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Abstract—Data analysis can be applied to power consumption 

data for predictions that allow for the efficient scheduling and 

operation of electricity generation. This work focuses on the 

parameterization and evaluation of predictive algorithms utilizing 

metered data on predefined time intervals. More specifically, 

electricity consumption as a total, but also as main usages/spaces 

breakdown and weather data are used to develop, train and test 

predictive models. A technical comparison between different 

classification algorithms and methodologies are provided. Several 

weather metrics, such as temperature and humidity are exploited, 

along with explanatory past consuming variables. The target 

variable is binary and expresses the volume of consumption 

regarding each individual residence. The analysis is conducted for 

two different time intervals during a day, and the outcomes 

showcase the necessity of weather data for predicting residential 

electrical consumption. The results also indicate that the size of 

dwellings affects the accuracy of model. 
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I. INTRODUCTION 

The exchange of data and information between systems and 

users has impelled society to assign the term smart in almost 

everything. From smart phones and watches to smart 

devices all around the dwelling, it is clear that there is a 

predisposition of people for intelligent systems, which could 

positively influence their everyday life. Such a system could 

provide residents with a forecast of the next day’s electricity 

consumption as accurately as possible, so they can plan their 

activities wisely, i.e. shifting the load of their needs to lower 

demand periods, to save money and act in a more 

environmentally friendly way. A smart home is not desired 

only by residents, but also by businesses that link their 

products and services with the intelligence factor. Therefore, 

businesses show willingness to invest in such structures, as 

they can be proven to bring about a higher quality and 

therefore a larger profit margin. 

However, when the data fail to be captured and stored in 

databases on a prerequisite way, the whole process is 

jeopardized. In data mining, especially in real-world 

scenarios, it is almost impossible to capture all the desired 

data that could bring up value, due to the data 

interoperability, which is still a major problem. In addition, 

data are usually generated through installed sensors, which 

quite often fail or deviate from the actual values. When the 

access and administration of data is no longer a problem, 

then data mining or knowledge discovery techniques turn 

these “nonsense” values into valuable information. In 

general, data mining is used to obtain new perspectives and 

capture hidden factors from unexploited information, which 

is available in the collected data; however, it is also a 

scientific field that can validate hypotheses and experience-

based knowledge. Data mining is considered the key 

technology behind smart cities and homes. Accurate 

predictions of daily unusual behaviors or early warnings of 

dangerous moments can be crucial and are being 

systematically studied.  

Based on that, different projects of smart cities have 

begun to develop around the globe in order to capture 

previously unknown knowledge or test intuitively 

assumptions. Electricity consumption prediction is a vast 

field that increasingly attracts researchers’ attention. A 

major reason why this problem is being constantly tracked is 

that weather is an unstable variable and does not affect 

equally all the climate zones.  

As part of this work, we examine the problem of 

electricity consumption forecasting. The first part focuses on 

exploiting the gathered weather data to produce building 

energy consumption forecasting models while the second 

aims to simulate the behaviour of grid through the 

aggregation of consumption of all available homes. 

For this purpose, open data from the UMass Trace 

Repository were used. The selected dataset, named Home, 

includes both weather and consumption data collected for 

seven different households for three consecutive years 

(2014-16). However, since some homes were not 

compatible with each other, it was decided that they are 

excluded. Indeed, several weather metrics were not exactly 

matching, neither the recording time of these metrics was 

identical. Inevitably, only three homes were used to assess 

the repeatability of the models, which differ a lot, in terms 

of size and consuming behaviour. The labels of the Homes 

are identical to those introduced by the repository. 

Therefore, the homes will be referred as Home B, Home C 

and Home F. The houses under examination are in 

Massachusetts, USA. Obviously, weather conditions are 

similar as the houses are relatively close to each other. 

The remaining of this paper is organised as follows: section 

2 provides context by reviewing the literature. Section 3 

defines the problem we address and details our approach, 

while section 4 presents experimental results, which are 

discussed in section 5. The paper concludes by discussing 

threats to validity and presenting future work.  

II. BACKGROUND 

So far, many research teams have relied on data provided 

by the Smart* project with different goals and directions. In 



[1] weather and energy data were processed to predict the 

latitude and longitude of a smart meter that collects data, as 

all these energy data are collected anonymously. In addition, 

in a more market-oriented approach of equal significance, 

[2] introduced an intelligent charging system called Smart 

Charge, whose goal is to decrease the electricity bills by 

shifting consumption to lower price periods. Similarly, 

SmartCap is a system for monitoring and controlling electric 

loads, which tries to flatten electricity demand through 

scheduling algorithms [3]. 

Besides prior published work based on the particular 

Smart* project, it is very interesting to trace back into 

significant approaches around the general topic of electrical 

management systems, such as [4], and the prediction of 

consumption. More than ten years earlier, [5] compared 

different structures of ANN’s on forecasting, concluding on 

a 2-hidden layer instruction of form 12-16-16-1 that 

achieved the highest performance. ANN’s are also examined 

and compared in [6] with SVM algorithm in an extensive 

review of building electrical energy consumption 

bibliography that results in superiority of Least squares 

Support Vector Machine (LsSVM) algorithm.  

In [7] customer profiles are pre-defined, based on the total 

consumption, thus a significant decrease on the daily 

expenses in electricity is achieved. In contrast, [8-10] 
propose to first build customer profiles or assign some 

already known and then try to predict consumption based on 

them. Another analysis under the umbrella of flattening in 

consumption is the outlier analysis and the focus on 

anomaly detection, as it considered a major factor that 

affects consumers. Since the market’s linearization, the 

kilowatt-hour price changes regularly, and it is expected to 

minimize unreasonable extra costs by understanding and 

preventing such phenomena. Such a research was conducted 

in [11], where the ARIMA methodology was applied. 

Load forecasting is a well-studied subject, which has 

influenced several researchers to try different techniques 

and approaches. However, there is still a lot of room for 

improvement as well as several unexplored aspects in such a 

multidimensional problem. Authors in [12] present three 

time-based approaches around the forecast, as well as their 

characteristics and value for the provider; Short-Term (ST), 

Medium Term (MT) and Long Term (LT). The ST load 

forecasting could be used for reducing costs and secure 

operation of power systems. In MT load forecasting the 

interest focuses on normal operation, while LT load 

forecasting is studied to ensure safer investments and long-

term planning in general. A very interesting approach of 

load forecasting in distribution system is presented in [13], 
where Principal Components Analysis (PCA) is applied to 

multi-linear regression on MT load forecasting. 

Regarding weather factors, [14] represents the responses 

of energy demand due to climate change in Massachusetts. 

The parameters that are being used describe the Heating 

Degree-Day (HDD), the hours of daylight and the electricity 

price in a monthly scale for both residential and commercial 

sector. The study concludes that ‘energy demand in 

Massachusetts is sensitive to temperature’ while the average 

number of days exceeding 90°F will rise to double by 2030. 

The results of prediction cannot always be that accurate, 

even if the weather indeed affects largely the electricity 

consuming behaviour. As explained in [13], electrical 

energy demand has a high non-linear behaviour, thus 

accurate predictions cannot be guaranteed. Another factor 

that affects negatively prediction accuracy is the continuous 

pressure for better living standards [15] on a 

disproportionate rate. Indeed, according to [16] where the 

residential electrical consumption in Brazil was analysed, 

the increase in electricity demand was faster than in income.  

In a similar study for a very different climate, [17] resulted 

in similar results regarding temperature, however, as it was 

highlighted, ‘relative humidity is not having significant 

impact on the energy consumption’. 

The base period of forecasting, briefly, affects the 

complexity of the problem that needs to be modelled. Most 

studies focus on the ST load forecasting, as it is a more 

difficult task, due to the noisy effect of environmental 

factors. As stated in [18], electric power consumption is 

growing rapidly and introduces a higher level of 

randomness, due to the increasing effect of environmental 

and human behaviour. In addition, it is important to 

understand that like many time-series problems, load 

forecasting also reflects a seasonality and cyclic component, 

which leads many researchers to the vertical decomposition 

throughout the year. The load pattern is a non-stationary 

time-series problem and thus needs to be carefully 

fragmentized. 

III. APPROACH AND PROBLEM DEFINITION 

Energy consumption prediction in a particular building is 

usually influenced by many factors, such as the electrical 

appliances or devices in it, its geographic location, as well 

as the time range it is operational [6]. Occupancy is also 

such a factor but is not easy to record it in highly operational 

buildings. In general, citizens have a decent understanding 

about the appliances that consume higher rates of electricity; 

however, the constant change in price prevents the creation 

of a clear consumption plan. For example, air-conditioning 

represents the biggest part of electric energy consumption in 

residential buildings [20], while according to [21] electrical 

energy consumption increases on summer months over 2.5 

% because of the rise in temperature.   

Our approach aims at constructing a prediction model 

which includes usage patterns besides weather data. As long 

as the target is to predict the fluctuation of consumption 

individually for each Home, the consuming behaviour 

should also be considered. Authors in [12] state that 

“Electric demand is often considered as a function of 

weather variables and human social activities”. More 

specifically, typical families have cycles of consumption on 

a daily and weekly basis. In general, families use the 

laundry or any other appliance X times per week. If the 

consumption stays low for a consecutive number of days, it 

is more likely that next days will show a rise in total 

consumption. Similarly, the previous day consumption 

should also be a factor to predict the next day. It is expected 

for a house that consumes a higher than average amount of 

electricity, that the next day would result in lower 

consumption. 

To construct such a model, it is essential to guarantee 

that there is a constant tracking of the total consumption in 

each home. Unfortunately, smart metering is a newly 

deployed technology that still must surpass numerous 

challenges and failures and is heavily analysed in several 



works, such as [29]. It is also key, to clarify that since the 

available data are limited and the level of information low, 

this study focuses on forecasting as a result of a binary 

classification. Reforming the problem from regression to 

classification was a crucial step in our work. The main 

reason for that, is our assumptions regarding the level of 

information that residents would be interested in. Ideally the 

outcome should be the exact consumption value, but this 

research is conducted with a broader motivation to suggest 

and highlight the factors that could affect a prediction either 

positively or negatively on individual home characteristics. 

Through this work we aim to investigate how effective 

would the model be for each of the available homes and 

which reasons lead to differentiation in accuracy. Since that 

was decided, the model was transformed into binary around 

different means. The two labels are ‘High’ and ‘Low’ 

describing the volume of consumption. These means reflect 

the mean values of consumption throughout the year, the 

current season or in a monthly basis. This happens mostly 

because on smoother weather conditions (Spring or 

Autumn) it is expected for model to return lower accuracy. 

The binarisation of consumption is performed around 

standard mean values in order to avoid the ‘expensive’ 

handcrafted data engineering. Thus, the whole process can 

be easily automated 

There are many factors that affect consumption. In our 

case, consumption forecasting is done in the much smaller 

scale of individual residence for the day ahead. Initially, 

what should be clear is that such a model includes only 

variables that are set to be known in advance. The model 

includes mostly weather data. From the available weather 

data that match the Homes, only the following were 

selected: 

• Temperature (°F) 

• Apparent Temperature (°F) 

• Wind Speed (Mph) 

• Wind Direction (Bearing) 

• Humidity (%) 

• Dew Point (°F) 

• Weather Icon (Categorical) 

There were also some weather metrics that we decided to 

exclude from the model since the strategy formatting. 

Precipitation probability and precipitation intensity were 

two of them, as it was expected for the level of the 

information that they could provide to be captured from the 

categorical metric, weather icon. Indeed, the most dominant 

category was clear, so obviously that leads to zero intensity. 

Moreover, visibility might seem a reasonable variable, but it 

was not expected to bring higher value to the model than 

complexity. Beyond that, cloud cover had numerous missing 

values, while pressure was not considered as a metric easily 

understandable by the residents, so as to change their living 

habits. 

In addition, a simplistic dummy-like variable is created 

that indicates if a day fell on a weekend. Another variable 

we also introduced, to indicate weekends, if a day fell on a 

national holiday, as listed here [22]. The last variable 

records the time of sunset for each day, in a categorical form 

of five different time intervals (16:00-20:00). 

Based on the previous steps it was decided that the 

model should focus on two different time intervals, on and 

off-peak hours. Obviously, as in most residences, on Home 

B the peak consumption hours were between 15:00 and 

21:00 so it was decided for the Usage (target variable) to be 

averaged under that time-interval. The off-peak 

consumption hours were a tricky part as the intention was to 

be of equal duration as the first, and not overlapping with 

each other. The remaining three 6-hour intervals are 

expected to have similar behavior; however, it was desired 

for only one to be chosen. 

Given that providers tend to introduce night tariffs and 

rates, it was decided that since the two variables of our 

model refer to Weekends and Holidays, an appropriate 

approach would be to choose the 09:00-15:00 interval. The 

on and off-peak hours, is a concept that should be separately 

adjusted for each Home, based on the occupants’ habits. If 

the purpose is Grid load forecasting, then of course this 

separation is unified. There are studies that choose different 

time intervals. For example, the peak period in [23] was 

defined as 7am to 7pm, Monday to Friday, while all the 

remaining times and public holidays were considered as off-

peak. Consumer behavior is estimated to be more accurate 

described in the mornings on holidays and weekends than 

with nightly habits that are pretty much the same. Therefore, 

the scale of our data is daily, and the same process is 

followed for weather data. Despite that the available dataset 

contains hourly information for 2014-16, the targets turn 

into daily stamps. For example, the average temperature of 

01/01/2014 equals to twenty, which is calculated through 

the half-hourly values between 15:00 and 21:00. Table I 

shows the number of instances that each class includes for 

each of the described splits. 

TABLE I: BALANCE OF THE TWO CLASSES AROUND THE EXAMINED MEANS 

High Low High Low High Low

Home B ON-

peak
361 735 431 665 378 718

Home B OFF-

peak
372 724 400 696 393 703

Home C ON-

peak
395 685 382 698 380 700

Home C OFF-

peak
408 672 390 690 398 382

Home F ON-

peak
553 543 553 543 547 549

Home F OFF-

peak
438 658 447 649 452 644

Consumption Per Total Consumption Per Month Consumption Per Season

Classes Classes Classes
Homes -Time 

Interval

 

The splits reveal that the two classes are rarely balanced 

and almost in every case the Low class outnumbers the High 

one. Also, for classification problems is important to clarify 

which class is of higher interest. In our case both classes are 

considered of equal interest. 
Based on uncertainty, as it was described above, 

scientists have already started looking for effective ways to 
forecast the electricity consumption and therefore the 
electricity price. Probably the most challenging part is to 
obtain reasonable data regarding the area of interest. This 
data gathering leads to valuable results, which mainly affect 
the life of residents in positive manners, but also allows 



providers to reschedule their generating and distributing 
plans. On these days, providers are turning to smart grids 
that focus on real-time pricing or critical peak rebate. 
Indeed, according to [24] those kinds of smart pricing are 
already increasing in the USA and more specifically in 
States like California and Massachusetts, “this is actually 
being mandated by the State legislatures”. 

IV. EXPERIMENTAL RESULTS 

Before reaching the results that each home brings upon, the 

following figures [1-6] give an indication of the consuming 

behaviors for each of them. Besides the average hourly 

consumption, it is important to also examine the monthly 

averages. 

In general, Home B has a tremendous differentiation 

throughout the three years. Both in Figure 1 and 4 the 

volume of consumption, despite that follows a similar 

pattern also increases. On the other hand, Figure 2 and 3 

show an insignificant increment. 

 
Figure 1: Home’s B avg. hourly consumption 

 
Figure 2: Home’s C avg. hourly consumption 

 
Figure 3: Home’s F avg. hourly consumption 

 
Figure 4: Home’s B avg. monthly consumption 

 
Figure 5: Home’s C avg. monthly consumption 

 
Figure 6: Home’s F avg. monthly consumption 

Some more characteristics about the three houses are the 

following: Home B, as described in [25], is a huge house 

across two stories with eight rooms and four full-time 

occupants. It is roughly 1700 square feet and it contains a 

central A/C as well as a gas-powered heating system. Home 

C is almost double the size of Home B, around 3500 square 

feet, again across two stories. Unfortunately, the real 

number of occupants is unknown. Home C also generates 

power which not only covers some of the electricity 

demands but is also possible to ‘reverse direction when the 

home’s generation exceeds its consumption’. Home F does 

not come with a description as it is included on the dataset 

as an update. Information about Home F is expected to be 

published later in 2019.  

The algorithms that are tested are Support Vector 

Machines (SVM), Random Forest, Stochastic Gradient 

Descent (SGD) and Logistic Regression. Following, there 

are three different technical stages of classification while 



there are three different classification implementations. The 

first one splits the total consumption instances around the 

general mean value. The second one splits the total 

consumption instances regarding each month’s mean value, 

while the last one regarding each season’s mean value. Each 

algorithm will be examined for each of the following stages: 

Stage 1 represents the results that are given by calling 

the default algorithms as they are set on Scikit-Learn 

package.  

Stage 2 reflects what happens when the training data are 

scaled, due to the different units and ranges. For some 

classifiers such as SGD this is a crucial step, while others 

are not affected.  

Stage 3 reflects a hyper-parameter tuning as it can boost 

algorithmic performance. For each algorithm, the tuned 

parameters are chosen empirically, so not all of them are set 

to be tuned. 

It is important to clarify that for SVM different kernels 

delay the process. This happens mostly because the linear 

kernel is an almost identical implementation with SGD’s 

hinge kernel. Moreover, the polynomial kernel requires the 

data to be scaled. For the assessing of generalisation of our 

model the most common approach of a 10-fold cross-

validation was used. Cross validation is a resampling 

procedure, used to evaluate classification models on a 

limited data sample [26]. Shortly this concept splits the 

available data into k random groups of equal size if possible 

and uses each time one of these groups (folds) as the test set; 

the rest k-1 folds are used for training. Each fold is used 

after the completion once, and the final score is the average 

of all these tests. The results clearly indicate that there is not 

an algorithm superior to others. Logistic regression required 

less hyper-parameter tuning and clearly was not highly 

affected by that. 

The most stable algorithms are random forest and SVM, 

however the latter is slower, while it shows unpredictable 

behavior during the scaling stage. Regarding the two 

different time intervals, it was expected for the off-peak 

period to achieve higher results, but the results concluded on 

the exact opposite. This was initially assumed since on off-

peak period the fluctuations of consumption are smaller, but 

as the experiments resulted; higher fluctuations lead to more 

information. 

Table II illustrates that the most promising results were 

achieved for Home B and especially the ON-peak time 

interval. On the other hand, Home C and F are not showing 

significant differences and all the algorithms are performing 

similarly. The last indication from results is that when the 

binary transformation is being around the general mean 

value of consumption the accuracy is higher. In addition, as 

we shorten the “focus” of transformation, the more difficult 

it is to achieve successful predictions.  

V. GRID LOAD 

In a similar way, the grid load could be simulated in order to 
assist the providers. Since all the houses are in the same 
region, weather data are very similar, thus an average value 
for each weather metric is calculated. Regarding the 
electrical consumptions, the values are summed both for 
Yesterday and Past week load. The target values again are 
transformed into two classes, however, since previous 
analysis resulted in better performance for the general mean 
value, it was decided this to be the only one to be examined. 
The split of classes for On-peak period is 474 High-606 
Low, while for Off-peak period it is 433 High-647 Low. The 
structure of the model remains the same and it is presented in 
Tables III and IV. 
As seen in tables III and IV, the performance of the model 
does not change drastically. However, at this point a different 
perspective of generalisation can be examined through 
merging. The accuracy for both periods remains similar 
however, for Off-peak period a slightly higher accuracy is 
achieved. 

STAGE 1 STAGE 2 STAGE 3 STAGE 1 STAGE 2 STAGE 3 STAGE 1 STAGE 2 STAGE 3

SVM 0.8869 0.8705 0.891 0.6825 0.7043 0.7166 0.7138 0.7411 0.7493

RF 0.8773 0.8773 0.895 0.643 0.643 0.6934 0.7043 0.7043 0.7561

SGD 0.5986 0.7752 0.8801 0.6021 0.6267 0.7029 0.6035 0.6457 0.7397

LR 0.8746 0.876 0.8828 0.6798 0.6771 0.7029 0.7356 0.7288 0.7411

SVM 0.7833 0.7915 0.8024 0.6839 0.7002 0.7084 0.6975 0.7057 0.7125

RF 0.7724 0.7724 0.7973 0.6675 0.6675 0.7152 0.6811 0.6811 0.7179

SGD 0.6811 0.7152 0.7915 0.5572 0.598 0.6975 0.5054 0.6117 0.7057

LR 0.797 0.7847 0.797 0.6961 0.692 0.6989 0.6907 0.6893 0.6989

SVM 0.7441 0.7339 0.7759 0.6652 0.6929 0.697 0.6694 0.6984 0.7233

RF 0.7261 0.7261 0.7676 0.65 0.65 0.7123 0.6556 0.6556 0.7109

SGD 0.5532 0.6846 0.7897 0.5311 0.5975 0.6915 0.6334 0.6639 0.7192

LR 0.7842 0.7773 0.7869 0.6929 0.6929 0.6984 0.7095 0.7081 0.715

SVM 0.7233 0.7634 0.7731 0.6307 0.6957 0.7136 0.6237 0.7178 0.7385

RF 0.7219 0.7219 0.7593 0.6666 0.6666 0.7136 0.668 0.668 0.7247

SGD 0.6915 0.6777 0.7717 0.6071 0.6071 0.715 0.6002 0.6559 0.7289

LR 0.7745 0.7662 0.7745 0.7067 0.7109 0.7136 0.7206 0.7192 0.7316

SVM 0.564 0.6784 0.6839 0.5217 0.6512 0.6621 0.5299 0.6798 0.6852

RF 0.643 0.643 0.6866 0.5912 0.5912 0.6512 0.6212 0.6212 0.6716

SGD 0.5027 0.5855 0.6757 0.5068 0.5871 0.6607 0.4986 0.5994 0.6662

LR 0.6825 0.6716 0.6852 0.6662 0.6457 0.6716 0.673 0.6634 0.6811

SVM 0.643 0.6757 0.6811 0.6185 0.6294 0.6416 0.6008 0.6253 0.6471

RF 0.6267 0.6267 0.6893 0.6076 0.6076 0.628 0.5953 0.5953 0.6348

SGD 0.5313 0.6335 0.6771 0.5027 0.5871 0.6376 0.5231 0.5912 0.6362

LR 0.6716 0.6689 0.6784 0.6294 0.6294 0.6416 0.6294 0.6376 0.6485

Algorithms
Homes Time 

Inr Consumption Per Total Consumption Per Month Consumption Per Season

HOME C ON 

PEAK

HOME C OFF 

PEAK

HOME F ON 

PEAK

HOME F OFF 

PEAK

HOME B ON 

PEAK

HOME B OFF 

PEAK

TABLE II: FINAL RESULTS FOR EACH STAGE OF ALL THE ALGORITHMS FOR BOTH TIME INTERVALS 



TABLE III. ON-PEAK / GENERAL MEAN VALUE 

Grid 
On-peak / General mean value 

SVM Random Fst SGD Logistic Regr 

Stage 1 0.6846 0.6680 0.5892 0.7026 

Stage 2 0.7358 0.6680 0.6154 0.7150 

Stage 3 0.7358 0.7178 0.7247 0.7192 

 
TABLE IV. OFF-PEAK / GENERAL MEAN VALUE 

Grid 
Off-peak / General mean value 

SVM Random Fst SGD Logistic Regr 

Stage 1 0.6376 0.6860 0.5767 0.7302 

Stage 2 0.7219 0.6860 0.6528 0.7275 

Stage 3 0.7275 0.7495 0.7247 0.7302 

VI. DISCUSSION 

Electrical load forecasting is a complex problem, which 

needs detailed design and a deep understanding of the 

domain. The purpose of this work was not to build a state-

of-the-art model, but to analyse and review different 

algorithms having applied appropriate pre-processing and 

selected suitable parameters. The bibliography generally 

suggests several factors that could positively affect the 

electrical load predictability; however, due to the limited 

available data, the effect of weather conditions on the 

electrical load forecasting was examined. 

The overall aim of this study was to examine this general 

problem within the concept of smart city. Unlike many 

studies, which attempt to predict electricity consumption of 

the grid or large blocks of apartments, this work focuses on 

single households. In contrast with commercial buildings, 

where electricity consumptions follow a pattern (for 

example 08:00 to 17:00 with a decline around 13:00 during 

the lunch break), occupant behaviour has a major effect on 

single households. Thus, in single household scale, a 

thoroughly prediction model is hard to be established.  

The model accuracy for two out of the three houses was 

over 75%. Higher accuracy was not expected in this 

analysis, as major factors (such as occupancy or activity 

inputs) were not available, thus not incorporated into the 

model. In general, it would be easier to extract safer 

conclusions if the initial data met the criteria. Furthermore, 

the decomposition of this time-series problem into 

explanatory input variables gives more space for creativity 

and understanding of the problem itself. 

For smart cities administrators and electricity providers, 

such an approach, would face the problem of cold start. For 

a consumer to receive information and forecasts about their 

home, it is necessary to record and process data for a long 

time. However, this approach, which decomposes the time 

factor and assumes that same weather conditions induce 

same consumer behaviour, irrespective of the day or season, 

can be implemented much faster. 

VII. CONCLUSION 

This research was conducted mostly with a citizen-

centric approach; regarding the algorithms used, the basic 

conclusion is that the complexity of the model was not as 

high as to allow one of them to stand out. All the results are 

very close and sometimes identical. The number of involved 

houses may be very small, but some safe conclusions can be 

extracted. The most important results of this work are 

summarized below: 

• The accuracy of the model increases when the 

consumption follows similar paths throughout the 

months. For Home F, although it has, a smooth and 

similar average consuming daily behaviour; it is not the 

same for average monthly consumption. 

• Home C is twice as big as Home B, and this may 

indicate that the bigger a home is, the more difficult it is 

to predict its consumer behaviour. Occupancy in such 

larger houses can also deviate much more in comparison 

to typical-size homes, thus monitoring of occupancy 

could bring higher value. Unfortunately, there is no 

information for Home F. 

• Transforming the consumption from a real number into a 

binary class achieves better results when the point of 

division is just the mean of all instances. Next in 

performance is when the division is based on a seasonal 

mean and finally on a monthly mean value; the first two 

seems to be the more reasonable. 

• Unexpectedly, Home F and Home C have no 

differentiation between the predictions around On and 

Off-peak periods. In Home B there is a significant 

decrease on Off-peak period, possibly due to the fact that 

for Home B none of the periods is actually of low 

consumption. 

The most important part of the analysis is the proper feature 

selection, as the selection of algorithms or the evaluation 

technique (i.e. Cross-validation, Manual split) does not 

affect the result that much. 

A. Threats to validity 

Every research ‘suffers’ from threats that might question the 

validity of the approach and its results. In this case, a main 

threat is that of sufficiently deseasonalising data. The factor 

of time could possibly be analysed to more explanatory 

variables. Another significant factor is access to accurate 

weather data. Since the model examines if weather data can 

accommodate forecasting, these data should be accurate. 

However, obviously for forecasting on day-ahead period the 

weather data themselves are also acquired via prediction.  

Since the problem is not treated as a time-series one, it is 

not clear which method against over-fitting is more 

appropriate. Research has shown that decision tree 

classifiers improve generalisation accuracy via pre-pruning 

[27], [28]. In general, in time-series problems there is a 

different way to use cross-validation than the classic. In 

addition, the size of the homes is much bigger than a typical 

house or a regular apartment. Since the electricity 

consumption is also affected by the size, may the results be 

different in smaller residences. Finally, the last threat is the 

selected metric to compare the models against. Accuracy is 

not always the more appropriate metric, especially when the 

classes are imbalanced. Generally, the recall for Low class 

was much higher while for High class it was much lower. 

B. Future research directions 

An important extension of this work is the evaluation of the 

constructed model on different houses. The UMass Trace 

repository is expected to release new data for different 

homes in 2019, thus it could bring extra knowledge about 



the model by applying the same techniques for those. 

Regarding feature selection, it was desired to introduce the 

concept of the week of the month, which is increasingly used 

by similar efforts. More specifically, it is claimed that 

people tend reasonably or not to consume higher amounts of 

electricity a specific week of the month. Such a distinction 

between days could bring probably better results.  

In addition, another feature could also regard the 

summation of consumption if the provider follows an 

escalated pricing policy. It is common in such cases, that the 

consumers reduce their consumption when they pass a 

threshold, thus reaching a new level of pricing during a 

month. Occupancy or activity monitoring could also be 

recorded and examined as an input in the electricity 

forecasting models. This could have a significant impact on 

model’s accuracy given the scale of the application. 

Regarding the classification algorithms under examination, 

it is desired to also test neural networks, which need a wide 

hyper-parameter tuning, and it was decided to be excluded 

from this work, as well as other classifiers including logistic 

regression [19]. The perspective of merging the data of each 

house in order to simulate a tiny grid could also gather more 

interest, but as such, it could also eliminate the factor of 

personalisation, which was the biggest challenge of this 

work. 
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