quantifying biological similarity 

Similarity between a pair of documents di and dj is calculated by measuring the cosine of 
the angle between the normalised weighted vectors representing the two documents 
(Manning and Schutze, 2003), as shown in equation (6): 
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sim( , ) cos( , ).i j i jd d d d=  (6) 

The same concept applies when calculating the similarity between a document di
and a query document dj. The underlying hypothesis behind this statistical approach  
for assessing document similarity states that a high degree of similarity between the 
documents also denotes a high degree of relevance and semantic similarity between them. 

Based on this concept, we can define a similarity metric, which can be used to 
quantify the functional relationship between individual GO terms assigned to genes. 
Subsequently, the metric can act as a measurement of biological relatedness between 
pairs of genes that the respective terms have been assigned to. Since the text profiles 
constructed for the gene products essentially describe their biological properties, should 
two genes share common biological properties, they will also share a very high degree of 
similarity between their associated text profiles. A more detailed view of our approach 
can be viewed in Figure 2. 

Figure 2 A general overview of the approach developed using the SGD GO annotations for 
creating textual profiles for individual gene products and quantifying their biological 
relatedness (see online version for colours) 

Our approach involves the initial retrieval from a genome database, such as the SGD, and 
the association of gene products with individual annotation terms. For each annotation 
term, a textual profile is constructed and a matrix containing the cosine similarities 
between profiles is constructed. Eventually, since the respective textual profiles describe 
the biological properties of each gene product, the matrix constructed can be viewed as a 
biological similarity matrix for the gene products. 

Based on this notion, given two genes i and j, represented by their previously 
constructed textual profiles di, dj we define BIOsim as the cosine of the angle between the 
normalised weighted vectors representing their individual textual profiles (equation (7)). 
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BIOsim( , ) cos( , ).i ji j d d=  (7) 

Gene products that share a high degree of biological correlation will have  
BIOsim values closer to 1 whereas lower values towards 0 will illustrate a very low 
degree of similarity. 

Similarly, we can also assess and quantify the biological relatedness and coherency  
of a group of genes based on the same metric notion. Given a cluster of genes,  
we define BIOCo, a figure of merit for a cluster’s functional coherency, based  
on the pairwise-calculated arithmetic mean of their normalised weighted vector 
representations (equation (8)). 

,

,

1BIOCo (BIOsim( , )).
n n

i j
i j

n
= ä (8)

Based on equation (8), clusters that are biologically coherent will have a BIOCo value 
close to 1 whereas lower values will denote smaller degrees of biological relatedness 
shared between the gene products composing the cluster. When calculating the BIOCo 
value of a cluster of genes, each gene’s textual profile is compared to all the other textual 
profiles that belong in the same cluster. This requires (n × ((n – 1)/2)) comparisons  
where n is the total number of textual profiles that compose the cluster. Thus, the 
computational complexity of the approach is O(n2).

These measures are able to quantify the biological similarity between individual  
pair of genes or a cluster of genes, respectively, based on the medical and biological 
knowledge extracted from their associated GO annotation terms. 

Before deploying our approach in the context of gene expression microarray 
experiments, we validate it, following a similar line of attack as Glenisson et al. (2003). 
Validation is conducted by exploring the possibility of reconstructing functionally 
separated groups of genes by clustering their textual representations and using our 
biological similarity figure of merit. For this reason, we use the small controlled yeast 
data set constructed and detailed in Table 1. 

During this step, we took an iterative approach and initially set the total number  
of clusters to three. The next iteration involved setting the number of clusters to 11, 
which are the total number of different biological terms in the data set. In both cases,  
the gene products were clustered along with other individual gene products, which were 
assigned the same annotation term. 

4 Results 

4.1  Experimental validation 

We conducted experiments on actual budding yeast S. cerevisae data, as collected from 
microarray experiments by Eisen et al. (1998). For this purpose, we used the data set 
utilised by Eisen et al. during their data clustering experiments. More specifically, the 
data set is composed by an aggregation of data collected during experiments involving 
the diauxic shift, the mitotic cell division cycle, the sporulation process and shock 
responses. All expression measurement values are log-transformed to treat inductions or 
repressions of identical magnitude as numerically equal but with the opposite sign.  
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All 2.467 genes contained in the data set currently have functional annotations available 
on the SGD and were taken into consideration. 

In the same way as the original experiments, we applied pairwise average-linkage 
cluster analysis to the gene expression data set using the Pearson correlation coefficient  
as a distance metric. As a form of hierarchical clustering, the relationship between  
genes are represented by a tree whose branch lengths indicate the degree of similarity 
between them. An expression matrix is used to display the results of the clustering 
operation where each row represents a gene’s expression measurements across the 
number of experimental conditions. Expression ratios of 0 are coloured black, 
increasingly positive ratios are coloured red with increasing intensity and finally 
increasingly negative measurements are coloured green with increasing intensity. 

At first, two very tight clusters immediately stand out from the results and are 
displayed in Figures 3 and 4. The first cluster displayed in Figure 3 is composed of eight 
histone genes, which are essentially duplicates of the histones H2A, H2B, H3 and H4. 
Hereford et al. (1981) showed that these genes display similar regulation patterns at a 
particular point of the cell cycle. 

Figure 3 Clustered display of the eight histone genes that are clustered together. These genes  
are essentially duplicates of the histones and it has been shown elsewhere that they are 
co-regulated at a particular point of the cell cycle (see online version for colours) 

Figure 4 Clustered display of the 27 genes, which are clustered together and are involved in the 
proteasome. The assigned BIOsim value of 1 denotes a perfectly functional coherent 
cluster since all of the genes composing it share an identical biological process term 
from the GO (see online version for colours) 

Source: Partial image segment from Eisen et al. (1998) 

A remarkable result of the process is the tendency of large groups of genes, which are 
clustered together, to share common biological properties, a strong display of similarity 
in the biological process area in particular. This validates one of the basic assumptions 
under which microarray scientists operate on: the fact that genes that share common 
expression patterns are most likely to also share common biological properties. 
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Likewise, the second cluster displayed in Figure 4 contains 27 genes, which  
encode the bulk components of the protease. Both clusters immediately stand out from 
the hierarchical tree constructed during the process since they both have a BIOsim
value of 1. 

Two other clusters identified in the experiment contained genes involved in the DNA 
replication and glycolysis process, respectively. The first cluster, displayed in Figure 5, 
contains four genes involved in DNA replication (CDC54, MCM2, MCM3, CDC47) and 
DBF2, which is involved in the cell cycle process. Owing to the diverse nature of the 
cluster, the calculated BIOsim score was 0.680. 

Figure 5 Clustered display of the cluster containing gene products involved in DNA replication 
(see online version for colours) 

Also, the glycolysis cluster contained 15 gene products involved in the biological process 
of glycolysis within the cell. Additionally, it also contains the TKL1 gene product, which 
takes part in the pentose phosphate cycle process and ACS2, which takes part in the 
acetyl-conenzyme biosynthesis process. The calculated BIOsim score for the cluster  
was 0.723. 

Our additional experiments illustrate the application of the BIOsim value in the 
process of clustering gene expression data and the higher quality of results obtained by 
driving the gene expression clustering process using existing biological knowledge.  
In the case of hierarchical clustering, one can utilise the calculate coherency score to 
decide at which level to cut the hierarchical tree. This will effectively define boundaries 
for each of the generated clusters. In an alternative approach, the calculated coherency 
score can be deployed to prioritise the resulting clusters for further examination. 

Cheng et al. (2004) describe a similar approach for a knowledge-based clustering 
algorithm driven by the GO. They develop a graph-oriented distance measure to calculate 
the similarity between individual GO terms and integrate it within a clique-finding 
algorithm to detect sets of related genes, which share common biological properties. 

Microarray experiments, however, very often contain a large and diverse set of gene 
products. In some cases, the exact molecular function or biological process in which the 
gene is involved are unknown and thus no GO terms have been assigned to it. During the 
BIOsim calculation process, such genes are not taken into consideration to offer 
biologists a better insight into their potential function and biological process. A cluster 
that displays a high biological similarity value and contains several unknown genes offers 
a good indication on the underlying biological properties of the unexplored genes 
contained in it. This is often referred to as guilt by association and is one of the driving 
forces behind microarray experiments. 

4.2 Query profiles 

One of the problems scientists face during large-scale microarray studies is identifying 
the dominant biological properties of the clusters resulting from gene expression  
analysis experiments. This includes both the molecular functions of the individual  
genes composing the cluster as well as the biological processes in which they take  
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place. The massive amounts of generated information as well as the diversity of the data 
sets used during such experiments make this a laborious and time-consuming process. 
Many times, scientists have to manually scan the resulting clusters to identify several 
gene products and thus deduct the clusters’ dominant biological properties. Based on 
these findings, the experiment conditions are often refined and experiments are 
performed again. As Moreau et al. (2002) mentions, “Full automation of the clustering 
process is still far away”. 

Recognising the biological properties of a cluster in a rapid and automated manner 
can dramatically increase the efficiency of microarray gene expression analysis and help 
prioritise the findings for further analysis and studying. We hypothesise that the vast 
amounts of textual information contained within the GO ontology and its respective  
terms can assist the clustering process and gene expression analysis experiments by 
summarising and identifying the dominant biological properties of the resulting clusters. 
To illustrate this, we performed a number of additional experiments on the clusters 
described in Section 3.1 of this paper and present our results below. 

During our experiments, we operate using the biological_process aspect of GO.  
The biological process aspect has the largest number of terms and edges, composing 
more than 50% of the entire GO ontology. It also offers the largest density in terms and 
thus incorporating the textual information within it can produce higher accuracy results. 
GO terms closer to the root of the graph are less specific and thus terms located in lower 
levels of the ontology convey larger amounts of information. 

A careful inspection of the GO graph reveals that the most informative nodes,  
which subsequently offer a higher level of detail in the textual descriptions they contain, 
are located between levels 3 and 6 (Cheng et al., 2004). 

To identify the dominant biological properties of a cluster, we constructed a number 
of query profiles. A query profile is essentially a textual representation of a broader 
biological concept from within GO. For this purpose, we only used terms located 
between levels 3 and 6 inclusive, as these offer the desired level of granularity for our 
analysis: the terms located within that range are neither extremely broad nor too specific. 
The query profiles are constructed with the same methodology as individual gene 
profiles: the complete path from the term to the root of the ontology is extracted along 
with the textual descriptions of the terms located in it. A more detailed breakdown of the 
profiles constructed from the individual levels of the ontology is shown in Table 3. 
Similar to calculating the BIOsim figure of merit between individual gene profiles,  
we calculate the cosine similarity between each of the constructed query profiles and the 
cluster.

Table 3 The number of individual query profiles created per ontology level 

Ontology level No. of query profiles 
3 420 
4 1057 
5 2197 
6 3254 
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One of the main problems during the experiment was how to represent a cluster of  
gene products as a single document. For example, if we take the cluster in Figure 5 and 
only insert a single instance of each individual term occurrence, we would result with a 
document containing only two profiles for the individual terms: DNA replication and cell 
cycle. During the early stages of our experiments, we observed that this greatly  
reduces the accuracy and resulted in a very large number of false positives and  
miss-classifications. For example, the cluster composed out of four genes assigned  
with the ‘DNA replication’ term and a single gene assigned with the ‘cell cycle’ term 
displayed a very high similarity with the query documents for the sleep process 
(GO:0030431) and sporulation (GO:0030435). This is partially due to the very limited 
information the cluster document contained in combination with the broad nature of 
information all profiles located in level 3 contain, which resulted in very high similarity 
values with the majority of them. 

Constructing a cluster profile from all the individual gene product profiles  
decreased the level of noise within the data set and dramatically increased the accuracy of 
the results. Additionally, when comparing a cluster of genes with a query profile, only 
profiles that lie within the relative paths of gene products composing the cluster up to the 
root node of ontology are considered. This lowers the number of query profiles that score 
high, while at the same time increases the accuracy of the results, since only query 
documents that represent terms already assigned to one or more gene products are taken 
into consideration. Thus, the same cluster is now represented with five individual term 
profiles, one for each of the gene products, which compose the cluster. 

During the first iteration of our experiment involving level 3 query profiles,  
the ‘primary metabolism’ term (GO:0051101) scored the highest similarity value of 0.64.
During the second iteration of our experiment, involving level 4 query documents, 
“nucleobase, nucleoside, nucleotide and nucleic acid metabolism” scored a similarity of 
value of 0.65 with the cluster document. 

To further test the accuracy of our method, we manually selected the query  
profiles located in level 6 of the ontology and compared them with the cluster document. 
The query documents selected are children nodes of the ‘DNA metabolism’ term located 
in level 5 of the ontology and include: DNA catabolism, DNA integration, DNA ligation, 
DNA modification, DNA packaging, DNA protection, DNA recombination, DNA repair, 
DNA replication, regulation of DNA binding and regulation of DNA metabolism.  
The similarity values obtained are illustrated in Table 4. The ‘DNA replication’ query 
profile scored the highest similarity value with the cluster document, correctly identifying 
DNA replication as the dominant biological category. 

Although encouraging results were obtained during these experiments, there is clearly 
much work to be done. The number of false positives and high similarity values obtained 
with biologically irrelevant query profiles display the need for further fine tuning of the 
approach. This is mainly due to complex structure of the GO terms involved and the fact 
that a single term might occur several times within the ontology, have multiple parent 
nodes and thus a number of different paths to the top of the ontology. Our results, 
however, support the notion that a knowledge-guided statistical approach is beneficial 
and can dramatically increase the level of accuracy in the results obtained by generating
clusters that are more informative with respect to not only both their expression profiles 
but also their underlying biological properties. 
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Table 4 The calculated similarity scores with specific query profiles of level 6 

Query profile Similarity score 
DNA catabolism 0.934848100555454 
DNA integration 0.983050278058912 
DNA ligation 0.980021760504217 
DNA modification 0.979342352513106 
DNA packaging 0.976910641215182 
DNA protection 0.851602163987956 
DNA recombination 0.944770774693939 
DNA repair 0.867343188619998 
DNA replication 0.993738308094578 
Regulation of DNA binding 0.930289444602728 
Regulation of DNA metabolism 0.917765084294862 

5 Conclusion 

In this paper, we described a statistical natural language processing approach based on 
the vector space model to assess and quantify the biological similarity between pairs and 
clusters of gene products. Our main aim was to explore the potential of utilising  
the vector space model solely on biological information extracted from the GO terms 
associated with individual gene products. 

By exploiting the TPR, we associated a number of GO terms with each gene product, 
the terms which compose the path from its assigned term up to the parent term of the 
taxonomy. We then constructed a textual profile of an average of 150 terms based on the 
definition field of the respective terms. Since the textual profiles constructed essentially 
describe the underlying biological properties of the gene products, a high degree of 
semantic similarity between the profiles translates to a high degree of biological 
similarity between the gene products. 

We were able to measure and quantify the biological relatedness between gene 
products and clusters composing them, by calculating the dot product between pairs and 
the average dot product between genes composing a cluster, respectively. Values close  
to 1 denote a high degree of biological similarity and coherency, respectively, whereas 
values closer to 0 denote a very low degree of similarity. 

To validate our approach and obtain some initial experiments, we constructed a small 
subset of 88 saccharomyces genes from three distinct biological groups and  
11 sub-groups. We constructed their individual text profiles and clustered the associated 
gene products based on the degree of semantic similarity between them. In this manner, 
we were able to explore the potential of our approach in reconstructing functionally 
separated groups of genes by clustering their textual profiles. 

One of the main aims in our research is the application and integration of the  
above-mentioned approach within the context of gene expression clustering. Scientists in 
the field work are under the basic assumption that gene products that share common 
biological properties, take place in the same biological process or share common 
functionality have a very high probability of having similar expression patterns.  
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Although this is not proof, it is one of the main driving forces behind large-scale 
microarray experiments and is known as guilt by association. As a direct implication of 
this, biologically related gene products are more prone to be members of the same cluster. 
However, the size and diversity of gene expression data sets complimented by the total 
number of potential biological properties available render the process of identifying and 
assessing the coherency of each cluster time-consuming and tedious. Infusing existing 
biological knowledge will drive the gene expression clustering process in a more efficient 
and less resource demanding way. We have previously explored this approach by 
developing a graph-oriented approach to assessing a cluster’s biological coherency based 
on GO (Denaxas and Tjortjis, 2005). 

We performed additional experiments on an aggregated data set of budding  
yeast composed of measurements involving a number of experimental conditions  
such as the mitotic cell division cell cycle and the sporulation process. We illustrated  
how the calculated functional similarity score can be used for assessing the resulting of 
gene expression clustering experiments. For hierarchical clustering, one could use the 
similarity score to determine which level of the tree to cut at, effectively defining cluster 
boundaries. Alternatively, gene expression profiles can be clustered using k-means,  
self-organising maps or quality-based clustering, and then clusters can be prioritised 
based on their functional coherency for later examination. Working under the assumption 
that co-expressed genes also share common biological properties, the method can be 
integrated within an iterative approach and utilised to calculate the optimal number of 
total clusters for the entire data set. We also demonstrated how the use of individual 
query profiles can be deployed to rapidly identify the underlying biological properties of 
a cluster of genes with relatively high accuracy; we presented and discussed experimental 
results. 

Finally, we are considering the implementation of a weighting scheme for the 
respective annotation terms assigned to each gene product. In the context of our 
experiment described above, all GO terms, irrespective of the biological category the 
gene product was part of, were rejected and only the relevant annotation terms were 
preserved. A weighting scheme could be applied on each relationship between a gene 
product and its associated terms to minimise the impact of it should a given gene product 
is associated with more than one GO terms. This method has been previously explored in 
Bodenreider et al. (2005) where the authors applied the Inverse Document Frequency 
(IDF) weighting notion used in standard information retrieval approaches. Hence, the 
weight of each relationship between a gene product and an annotation term is inversely 
proportional to the ratio of the number of annotations for this gene product to the total 
number of distinct gene products in the corresponding annotation database. 
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