Expert Maintainers’ Strategies and Needs When Understanding Software:
A Case Study Approach

Christos Tjortjis and Paul Layzell
Department of Computation, UMIST
P.O. Box 88, Manchester, M60 1QD, UK
Email: {christos, pjl} @co.umist.ac.uk

Abstract

Accelerating the learning curve of software
maintainers working on systems with which they have
litle familiarity motivated this study. A working
hypothesis was that automated methods are needed to
provide a fast, rough grasp of a system, to enable
practitioners not familiar with it, to commence
maintenance with a level of confidence as if they had this
SJamiliarity.

Expert maintainers were interviewed regarding their
strategies and information needs to test this hypothesis.
The overriding message is their need for a “starting
point” when analysing code. They also need
standardised, reliable and communicable information
about a system as an equivalent to knowledge available
only to developers or experienced maintainers.

These needs are addressed by the proposed “rough-
cut” approach to program comprehension. Work
underway assesses the suitability of using data mining
techniques on data derived from source code to provide
high level models of a system and module
interrelationships.

1. Background

Program comprehension is a demanding task
comprising up to 90% of the total time spent on software
maintenance [2], [21], [27], which in turn is the most
expensive process in the lifetime of software [2]. This has
been attributed to a plethora of problems reported in the
literature, such as lack of wup-to-date and precise
documentation, inadequate = communication, and
unavailability of the original designers and programmers
(111, [13].

Researchers have been trying to improve and
accelerate the process of program comprehension in a
number of ways. Because of the limited amount of
information that a maintainer can assimilate at one time,
the as-needed strategy suggests maintainers gain an
understanding of the application while performing the
change process [13]. Similarly partial comprehension has

0-7695-1083-3/01 $17.00 © 2001 IEEE

been proposed in many cases to be the only feasible
approach when systems are large or when deadlines have
to be met [5], [20], [24].

A code comprehension model has been put forward,
through analysing cognition behaviour [16], [17], [18],
constructed from three high level models: a top-down
model, a program model and a situation model. Other
researchers recommended that a middle-out approach
could be more functional [31]. Finally program plans,
monitoring inter-module function calls, multiple
simultaneous views and varying focal distance are
considered to be of value when attempting code
understanding [71, [12], [19], [22], [25]. [26].

These examples illustrate the diversity of approaches
to program comprehension, and whilst empirical evidence
justifies each one, there is very slow convergence on the
best approach. Indeed, it was a apparent outcome of one
of the working sessions of IWPC 2000 that: “We do
neither have explicit guidelines to help us to perform a
given program understanding task, nor do we have good
criteria to decide how to represent knowledge derived by
and used for program understanding™ [3].

No commonly accepted framework exists that can be
used to guide comprehension in the absence of familiarity
with the code or the domain [29]. Neither there is a well-
defined set of metrics for measuring properties of the
code such as structure, modularity etc [15]). The danger
for the research community will be to fall into the trap of
trying to develop the best, single approach to program
comprehension, without understanding the pragmatics of
everyday maintenance and comprehension. A major
research challenge therefore is to understand key
objectives in the program comprehension process and to
provide the most suitable support for the specific task in
hand and at the time it is required.

The remainder of this paper continues with section 2
which describes the motivation and main objectives of the
work presented. Section 3 discusses the investigation
process and the way it was performed. Section 4 presents
the initial findings of the conducted interviews. Section 5
analyses the information gathered during the interviews
and its implications. Section 6 presents conclusions and
further work.

2. Motivation

Investigating ways of accelerating the learning curve
of a software maintainer who needs to perform a
maintenance task on a system with which they have no
particular familiarity was a major motivation for this
work. A key issue is therefore the maintainer’s ability to
quickly comprehend the software in order to make the
required change.

Ongoing work seeks to bring together the
technological support for maintenance with an awareness
of the pragmatic, business parameters and constraints
within which such tasks must be delivered. This work
revealed the commercial pressures under which
maintainers operate and therefore speed of understanding
is decisive [11]. As part of this work, a qualitative study
of expert software maintainers was undertaken, focusing
on the issue of program comprehension, in an attempt to
better appreciate its needs and objectives and thereby
provide betier tool support. This empirical study also
aimed at verifying the extent of contemporary tools’
deployment in the industrial world.

A working hypothesis for this study was that
automated methods are needed to provide a quick, rough
grasp of a software system, to enable practitioners who
are not familiar with a system, to commence maintenance
with a level of confidence as if they had this familiarity.

To test this hypothesis, it was first necessary to get a
good understanding of what happens during program
comprehension and to identify its support requirements.
This involves identifying strategies employed by
maintainers when dealing with a ‘request for change’ and
related maintenance tasks. It also requires establishing
methods, practices and needs existing in the industrial
world and identifying areas where research can enhance
these methods- in particular, to explore the potential of
any possible automated methods in achieving program
comprehension.

A more specific research question to be answered in
this context was whether gaining a high-level
understanding of a system or identifying specific issues

A. Halls administration | 11 years old, in COBOL

Table 1. A summary of selected organisations and interviewee

and structures within source code by use of automated or
semi-automated techniques was required by practitioners.

3. Study Process

Personal interviews, conducted in three steps as
described in this section, was the method selected for
information gathering. The first step was to identify a
possible set of organisations and maintainers to be
targeted. As this study was designed to be a qualitative
one, diversity was the key criterion to reach well-
informed views and to maximise the generic nature of
conclusions. Diversity for organisations was sought in
business areas, application domains, systems, platforms
and programming languages wused. Diversity for
maintainers was sought in skills, education and degree of
involvement in the distinct phases of software lifecycle.

Five organisations were selected for this study and
are referred to as organisations A, B, C, D and E
respectively for the sake of anonymity and brevity. Table
1 summarises key features of the organisations and profile
details of the nine interviewees.

Organisation A has implemented and is currently
maintaining a system for administering halls of residence.
The system was developed in 1989, written in COBOL,
and is still maintained by the original developers, one of
whom was interviewed.

Organisation B is a large financial institution, with
several software systems of variable age, implemented
either in-house or externally, in a variety of languages
such as COBOL, IBM Assembler, C++, JAVA, and
Visual Basic. These systems are maintained by specially
designated teams. Three members of a team, with
experience ranging from 3 to 24 years, were interviewed
together.

C is a very large multinational corporation providing
software and hardware solutions. One of their largest and
most complex software products is implemented in a low-
level language, and is maintained by a large team. The
most experienced, active member of this team was
interviewed; his experience includes work in several
different systems for the past 15 years.

Original ~ programmer and

maintainer ever since

B. Financial Institution
and Visual Basic.

30 years old, in COBOL, JAVA, IBM Assembler, C++ | 3 people with varied experience

/ responsibilities

C. Systems Provider
language

Large and complex software product, in low level | 15 years experience, supports

numerous clients

D. Software Provider

Complex and powerful operating system implemented in | 3 people with varied experience
a variety of in-house developed low level languages

/ responsibilities

E. Software House

BASIC

10 years old, financial/accountancy applications in | Original

programmer and
maintainer ever since

Organisation D is a large software provider. The
longest established software support team is run by one of
the three people who were interviewed. This team support
a complex and powerful operating system implemented in
a variety of low-level languages developed in-house.

Finally organisation E is a small-medium sized
software house. Two of their products are financial
applications written in BASIC and have been supported
for the past 10 years by the original developer, who was
interviewed

A primary consideration in the selection of
interviewees was to ensure that they had extensive
maintenance experience, in particular, that they
thoroughly understood the systems for which they were
responsible. This criterion for selection was vital to the
study since to provide any evidence for or against the
basic hypothesis, it is necessary to understand how
experts work. If successful, the strategies and processes
experts employ can then be replicated through tool
support and enable maintainers, without extensive system
knowledge and familiarity, to operate with the same speed
and effectiveness as their experienced counterparts. A
focused, qualitative survey as opposed to an extensive
quantitative one is well justified, given the requirement
for expert maintainers working on mature applications in
contrasting organisations.

The second step was to approach the management of
the organisations to explain the motivation behind the
study and to request them to identify experienced
software maintainers, involved in any of their major
systems. These maintainers would then be invited to
participate in the study. In this case the interview would
be arranged and a list of possible topics for discussion
would be circulated for them to consider in advance and
request clarifications if necessary.

This list consisted of two parts. The first part
included specific software maintenance topics regarding
their approach, schedule and course of action, team
communication, means for predicting the necessary effort
and for measuring maintainability and finally the
information required for maintenance. The second part
investigated the tools and methods used to facilitate
program comprehension, locating information and
estimating the scale and the impact of changes in code.
The effectiveness of partial understanding, the use and
recording of mental models, the existence and usefulness
of any metrics for comprehension was also examined. The
effectiveness and the desirability of automated methods
and other relevant facilities to accelerate and enhance
program comprehension were investigated. Further
empirical evidence was explored regarding possible
changes over time in their approach towards
comprehension.

283

The third step was to conduct the interview on-site at
the location where the work takes place, during face-to-
face meetings allowing for clarification of both questions
and answers and for further confirmation of conclusions
by examining facilities, tools, documentation and getting
a feel of what the activities involve. Other team members
were often called upon to provide further information
beyond the interviewee’s own experience or recall.
Shortly afterwards a list of answers and conclusions
would be produced and sent back to interviewee for
confirmation, additions or modifications as appropriate.

It must be stated here that given the nature of the
process and the sample population selected, it is important
to recognise the qualitative nature of data collection- that
it relates to personal experiences and preferences- and
therefore is limited in the extent to which generalisations
can be made.

4. Results

The results of this study are presented in order of
support, starting with issues that the majority of
interviewees agreed, followed by ideas that were less
common but still used in practice or thought to be of
value. Of course one must note that the diversity of the
sample in terms of individual personal differences,
organisations and policies, systems, domains and level of
software maturity was bound to introduce variations in
perceptions and procedures. It is challenging however to
identify trends and possible new needs that may have
arisen but are not fully recognised by the research
community.

The influence of types of maintenance. As
systems mature, all interviewees reported reductions in
the time to undertake maintenance arising from (a)
elimination of most errors, (b) increased maintainer’s
experience and (c) increased risk that changes may
destabilise the system as the impact cannot be
estimated in advance. Corrections tend to take up
most of the time allocated to maintenance and are
usually approached by attempting to locate the point
where the fix needs to be applied as soon as possible.
One might regard this as a ‘detail-first’ strategy, in
which the change is made and then, through
techniques such as regression testing, the wider impact
of the change is assessed. Enhancements on the other
hand usually require a different strategy, where a high-
level understanding of the system’s functionality and
modules interrelationships is pursued. Preventative
maintenance was deemed rarely to occur and
interviewees’ only comment was that such activities
should be incorporated in development, thus
confirming the perceived continuous nature of
development and maintenance.

Consultation of experts. Although formal team
communication is limited, informal meetings take
place in order 10 assist new or inexperienced members
of the team seeck guidance from senior experienced
members, or the original designers and programmers.
This model of staff familiar with the system,
mentoring less familiar staff is common within all five
organisations, indicating the importance of human
factors and the degree of dependence of the
understanding effort on the maintainer’s familiarity
with the system. There seems to be no high-quality
substitute for experience when it comes to
understanding and maintaining a system, as existing
methods and tools are not effective enough and
documentation tends to be unreliable. In other words
there appears to exist a clear need for means of
achieving comprehension equivalent to having access
to the original developers of the system or to
maintainers who are very familiar with it.

Partial program comprehension. Whilst many
reports suggest very significant effort devoted to
program comprehension [2], [21], [27], interviewees
indicated that significantly less proportion of time was
devoted to comprehension in their experience,
typically around 30%. This is partly explained by the
fact that interviewees were experts in the systems they
maintain. However all interviewees reported that
more time was needed, but they were restricted by
commercial pressures and delivery dates. Thus only a
partial understanding was achievable in most cases

and this had to be balanced against the risk of failure
in successfully completing a maintenance task.

Team communication. The size of projects
operated in the selected organisations meant that team-
based maintenance was common, although the teams
were clearly loosely structured and flexible in nature.
However information exchange among team members
is sparse, informal and is hardly ever formally
recorded. There was only one organisation where
formal team meetings are held on a regular basis.
Teams are perceived as primarily a management and
organisational structure and have little bearing on the
maintenance and program understanding process itself.
This raises the issue whether communication during
maintenance and program comprehension activities is
inherently problematic, such as difficult to formally
record, or whether maintenance and comprehension is
primarily an individual task which does not benefit
from interaction with peers, possibly because it is
time-consuming for the value it gives.

High level models. High-level overviews,
abstractions, sequence and localised diagrams of the
system, and also some means to estimate the impact of
changes is thought to be potentially useful information
to facilitate comprehension confirming similar views

suggested by researchers [8]. The desirability of
autornated methods for deriving high level abstractions
and module interrelationships was confirmed in 4 out
of 5 cases, in order to accelerate and enhance program
comprehension. A reluctance to use existing tools was
also identified, partly because of the lack of time for
learning their use and partly because practitioners
were not convinced that the anticipated results would
justify the investment. Interviewees from 4
organisations reported that mental models of
programs, i.e. high level abstractions of subsystems
with related functionality and interrelationships, were
implicit in their work, but are hardly ever recorded for
future use, even when they are communicated to other
people during meetings by use of diagrams and other
supportive oral explanatory material. The need for
visualising and recording mental models is also
identified elsewhere [28]. In one particular case, an
interviewee also mentioned his experience in users
developing their own mental models of a system and
the importance of cross-referencing such models with
those of maintainers in order to improve
communication and resolve misunderstandings.

Continuous nature of development and
maintenance. In 3 out of 5 organisations, interviewees
were involved in both the development and
maintenance of systems. Their view was that
development and maintenance is a continuous process,
with two interviewees actually asking what was
exactly meant by maintenance. This view of a
continuous development and maintenance process is
confirmed by other surveys [11]. Of particular
relevance to future work is the issue of understanding
development processes, as much as understanding
maintenance processes.

Source code comments. Maintenance activities
are not documented in 3 out of the 5 organisations,
except from extensive changes which are usually
reflected on user manuals. Otherwise, detailed
comments in code are used to describe changes, their
reason and the way they were implemented. This
implies that comments in mature systems get
accumulated over time and tend to reflect subsequent
changes rather than the original implementation ideas.
An interesting future research issue here concerns the
need to extract information from comments regarding
changes and relate this to known functionality of
code'.

Identification of a starting point. In three
organisations interviewees considered that assistance
in locating a starting point for subsequent searching
and tracing through programs significantly accelerates

' For Java this need is partly addressed by Javadoc, a tool from

Sun Microsystems for generating API documentation in HTML format
from comments in source code {9].

the comprehension process. Such assistance occurred
through consultation with experts in the system and
maintainers’ own developing experience.

Measuring comprehensibility. Two experts
suggested that the number of key functions, the depth
of subroutines, the number of branches, the number of
past changes and some other subjective metrics could
be used for program comprehension. Keeping track of
past changes using comments, history logs or other
means thus seems to influence several aspects of
program comprehension.

5. Analysis

Much of the analysis of the responses of interviewees
highlights well-known problems documented in relevant
program comprehension literature. However there are a
number of issues which arise that have been subjected to
less consideration.

The issue of team communication highlights that
communication within maintenance teams is weak and
lacks efficient means to convey information to support
maintenance. tasks. Oral communication is problematic as
it gives rise. to misunderstandings and is difficult to keep
track of. Furthermore, members of teams are not
necessarily physically located in the same area nor are
expected to be in the future [6], as was the case in one
organisation studied; thus compounding the difficulty in
communication and mutual support from maintainers with
experience in a given system to those without such
experience. This is an area where computer supported co-
operative working (CSCW) is of particular relevance [4].

The issue of communication also arises with mental
models of systems. Models are important factors in
assisting program comprehension and the performance of
software maintenance, but there are no effective
mechanisms to share understanding or experiences. The
problem is that they only represent snapshots of a system
and can become disconnected from reality if not
maintained themselves, which may account for their
transient nature.

A lot of information regarding the current state and
functionality of software systems is held within source
code’in the form of comments, and a way to retrieve and
record this information in a semi-automated manner could
save a lot of time in program understanding. The same
also applies in extracting information from identifiers and
names used within code.

A broad outcome of this study into how experienced
maintainers go about the process of program
comprehension is that a great deal of the process, as
applied in practice, is ad hoc and largely opportunistic.
There is a clear tendency to rely extensively on a
maintainer’s experience and this experience is hardly ever

285

recorded or documented for future use, possessing a
significant risk to the maintainability of a system.

An obvious remedy could be the introduction of a
formal, standardised way to represent and record
knowledge about a system’s current state, its
shortcomings and general maintenance needs. However,
such an approach is idealistic given the commercial
pressures under which maintainers must operate and the
psychological issue that practitioners may not wish to
publicise their expertise in a way that could undermine
their position.

An alternative approach is therefore proposed, based
upon our initial hypothesis: that automated methods are
needed to provide a quick, rough grasp of a software
system, to enable practitioners who are not familiar with a
system, to commence maintenance with a level of
confidence as if they had this familiarity.

This alternative approach defines and introduces the
notion of a ‘“rough-cut approach” to program
comprehension in which emphasis is placed on supporting
the maintainer sufficiently to start a task, with a tool
providing the equivalent of an inexperienced maintainer
consulting with an experienced maintainer in order to
scope a problem and get started.

It was generally agreed that the most useful pieces of
information to facilitate code comprehension when
maintaining software are:

a. an easy to navigate multi-layered subsystem
abstraction, capturing control flows and modules
interrelationships providing an overview of the system
and possible impact of changes

b. knowledge derived from past maintenance
which can mainly be retrieved from comments

Many tools exist to support these processes, however
they fail to fully address the commercial context and time
pressures in which source code analysis must be
conducted. Therefore an alternative approach to
retrieving information about a software structure could be
to apply to data mining techniques to source code, using
techniques such as clustering or association rules [1],
[141, [15], [20], [23], [32]. The information content of
comments could also be retrieved by use of text mining
techniques and mapped to code descriptions [10].

Such an approach to support program comprehension
is termed “rough-cut”, as its primary aim is to provide a
broad contextual picture of the system under
consideration, rather than a refined, detailed model. Such
a broad model provides a basic roadmap by which
maintainers, who lack a detailed knowledge of a system,
can navigate around the code, scoping the change request
and solution space in a relatively short period. This in
turn will enable more detailed analysis of targeted code to
be undertaken, minimising analysis and computation time.

It is clear that the picture of a system automatically
retrieved from code and comments should be incremental.

Taking into account the continuous nature of development
and maintenance, the fact that changes in software are not
always for the better and the reality that different versions
of a system can be available, it would be useful if the
model to be constructed can capture this dimension as
well.

6. Conclusions and further work

Although the results of the study presented in this
paper cover a number of areas associated with software
maintenance and comprehension, the overriding message
is the need to provide maintainers with a clearer “starting
point” when analysing code as part of a program
comprehension task.

Another clear requirement is a means for providing
standardised, reliable and communicable information
regarding a software system as an equivalent to
knowledge available only to developers or experienced
maintainers. Capturing knowledge regarding past
modifications emerges to be of great importance.

The “rough-cut” approach to program comprehension
presents a major research challenge to provide hard
evidence that automated methods. can achieve what
conventional methods and tools are currently able of
achieving in less time and by reducing the risks involved.

Work is now currently underway to assess the
suitability of using data mining techniques on data
derived from source code. Subtasks include populating a
database with attributes extracted from code, identifying
which data mining methods are more suitable for this
domain and acquiring knowledge to be reviewed by
experienced maintainers. A parallel step is looking at the
utilisation of natural language text stored in the form of
comments by extracting meaningful interpretations to be
cross-referenced with code excerpts.

The proposed approach involves representing a
program as a number of entities that are grouped in
clusters representing subsystems, based on their
similarity. These clusters can indicate structure amongst
functions and also possible interrelationships between
them, in a way that the impact of changes can be
predicted with an acceptable amount of uncertainty.
Central issues are the specification of program entities
and their attributes, similarity metrics, and clustering
strategy.

A prototype clustering tool using input data extracted
from C/ C++ programs of various sizes has been used for
experiments. Initial results indicate that a high-level
system abstraction as a number of subsystems can be
achieved by clustering functions into groups depending
on the use and types of parameters. Interrelationships
amongst components were identified in a similar manner.

Further work involves retrieving similar information
by means of mining databases populated by “low level”

286

data extracted from COBOL source code. For instance,
such “low level” data include, but are not limited to
variable names, identifiers and key words. Initial
exploration of this . possibility resulted in database
schemas that can be utilised by association rules
techniques, normally used for transactional databases [30]
and clustering algorithms.

7. Acknowledgements

The authors would like to express their thanks to all
the staff and companies who contributed their time and
experience to the fact finding stage of the study reported
in this paper.

8. References

[1] N. Anquetil and T.C. Lethbridge, ‘Experiments with

Clustering as a Software Remodularization Method’, Proc.

6th Working Conf. Reverse Engineering (WCRE 99), IEEE

Comp. Soc. Press, 1999, pp. 235-255.

L.J. Arthur, Software Evolution. The software maintenance

challenge, John Wiley & Sons, Inc., 1987.

F. Balmas, H. Wertz and J. Singer, ‘Understanding

Program Understanding’, Proc. 8th Intl Workshop

Program Comprehension (IWPC 00), IEEE Comp. Soc.

Press, 2000, pp. 256.

D. Coleman, Groupware- Collaborative Strategies for

Corporate. LANs and Intranets, Prentice Hall, San

Francisco, 1997.

K. Erdés and H.M. Sneed, ‘Partial Comprehension of

Complex Programs (enough to perform maintenance)’,

Proc 6th Int'l Workshop Program Comprehension (IWPC

98), IEEE Comp. Soc. Press, 1998, pp. 98-105.

A. French and P.J. Layzell, ‘A Study of Communication

and Cooperation in Distributed Software Project Teams’,

Int’l Conf. Software Maintenance (ICSM 98), IEEE Comp.

Soc. Press, 1998, pp.146-155.

N. M. Goldman, ‘Smiley—An Interactive Tool for

Monitoring Inter-Module Function Calls’, Proc. 8th Intl

Workshop Program Comprehension (IWPC 00), IEEE

Comp. Soc. Press, 2000, pp.109-118.

Y. K. Jang, H. S. Chae, Y. R. Kwon, and D. H. Bae,

‘Change Impact Analysis for A Class Hierarchy’, Proc.

Asia Pacific Software Engineering Conf. (APSEC'98),

IEEE Comp. Soc. Press, Dec. 1998, pp. 304-311.

Javadoc Tool - Home Page

hitp://java.sun.com/i2sefjavadoc/index.himl (last accessed

8/01)) : .

[10] H. Karanikas, C. Tjortjis, B. Theodoulidis, ‘An Approach
to Text Mining using Information extraction’, Proc.
Workshop Knowledge Management Theory Applications
(KMTA 00), Lyon, Sept. 2000.

{111 PJ. Layzell and L. Macaulay, ‘An Investigation into
Software Maintenance — Perception Practices’, Journal of
Software Maintenance and Practice, vol.6, no.3, June
1994, pp 105-120.

(2]
(3]

{4]

(5]

(6]

(71

{8]

(9]

[12] S. Letovsky, and E. Soloway, ‘De-localized Plans and
Program Comprehension’, IEEE Software, vol. 39, no. 3,
May 1986, pp. 41-49.

[13] D.C. Littman, J. Pinto, S. Letovsky, and E. Soloway,
‘Mental Models and Software Maintenance’, Empirical
Studies of Programmers, Eds. Soloway and Iyengar, ¢
11986, Ablex Publishing Corporation, pp. 80-98.

[14] S. Mancoridis, B.S. Mitchell, Y. Chen and E.R. Gansner,
‘Bunch: A Clustering Tool for the Recovery and
Maintenance of Software System Structures’, Proc. Int’l
Conf. Software Maintenance (ICSM 99), IEEE Comp. Soc.
Press, 1998, pp. 50-59.

[15] S. Mancoridis, B.S. Mitchell, C. Rorres, Y. Chen and E.R.
Gansner, ‘Using Automatic Clustering to Produce High-
Level System Organisations of Source Code’, Proc. 6" Int’l
Workshop Program Understanding (IWPC 98), IEEE
Comp. Soc. Press, 1998, pp. 45-53.

[16] A. Von Mayrhauser, AM. Vans, ‘From Program
Comprehension to Tool Requirements for an Industrial
Environment’, Proc. 2nd Intl Workshop Program
Comprehension (IWPC 93), IEEE Comp. Soc. Press, 1993,
pp- 78-86.

[177 A. Von Mayrhauser and AM. Vans, ‘Program
Comprehension During Software Maintenance and
Evolution’, IEEE Computer, vol. 28, no. 8, Aug. 1995, pp.
44-55.

[18] A. Von Mayrhauser and A.M. Vans, ‘Program
Understanding Behavior During Adaptation of Large Scale
Software’, Proc. 6th Intl Workshop Program
Comprehension (IWPC 98), IEEE Comp. Soc. Press, 1998,

pp-164-172.

{191 R. T. Mittermeir, ‘Comprehending by varying Focal
Distance’, Proc. 8th Imt’l Workshop Program
Comprehension (IWPC 00), IEEE Comp. Soc. Press, 2000,
pp. 3-4.

[20] C. Montes de Oca and D.L Carver, ‘Identification of Data
Cohesive Subsystems Using Data Mining Techniques’,
Proc. Int'l Conf. Software Maintenance (ICSM 98), IEEE
Comp. Soc. Press, 1998, pp.16-23.

[21] TM. Pigoski, Practical Sofiware Maintenance: best
practices for managing your software investment, John
Wiley & Sons, New York, NY., 1996.

[22] J. Sajaniemi, ‘Program Comprehension through Multiple
Simultaneous Views: A Session with VinEd’, Proc. 8th
Int’l Workshop Program Comprehension IWPC 00), IEEE
Comp. Soc. Press, 2000, pp.99-108.

{231 K. Sartipi, K. Kontogiannis and F. Mavaddat,
‘Architectural Design Recovery Using Data Mining
Techniques’, Proc. 2nd European Working Conf. Software
Maintenance Reengineering (CSMR 2000), IEEE Comp.
Soc. Press, 2000, pp. 129-140.

[24] H. Sneed and T. Dombovari, ‘Comprehending a Complex,
Distributed, Object-Oriented Software System: A Report
from the Field’, Proc. 7th Intl Workshop Program
Comprehension (IWPC 99), IEEE Comp. Soc. Press, 1999,
pp- 218-225.

[25] E. Soloway, and K. Ehrlich, ‘Empirical Studies of
Programming Knowledge’, IEEE Transactions on Software
Engineering, vol. 10, no. 5, Sept.1984, pp. 595-609.

287

[26] E. Soloway, ‘Learning to Program = Learning to Construct
Mechanism and Explanations’, Communication of the
ACM, vol. 29, no. 9, June 1986, pp. 850-858.

[27] T.A. Standish, ‘An Essay on Software Reuse’, [EEE
Transactions on Software Engineering, vol. 10, no. 5, Sept.
1984, pp. 494-497.

[28] M.-A.D. Storey and F.D. Fracchia, ‘Cognitive Design
Elements to Support the Construction of a Mental Model
during Software Visualization’, Proc. S5th Intl Workshop
Program Comprehension (IWPC 97), IEEE Comp. Soc.
Press, 1997, pp. 17-28.

[29] SR. Tilley, S. Paul, and D.B. Smith, ‘Towards a
Framework for Program Understanding’, Proc. 4th Intl
Workshop Program Comprehension (IWPC 96), IEEE
Comp. Soc. Press, 1996, pp. 19-28.

[30] H. Toivonen, ‘Samfling Large Databases for Association
Rules’, Proc. 22" Int’l Conf. Very Large DataBases
(VLDB 96), 1996, pp. 134-145.

[31] M. Ward, ‘Language Oriented Programming’, Software -
Concepts and Tools, no. 15, 1994.

[32]T. A. Wiggerts, ‘Using Clustering Algorithms in Legacy
Systems Remodularization’, Proc. 4th Working Conf.
Reverse Engineering (WCRE 97), IEEE Comp. Soc. Press,
1997, pp 33-43.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

