
http://neevia.com http://neeviapdf.com http://docuPub.com

http://docuPub.com http://neevia.com http://neeviapdf.com

PRICES: An Efficient Algorithm for Mining

Association Rules

Chuan Wang, Christos Tjortjis

Information Systems Group, Department of Computation,

University of Manchester Institute of Science and Technology,

P.O. Box 88, Manchester, M60 1QD

United Kingdom

E-mail: C.Wang-2@postgrad.umist.ac.uk christos@co.umist.ac.uk

Abstract. In this paper, we present PRICES, an efficient algorithm for mining

association rules, which first identifies all large itemsets and then generates

association rules. Our approach reduces large itemset generation time, known to

be the most time-consuming step, by scanning the database only once and using

logical operations in the process. Experimental results and comparisons with

the state of the art algorithm Apriori shows that PRICES very efficient and in

some cases up to ten times as fast as Apriori.

1 Introduction

Association rules, is a data mining technique which identifies relationships between

items in databases. The process can be decomposed into two steps: large itemsets

generation and association rules generation [1]. It is well established that, while

association rules generation is rather straightforward, large itemset generation can be

a bottleneck in the process. A number of algorithms have been proposed in order to

increase the efficiency of the process [1], [2], [3], [4], [5], [6], [7]. We discuss and

review the most prominent ones in section 2.

Here we present a new algorithm for mining association rules called PRICES. The

algorithm uses the same two steps as in other algorithms; it is however faster as it

scans the database only once, to store transactions information in the memory by a

succinct form we call Prices Table. This table is then pruned by creating a pseudo

transaction table called Pruned Prices Table, which contains all 1-size large itemsets

after eliminating all 1-size small itemsets. Recursion is used to generate k-size (k>1)

large itemsets from the Pruned Prices Table and (k-1)-size large itemsets. Finally,

association rules are generated using the large itemsets. The innovation of the

algorithm is that it uses logical operations, such as AND, OR, XOR and left-shift in

the process of generating large itemsets and association rules, thus accelerating the

process. Experimental results have shown that PRICES is efficient and outperforms

Apriori in terms of speed.

A more detailed description of PRICES is given in Section 3. Section 4 presents

experimental results and comparisons with Apriori. Conclusions and directions for

further work are outlined in section 5.

mailto:C.Wang-2@postgrad.umist.ac.uk
mailto:christos@co.umist.ac.uk

http://neevia.com http://neeviapdf.com http://docuPub.com

http://docuPub.com http://neevia.com http://neeviapdf.com

2 Background

Since the introduction of mining association rules in [1], many algorithms that

discover large itemsets have been proposed. The number of times an algorithm scans

the entire database is a significant factor in terms of speed as it determines the number

of time consuming I/O operations involved.

AIS generates all large itemsets by making multiple passes over the database [1].

After reading a transaction, large itemsets are extended by appending

lexicographically larger items to generate candidate itemsets. If the support for

candidate itemsets is above a minimum threshold, they are chosen as large itemsets,

and the next pass commences, until there are no more large itemsets. A limitation of

AIS is that it only produces one item in the consequent of rules.

Apriori is a well-known improvement over AIS, which utilizes the concept that any

subset of a large itemset is a large itemset [2]. It improves candidate generation by

joining large itemsets together. DHP is a hash-based Apriori-like algorithm, effective

in generating large 2-itemsets [5]. However, both Apriori and DHP scan the database

many times producing a substantial I/O overhead.

The Partition algorithm reduces the number of database scans to 2 [6]. It partitions

the database into small segments. Local large itemsets of each segment are then

united and a further entire database scan is needed to generate the global large

itemsets. The Sampling algorithm improves on the Partition algorithm [7]. It reduces

the number of database scans to one in the best case and two in the worst. A sample is

drawn and large itemsets of it are generated and finally large itemsets are found. The

sample is crucial because an unrepresentative one can cause a very big candidate set.

SETM is an algorithm designed for using SQL to generate large itemsets [4]. Large

itemsets are in the form of <TID, itemset> where TID is a unique identifier for each

transaction. One disadvantage of SETM is that it generates too many candidate

itemsets, thus reducing efficiency.

All in all, the number of database scans needed by AIS, Apriori DHP and SETM,

depends on the number of items while Partition and Sampling algorithms reduce this

number to 2, despite their other limitations.

3 The Algorithm PRICES

PRICES is an algorithm which mines association rules in two steps by use of logical

operations. First, large itemsets are identified, and then association rules are

generated. Section 3.1 presents basic principles and underlying assumptions used by

the algorithm. Large itemsets generation is described in section 3.2, and association

rules generation is explained in section 3.3.

3.1 Basic Principles and Assumptions

Prices uses logical operations such as AND, OR, XOR and left-shift to generate large

itemsets and association rules. In addition, every item in the transactions is given a

http://neevia.com http://neeviapdf.com http://docuPub.com

http://docuPub.com http://neevia.com http://neeviapdf.com

unique value. Every transaction can be represented by a price, which is the sum of

item values it consists of. Items values are assumed be such that that no value can be

the sum of other values. Therefore, every price represents a unique itemset pattern.

For example, if there are 5 items, A, B, C, D and E in a database, let the value of

item A be 2
4
, the value of item B 2

3
 and so on. The price of transaction {A, C, D} will

be 10110 in binary mode. In this way, an itemset can also be represented as a price.

Under this assumption, we can apply logical operation AND to the price of one

transaction and the price of one itemset to determine whether this transaction

“contains” this itemset, by comparing the result with the itemset price. For example,

transaction {A, C, D} (price PT = 10110) contains itemset {A, C} (price PAC = 10100)

because the result of PT AND PAC is equal to PAC. Therefore, our task is to identify all

the itemsets prices from {00…01} to {11…11} occurring above a threshold in the

prices of transactions.

For a better understanding of the algorithm we shall use the following example for

the rest of the discussion: consider a database with transaction information as in Table

1 and assume that minimum support and confidence are both set to 50%.

Table 1. A database example

TID Items

T1

T2

T3

T4

ACD

BCE

ABCE

BE

Table 2. The Prices Table (PT)

TID Items Prices

T1

T2

T3

T4

ACD

BCE

ABCE

BE

10110

01101

11101

01001

3.2 Large Itemset Generation

The PRICES algorithm generates large itemsets in three steps. First, the Pruned

Prices Table (PPT) is created, then all large 2-itemset are created and finally, all large

itemsets are generated.

PRICES scans the database, calculates the prices of all transactions and stores

these in memory using an array called Prices Table (PT). Table 2 shows the PT for

the example given in section 3.1.

It is known that any itemset which contains a small itemset will also be small [2].

Therefore, we can prune the PT by eliminating the column of small items. This is

done in two steps: first generate the Large Bit Mark (LBM), which is the price of the

itemset which contains all large 1-itemsets; then create the Pruned Prices Table. To

generate the LBM we set the price of the first 1-size candidate to 1 and apply a left-

shift operation to generate the second candidate price and so on. We calculate each

candidate’s support. If a candidate is large, the corresponding position in LBM is set

to 1, otherwise to 0. In addition, the large 1-size itemsets, along with the support and

size, are stored in L .

Given the LBM and PT, we can generate the Pruned Prices Table by eliminating

the columns which have 0 in the corresponding position of LBM. One 0 in the LBM

indicates that the corresponding item is small and thus any itemset containing this is

also small. Therefore, removing these items shrinks the PT without affecting the

generation of large itemsets.

http://neevia.com http://neeviapdf.com http://docuPub.com

http://docuPub.com http://neevia.com http://neeviapdf.com

By applying these steps to our example, we obtain the respective LBM as seen in

Table 3. Table 4 shows how the pruned price of T1 is generated from LBM and T1.

Table 3. Generation of the LBM

 A B C D E

Support 2 3 3 1 3

comp. with minsup >= >= >= < >=

LBM 1 1 1 0 1

Table 4. Price and Pruned Price of T1

 A B C D E

P1 1 0 1 1 0 10110

LBM 1 1 1 0 1 11101

PP1 1 0 1 - 0 1010

As every single item in the Pruned Prices Table is large, every 2-size itemset

composed of different single item is a candidate. We calculate the support of every

candidate and if it is large, we record it into L , along with its support and size. We

also use the OR operation to compose two different item prices into one price. For

example, the price of itemset {A, E} (10001) can be derived by applying OR to

itemset {A} (10000) and {E} (00001).

k-size large itemsets can then be generated from (k-1)-size large itemsets and the

PPT. We use the XOR operation as a difference indicator from which we can find

how many different bits (items) there are between two (k-1)-size large itemsets. To

generate a candidate kc , two (k-1)-size large itemsets must have exactly two different

bits. Hence, the fact that 2-size itemset composed by two different bits of two (k-1)-

size large itemsets is included in large 2-itemsets (2L) is a prerequisite of that the

itemset composed by these two (k-1)-size large itemsets is a candidate. Furthermore,

whether all the other (k-1)-size subsets of this potential kc are included in 1−kL are

checked. Finally, the candidate support is calculated and recorded it if large. This is

recursively repeated until less than k large (k-1)-size itemsets are found.

Finally, in order to get the large itemsets from L , we restore the prices in L from

pruned prices and map those into itemsets. According to the definition of LBM, a 0 is

inserted into pruned prices at corresponding positions to restore prices. Once the

prices are restored, we can map these into itemsets based on the previous definition of

the relationship between price and itemset.

3.3 Association Rules Generation

In this section, we present the way to generate association rules from the final set of

large itemsets. We know that an association rule YX → holds if: (1) φ=YX I ;

(2) LYXYX ∈U,, ; (3) ≥
)(

)(

Xs

YXs U
 minconf.

Therefore, for every two large itemset il and jl L∈ , if il AND jl = 0 (1),

Lll ji ∈U (2) and ≥
)(

)(

i

ji

ls

lls U
minconf (3) are all met, then the rule ji ll → holds.

http://neevia.com http://neeviapdf.com http://docuPub.com

http://docuPub.com http://neevia.com http://neeviapdf.com

4. Experimental Results

In order to evaluate the performance of PRICES, we developed a prototype and

carried out experiments. We created several synthetic datasets by using Quest dataset

generator [9]. The average transaction length is 10 and the average size of potentially

maximal large itemsets is 4. Table 5 shows the datasets we generated.

Table 5. Synthetic datasets

No. of transactions No. of items Name

1 1,000 100 T1K.I100

2 10,000 100 T10K.I100

3 100,000 100 T100K.I100

4 1,000,000 100 T1M.I100

For comparison purposes we used an implementation of the state of the art Apriori

algorithm obtained from Weka Data Mining System [8]. All the experiments were

executed on a Personal Computer at 1800MHz, with 256MB of main memory,

running Windows XP Professional. In order to get more accurate results, we executed

each experiment three times. Average execution times are shown in Fig. 1.

T1K.I100

0.00

5.00

10.00

15.00

20.00

25.00

30.00

5 10 20
support (%)

T
im
e
 (
S
e
c
o
n
d
s
)

Apriori

Prices

T10K.I100

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

5 10 20

support (%)

T
im
e
 (
S
e
c
o
n
d
s
)

Apriori

Prices

T100K.I100

0

100

200

300

400

500

600

700

5 10 20

support (%)

T
im
e
 (
S
e
c
o
n
d
s
) Apriori

Prices

T1M.I100

0

5000

10000

15000

20000

25000

30000

5 10 20

support (%)

T
im
e
 (
S
e
c
o
n
d
s
)

Apriori

Prices

Fig. 1. Experimental results

Results show that PRICES is faster to Apriori as it only scans the database once

and uses logical operations performed in the main memory. The pruning technique

http://neevia.com http://neeviapdf.com http://docuPub.com

http://docuPub.com http://neevia.com http://neeviapdf.com

used in PRICES also contributes to the high performance. The most important finding

of the result analysis is that the larger the database grows in terms of transactions

number, the faster PRICES gets compared to Apriori. So for example for a dataset

with a million transactions PRICES is more than ten times faster than Apriori.

5. Conclusions and further work

In this paper, we proposed PRICES, a new efficient algorithm for mining association

rules. Its major advantage is that it only scans the database once and any consecutive

processing takes places in memory using logical operations. Extensive experiments

using different synthetic datasets were conducted to assess the performance of the

algorithm. Results have been positive and PRICES outperformed Apriori in terms of

speed.

We are currently experimenting with memory requirements and various techniques

to address performance deterioration due to I/O overhead when data do not fit in

memory due to the possibly very large size of datasets. Plans for further work include

devising an extension of the algorithm to match the needs of different applications,

such as document retrieval, information recovery and text mining.

References

[1] R. Agrawal, T. Imielinski, and A.N. Swami. Mining Association Rules between Sets of

Items in Large Databases. Proceedings of the 1993 ACM SIGMOD Int’l Conf. Management

of Data, pp. 207-216, Washington, D.C., May 1993.

[2] R. Agrawal, R. Srikant. Fast Algorithms for Mining Association Rules in Large Databases.

Proc. 20th Int’l Conf. Very Large Data Bases, September 1994.

[3] L. Dong and C. Tjortjis. Experiences of Using a Quantitative Approach for Mining

Association Rules, Proc.4th Int’l Conf. Intelligent Data Engineering Automated Learning

(IDEAL 03) in Lecture Notes in Computer Science Series Vol. 2690, pp. 693-700

[4] M. Houtsma and A. Swami. Set-Oriented Mining for Association Rules in Relational

Databases, Proc. 11th IEEE Int’l Conf. Data Engineering, pp. 25-34,Taipei,Taiwan,March,

1995.

[5] J.S. Park, M.S. Chen and P.S. Yu. Using a Hash-Based Method with Transaction Trimming

For Mining Association Rules. IEEE Transactions on Knowledge and Data Engineering,

September/October 1997.

[6] A. Savasere, E. Omiecinski, and S.B. Navathe. An Efficient Algorithm for Mining

Association Rules in Large Databases, Proc. ACM SIGMOD Int’l Conf. Management of

Data, SIGMOD 1998, June 2-4, 1998, Seattle, Washington, USA.

[7] H. Toivonen. Sampling Large Databases for Association Rules, Proc. 22nd Int’l Conf. Very

Large Databases, pp. 134-145, Mumbai, India, 1996.

[8] www.cs.waikato.ac.nz/~ml/weka. Weka Experiment Environment, Weka Data Mining

System. (Last accessed in March, 2004).

[9] http://www.almaden.ibm.com/software/quest/. Intelligent Information Systems, IBM

Almaden Research Center. (Last accessed in January, 2004).

http://www.cs.waikato.ac.nz/~ml/weka
http://www.almaden.ibm.com/software/quest/

