
1

Christos Tjortjis

Data Mining Code Clustering (DMCC): An

Approach Supporting Software Maintainers with

Program Comprehension

School of Science & Technology, International Hellenic University

14th km Thessaloniki – Moudania, 57001 Thermi, Greece

Tel: +30 2310807576

Fax: +30-2310474590

Email: c.tjortjis@ihu.edu.gr

ORCID 0000-0001-8263-9024

mailto:c.tjortjis@ihu.edu.gr

2

Abstract

Software maintainers face challenges when making decisions to modify programs with little

understanding of the overall source code organisation and the full impact of changes. Most software

systems are structured as a number of subsystems, consisting of code that collaborates to provide

the composed functionality to the program. An important aspect of program understanding is to

perceive this subsystem structure. Cluster Analysis can be of use in deriving a meaningful subsystem

structure of a program from its source code. The idea is to represent a program as a number of

entities, which are grouped in clusters representing subsystems, based on their similarity measured

by means of related functionality or data use.

Central issues for any clustering-based approach are the specification of program entities and their

attributes, similarity metrics, and clustering strategy. We propose here Data Mining Code Clustering

(DMCC), an approach for supporting software maintenance and program comprehension that uses

input data extracted from a C/C++ program and produces its abstraction as a number of subsystems.

New possibilities in the form of weighting rationales and a framework for similarity metrics based

on these, as well as an analysis of these from a novel point of view is a main contribution. The

approach was evaluated by implementing a tool that was used for experimentation with programs of

various sizes and languages, in collaboration with experts. Results showed that the approach is useful

for deriving accurate subsystem abstractions and identifying interrelationships amongst modules.

Factors influencing the feasibility of this approach are identified and directions for improvements

are discussed.

Keywords: Software Management; Program Comprehension and Cognition; Code Mining;

Clustering.

Abbreviations: Data Mining Code Clustering (DMCC), Identification of Subsystems based on

Associations (ISA), Module Dependency Graph (MDG), Modularization Quality

(MQ), User-defined type Global Variables (UGV), Predefined type Global

Variables (PGV), Local Variables (LV), Performance Index (PI)

1. INTRODUCTION

Software systems evolve during their lifecycle, in order to conform to increasing user needs and the

ever-changing legal, technological, and business environment. Attaining and retaining high levels

of software quality requires continuous maintenance, comprising updates, enhancements and

upgrades. Program comprehension and cognition is crucial during maintenance, especially in cases

where documentation is poor or outdated and program structure is complex. Data mining techniques

can assist program comprehension and decision making related to maintenance by producing

structural views of legacy systems when source code is the only reliable information source.

3

This paper presents and evaluates Data Mining Code Clustering (DMCC), an approach for clustering

source code to support program comprehension and facilitate software maintenance. It comprises an

input data model, a set of similarity metrics and a clustering algorithm. It builds upon work on

deriving high-level subsystem abstractions of a program at a coarse level, where subsystems are

formed by collections of files. Work presented here achieves that by deriving medium/low level

subsystem abstractions of a program at a finer level, where subsystems are formed by collections of

functions. DMCC resulted in high precision and recall, successfully separating subsystems when

mixed up and producing overviews which capture rather precisely the original developers’ mental

model of the program. However, it is limited with respect to the amount of time needed to produce

the data inputs.

The remainder of this section discusses software maintainers’ problems and program comprehension

issues. Section 2 presents background on data mining and clustering methods used for program

comprehension. Sections 3 and 4 describe the objectives and requirements of the proposed approach,

including the data model, similarity metrics and clustering strategy. Section 5 presents and evaluates

experimental results. Section 7 concludes the paper with directions for further work.

1.1 Software Maintainers problems

The maintenance stage of software lifecycle typically consumes 50-70% of the total effort allocated

to a software system [1], [2]. During maintenance, modifications are made to the source code in

order to adapt a software system’s functionality and comply with evolving user needs. The increased

time, effort and resource levels allocated to software maintenance are attributed to the following [2],

[3]:

1. The program being maintained may be poorly structured with little regard to understandability.

2. The original documentation explaining the structure of the software may not be available or it

may be outdated.

3. Due to the high staff turnover rate in the software industry, the original developers of the

software may not be available to perform the modification. This often results in modifications

being performed by staff with little knowledge of the structure and organisation of the source

code.

4. Modifications made to the source code may produce new faults that may trigger more

maintenance requests from the customer/ end user.

Problems arise because maintenance is usually performed by staff with little understanding of the

overall organisation of the program, employing the fix-it-quick approach [2]. Hence, modifications

are made inconsistently with the original structure of the program. This occurs because the program

is too complex to comprehend, and the effect of modifications is not fully understood by maintainers.

1.2 The importance of program comprehension

Program comprehension is of considerable importance for software maintenance, especially when

there is incomplete documentation and the source code is the only information resource available to

maintainers. 50%-90% of the maintainers’ time was reported to be spent on program comprehension,

particularly when legacy programming languages are used [4]. Several detailed theories about the

4

subject have been created. For example, Brooks [5], Soloway & Ehrlich [6], and Letovsky [7]

examine in detail the mental processes behind program comprehension.

A theory which is relatively elementary and widely applicable to software maintenance is that of

Littman et al. [8], who suggest that, in order to successfully modify a program, a maintainer must

accomplish two types of knowledge: static knowledge and causal knowledge. The former is

concerned with the subsystem structure formed by program components. The latter is concerned

with interactions and data flows between program components. This view of grouping program

components into subsystems that provide a common service to the overall program is widely

accepted as a key stage in program understanding.

Lakhotia [9] argued that such an abstraction of a software system is of immense significance in

software maintenance activities, because it helps maintainers to infer interactions between

subsystems. Lakhotia believes this knowledge helps the maintainer to understand the full impact of

modifications to the source code.

Kunz and Black [10] argued that grouping program components into subsystems reduces the

perceived complexity. They believe such a view helps maintainers predict the full impact of making

modifications to the source code. Tzerpos and Holt [11] conjecture that deriving a decomposition of

software systems into a set of meaningful subsystems alleviates much of the effort required to

understand a software system. Anquetil and Lethbridge [12] believe that a technique to help

maintainers understand a software system would be to gather program components into modules

that have a common significance.

2. BACKGROUND

Software systems typically consist of a collection of programs. In the vast majority of these

programs, the source code is organised into some degree of modularity and is composed of a

hierarchy of subsystems, each of which provides some service to the overall program or performs a

particular subtask [13]. Subsystems may collaborate to provide a higher-level functionality to the

program. A subsystem is a collection of program modules at various levels. Although hidden from

the user, all software systems have a hierarchical structure containing subsystems of different levels

of granularity, ranging from subsystems that perform primitive subtasks to subsystems that provide

a higher level functionality, typically consisting of smaller subsystems. The number of such

subsystems and the complexity of the subsystem hierarchy will generally increase with the size of

the software system.

Many previous approaches to deriving a subsystem view of a program have been at a coarser level,

where the program consisted of numerous files, and the subsystems are formed by collections of

files. Here, programs were not analysed beyond the level of complete files, therefore representing a

very high-level subsystem abstraction of a program. Examples include [11], [12], [14], [15], [16],

and [17].

De Oca and Carver [15] argued that data mining can be used to identify subsystems within a software

system. They developed the ISA (Identification of Subsystems based on Associations) methodology

the objective of which is to decompose a software system into data-cohesive subsystems. A data-

cohesive subsystem consists of programs that use the same persistent data files. Therefore, they used

5

complete programs as entities comprising the subsystems. They describe a general 3-step

methodology for applying Data Mining to such design recovery: Create a database view of the

system; perform Data Mining; interpret the results. The ISA methodology was applied to several

COBOL systems. It was found that there are programs that cannot be assigned to a subsystem;

however, the number of such programs was small compared to the total number of programs. It was

also found that some files are used across subsystems. Such files were interpreted as forming

interfaces between subsystems.

Mancoridis et al. [16] studied the Module Dependency Graph (MDG) approach for dividing a

software system into meaningful subsystems, using files or programs as entities to produce a

graphical representation of a system as a set of nodes connected by edges. They used the concepts

of coupling and cohesion to specify three parameters: Intraconnectivity, Interconnectivity and

Modularization Quality (MQ). The objective of this work was to use clustering algorithms to create

a subsystem view of the software by partitioning the MDG with the aim to achieve the highest MQ.

The methodology was successfully applied to several systems of varying sizes. The methodology

was expanded in a later study to introduce a facility to detect and isolate omnipresent nodes, i.e. files

that do not tend to belong to any particular subsystem, and to allow expert knowledge to influence

the clustering [18].

The MDG approach is different from the clustering approach because the similarity between entities

is not measured using explicit attributes. In addition, similarity between entities is not calculated by

comparison of attributes. Rather, the concepts of coupling and cohesion are used to determine

entities to cluster together. The MDG is divided into clusters in such a way that entities in the same

cluster have many dependencies (high cohesion) and those in distinct clusters have minimal

dependencies (low coupling). The best clustering is one that gives highest cohesion and lowest

coupling.

The methodology aids a coarse level of software understanding, at the level of complete component

programs. It would have to be radically modified to abstract programs into subsystems. It has also

limited accuracy, because in the MDG, an edge represents some dependency between two entities

without considering the number or the significance of dependencies.

Anquetil and Lethbridge [12] proposed hierarchical clustering as a software remodularization

method for gathering program components into modules that have a common significance. They

identified files, routines or processes as possible entities. However, the large scale of their subject

system led them to use complete programs and files as entities. To describe these entities, they

distinguished between two types of features to be derived from the source code: formal features and

descriptive features. They identified a problem of redundancy when describing files using these

attributes. Later on, they proposed two approaches to similarity metrics for clustering software

systems using programs and files as entities: the direct link approach and the sibling link approach

[12]. These approaches were based on the MDG of the software system. They evaluated the quality

of clustering using the coupling and cohesion criterion and the precision and recall criterion.

Tzerpos and Holt [11] also used files as entities to partition large software systems into a series of

subsystems in an effort to get better insight into such systems. Another approach evaluating dynamic

clustering was presented by Xiao and Tzerpos [19]. Its scope was to evaluate the usefulness of

6

dynamic dependencies as input to clustering algorithms. The method consists of three phases. The

first is the analysis of dynamic dependencies by adding instrumentations when compiling the source

code. The second is the analysis of static dependencies. The last step is filtering in order to help

weigh the dynamic dependencies graphs. The work concluded that there is merit in clustering

dynamic dependencies of a software system.

Sartipi et al. [20] used data mining for architectural design recovery. They proposed a model for the

evaluation of the architectural design of a system based on associations among system components

and used system modularity measurement as an indication of design quality and its decomposition

into subsystems. Three association views of a system were generated: a) control passing which

represents system components correlation based on function invocation, b) data exchange which

represents system components correlation based on aggregate data types and c) data sharing which

represents system components correlation based on functions sharing global variables. This

approach models software systems as attributed relational graphs with system entities as nodes and

data-control-dependencies as edges. Application of association rules mining decomposes such

graphs into domains of entities based on the association property.

Clustering has also been used to support software maintenance and systems knowledge discovery.

A method for grouping Java code elements together according to their similarity was proposed in

[21]. It focuses on achieving a high-level system understanding. The method derives system

structure and interrelationships, as well as similarities among systems components, by applying

cluster analysis on data extracted from source code. Hierarchical agglomerative clustering was

employed to reveal similarities between classes and other code elements, thus facilitating software

maintenance and Java program comprehension. A similar approach, using K-means clustering was

successfully applied to code extracted from C++ programs [22], while association rules were used

to capture COBOL program structure thus achieving better system understanding [23]. K-means

clustering combined with an improved version of MMS Apriori association rules mining was

proposed for producing system overviews and deductions, and identifying hidden relationships

between classes, methods and member data in C# code [24]. Also, clustering classes, followed by

classification of extracted clusters were recently proposed, in order to assess internal software

quality, using Java classes as entities and static metrics as attributes [25].

Other more recent approaches use a variety of data mining methods. For instance association rule

mining was applied to the problem of understanding a software system given only the source code

[26]. Classification was used as a means for static code analysis of C for the timely identification of

software bugs as well as for locating software defects [27], [28]. Software clustering approaches

cluster large software systems based on the static or even dynamic dependencies between software

artifacts [14].

It follows that the understanding of programs by producing a finer subsystem abstraction is a

maturing research area. This study focuses on the problem of understanding a program at this finer

granularity.

7

2.1 Clustering

There are various clustering techniques and algorithms. This subsection briefly describes the most

prominent ones, including partitional, density based and hierarchical algorithms.

Partitional/Optimisation algorithms start with an initial partitioning of the data and then modify this

partitioning in an attempt to reach an optimum clustering based on some criterion [29], [30]. The

final clustering obtained is largely dependent on the initial partitioning. The drawback of these types

of algorithms is that the many possible initial partitions combined with subsequent partitioning can

lead to very many possibilities. In addition, the end result is a single cluster distribution. To modify

the distribution, it is required to re-run the procedure with a different initial partition.

Density search clustering algorithms assign entities to clusters in a single step [29], [30]. These

differ from optimisation algorithms in that once an entity is placed in a cluster, it is not relocated.

The user may specify the number of clusters to be formed or this may be left to depend on the

clustering process. The advantage of these methods is that they can be easily visualised and

validated. A drawback occurs when more than three attributes are of importance, in which case more

advanced tools must be used, such as OLAP [31]. These are particularly suitable when the objects

to be clustered have numerical, continuous attributes but are not be meaningful for those with

qualitative or binary attributes. Representation of such entities in such a graphical manner will have

poor information content.

Some clustering algorithms require to measure the distance among clusters rather than items, and

merge the clusters with the least such distance. This can be done using the single linkage, the

complete linkage and the average linkage. Single linkage (or nearest neighbour) calculates the

minimum distance between any two items which belong to different clusters. Complete linkage (or

furthest neighbour) uses the maximum distance between any two items which belong to different

clusters. Average linkage uses the average distance between an item from one cluster and all items

from another1. For example, if A, B and C are clusters, after B and C are joined, one wishes to

determine the similarity between A and BC, that is Sim(A,BC). Assuming the similarity between

A and both of B and C is known, the single linkage rule would set the new similarity as the minimum

of Sim(A,B) and Sim(A,C). The complete linkage rule would set the new similarity as the maximum

of these. The weighted linkage rule would calculate the new similarity as a weighted average of

these, depending on the number of objects in clusters B and C, or some other criteria such as the size

or importance of objects in each cluster [29]. The unweighted (or average) linkage rule would

calculate the new similarity as the average of these similarities. Single linkage is known to favour

non compact but more isolated clusters whereas, complete linkage usually results in more compact

but less isolated clusters; average linkage stands “in between”.

Given a large set of multidimensional data points, clustering identifies the sparse and the crowded

places, and hence discovers the overall distribution patterns of the data set. Descriptions are then

derived for the constructed clusters. There are three main types of clustering algorithms:

hierarchical, partitional and density search clustering algorithms.

1 This is the unweighted version of average linkage. The weighted version uses each cluster’s size as a weigh

attribute when calculating the distance.

8

Hierarchical algorithms partition data into clusters through a series of partitions, as opposed to a

single step [29], [30]. The partitions range from a single cluster containing all the objects to n clusters

each containing a single object. This class of algorithms is divided into two subclasses:

Agglomerative and Divisive algorithms. The former start with n clusters, each containing a single

object, and join the most similar clusters, until some pre-specified point is reached. The latter start

with one large cluster containing all the objects and split this into smaller clusters until some pre-

specified point is reached. In cases, joining and splitting of clusters is based on some similarity

metric. An advantage of this type of algorithm is that a hierarchy of clusters is formed, and the most

suitable level of clustering may be selected from this, one which most closely resembles an ‘expert’

partition.

3. OBJECTIVES

This work was concerned with applying cluster analysis to derive a meaningful subsystem structure

of a program from its source code. A challenge of this work was to adapt clustering techniques to

the peculiarities present in the application domain of a source code.

The main objectives of this work are as follows.

1. Specification of the input-data model to be provided to the clustering algorithm. This concerns

the specification of program entities and their attributes. It is these entities that are to be grouped

into subsystems. Program components to be used as entities are constructs within the source

code. In addition, program entities must have several attributes that provide a basis for

measuring similarity between entities. An aspect of this application domain is that attributes are

not numerical and continuous. Rather, attributes are qualitative and binary.

2. Specification of similarity metrics with which to determine the similarity between program

entities. Existing similarity metrics must be examined for use with binary, qualitative attributes

and a suitable one selected, and tailored for the peculiarities of this domain.

3. Specification of the clustering algorithm to be used to meaningfully group program entities into

subsystems (clusters) based on similarity. The quality of output from the clustering strategy

depends largely on the soundness of the input, which is determined from the previous steps.

4. Implementation of a tool, which takes as input data extracted from a program’s source code and

produces an abstraction of the program as a number of subsystems. Results are then to be

evaluated by comparison with experts’ mental model of the program. The feasibility of this

approach to obtaining a subsystem abstraction of a program is also to be evaluated. If such a

tool is to be used on a wider scale, it should provide a meaningful subsystem abstraction of a

program in less time and with less effort than it would take to obtain a similar abstraction by

mere inspection.

An important point to note is that this work is concerned with devising an approach and developing

a tool for semi-automatic support to program understanding. This means that it is assumed that the

user has no expert knowledge of the program to be analysed. Therefore, the input data model

provided to the tool must be based on textual features of the program, thus requiring no expert

knowledge to acquire.

9

4. RESEARCH REQUIREMENTS AND APPROACH

In order to design a source code clustering approach certain major issues need to be dealt with,

including the selection of programming language and corresponding input data model, selection and

customisation of similarity metrics and the formulation of a clustering strategy. These are detailed

in the following subsections.

4.1 Selecting a programming language

Clustering source code is programming language dependent task. Any approach that may be

applicable to a certain language needs to be modified in order to be applied to another language.

Several programming languages have been studied in the past, with regards to clustering. Examples

include procedural languages like COBOL [23], as well as object oriented ones such as C++ [22],

C# [24] and Java [21], [25].

This work focuses on C, a widespread language, more complex in grammar and structure than

COBOL, yet less sophisticated compared to object-oriented languages equipped with many

advanced features such as inheritance, polymorphism etc. In fact, this work includes experiments

with C and C++ programs in an attempt to explore the applicability of the proposed approach to a

more modern and advanced language such as C++.

4.2 Input data model

One of the challenges of this work was the definition of an input data model, which could be derived

from C program code and fed to a clustering algorithm. Clustering is a statistical data analysis

technique usually applied to conventional databases for data mining. As a result, useful and

meaningful entities consisting of the relevant attributes needed to be defined. Preliminary analysis

has drawn the following requirements for program entities and attributes that could lead to

satisfactory performance of the approach.

1. Entities should be homogeneous, thus allowing for description by a common set of attributes.

This is needed for entity comparison based on their attributes: the basis of cluster analysis which

conforms to the premise that objects of different ‘species’ should not be compared.

2. Entities must have a enough attributes to provide an informative description and means for

comparison. A very small number of attributes could lead to crude entity description, thus

providing very little information content and possibly leading to unreliable conclusions.

3. Entities, attributes and attribute values must be clearly defined, for any given C/C++ program.

Furthermore, the definition of an entity should be universally applicable to C/C++ programs for

the approach to have broad utility.

4. Entity selection should allow for a large proportion of a program’s code to be associated with

an entity, when such a program is abstracted as a collection of entities. This ensures that the

proposed analysis covers a large proportion of a program.

10

4.2.1 Deriving entities

Several candidates were examined to be selected for program entities, namely individual statements,

functions, classes and sequence, selection or repetition constructs.

The problem with individual statements is that they present a minimal set of descriptive features.

They are so diverse, that trying to derive a set of attributes which are applicable to any possible

statement would result in a great number of null values. Furthermore, many statements occurring in

a program do not have a meaning in isolation. For example, the statements representing the “if …

else” construct only make sense when viewed collectively. In a similar manner, sequence, selection

and repetition constructs provide one with a limited set of descriptive features and impose the

difficulty of tracing the beginning and the end of a sequence.

Functions were considered to be the best option. They tend to encapsulate a single functionality,

performing a cohesive specialised task. They are clearly defined textually. And they may provide

one with a reasonably sized set of attributes. A limitation here is the possibility of neglecting parts

of code, which do not belong to any function.

4.2.2 Deriving attributes

The next step was to derive a range of attributes with which to describe program entities. The

attributes had to be such that they can be evaluated for each entity through the textual features of the

program, thus requiring neither expert knowledge nor sophisticated parsers. Five different types of

attributes were specified with which to describe program entities, and a specification given as to

how the complete set of attributes can be derived from a program. These are:

a) Use of global and static variables

b) Use of local variables

c) Local variable types

d) Formal parameters types

e) Returned values types

The rationale behind these attribute selections is given in the following:

The first attribute was based on the use of global and static variables. They were both selected to

form a single attribute although they could be broken further down, for example depending on

whether the use involves value modification or not. Increasing the level of detail would lead to a

more specific description of entities but could lead to a less effective cluster analysis. This is

because, as the attributes become more specific, the likelihood of two entities scoring on a common

attribute decreases, thus reducing the quality of information fed into the clustering step.

For a given program, the set Sg of all attributes based on the use of global variables is given by (1):

𝑆𝑔 = {∀𝑔 ∈ 𝐺|𝑈𝑠𝑒𝑠 𝑔𝑙𝑜𝑏𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑔}. (1)

G is the set of all global and static variables in the program.

The utility of using a global variable as an attribute for clustering depends on its nature, which is

largely influenced by its type. More effective global variables are likely to belong to a user-defined

type. This is because most user-defined types are specified to model a particular aspect of the

11

problem domain; functions that use these are likely to be associated with this aspect of the problem

domain, indicating membership of a common subsystem. Thus, the differentiation on whether the

type of attributes is user defined or predefined was considered to be necessary and will be also used

for other types of attributes, where applicable.

Another attribute was based on the use of local variables. By definition, a function’s local variables

cannot be meaningfully used within the body of another function. Attributes based on the usage of

static variables then have similar advantages and drawbacks to attributes based on global variables.

An automatic local variable can only be used by another function if this other function is called by

the former function with the local variable as an actual parameter.

For a given program, the set Sl of all attributes based on the use of local variables is given by (2):

𝑆𝑙 = {∀𝑙 ∈ 𝐿|𝑈𝑠𝑒𝑠 𝑙𝑜𝑐𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑙}. (2)

L is the set of all local variables declared in a program.

An advantage of this type of attribute is that it introduces a dynamic element into the cluster analysis.

This is because it is based on interactions between functions, through their local variables. In

addition, when analysing larger programs, such an attribute can be easily detected by automatically

locating the occurrences of each function identifier outside of its own header(s). If an occurrence is

found, then the function containing the reference scores positively on the attributes based on the

usage of each actual variable.

The local variables used by a function will be either its own local variable or that of another function.

A function typically will use its own local variables, meaning that its attributes will match those of

other functions that use its local variables. Although this may seem unnatural, it is necessary to aid

detection of a relationship between two functions through these attributes. This way the parent

function of the local variable and the function that uses the local variable will score positively on

the attribute based on the usage of the local variable, thus correctly rendering a similarity between

them.

An attribute that is directly derived from the description of a function is that which is based on the

type of its local variables. It is hypothesised that the overall purpose of a function, hence its parent

subsystem, can be predicted by examining the nature of the data items on which it operates. The

nature of the data items can be determined by their type. It follows that functions having in common

the types of several variables are likely to have a similar purpose, hence may belong to the same

subsystem.

For a given program, the set of binary attributes St based on the types of local variables is given by

(3):

𝑆𝑡 = {∀𝑡 ∈ 𝑇|𝐻𝑎𝑠 𝑙𝑜𝑐𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑡}. (3)

T is the set of all data types (user-defined and pre-defined) used in a program.

The use of attributes based on the types of formal parameters has the same justification as above.

The type of the data operated upon is likely to be an indication of the function’s parent subsystem.

However, this type of attribute cannot be useful for functions without any formal parameters.

12

In a similar manner, for a given program, the set of all attributes based on the types of formal

parameters F, is given by (4):

𝐹 = {∀𝑡 ∈ 𝑇|𝐻𝑎𝑠 𝑓𝑜𝑟𝑚𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑡}. (4)

The use of function attributes based on the types of returned values has also the same justification

as above. The type of the data operated upon is likely to be an indication of the parent subsystem of

a function. However, this type of attribute will not be useful for void functions.

In a similar manner, for a given program, the set of all attributes based on the types of returned

values R, is given by (5):

𝑅 = {∀𝑡 ∈ 𝑇|𝑅𝑒𝑡𝑢𝑟𝑛𝑠 𝑎 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑡} . (5)

Additional information required for capturing interrelationships amongst attributes in the input

model is covered by three general principles: the Significance Principle, Usage Principle and

Relationship Principle. These principles are concerned with using the specified attributes to allow a

more detailed description of the relationship between program entities, which will be exploited by

the similarity metrics. It should be noted that all five classes of attributes identified are essentially

based on the usage and structure of variables (variables and constants, global, local, formal, and

returned) present in a program. It follows that these principles can be applied globally to all five

classes of attributes.

The Significance Principle concerns the relative importance amongst attributes and depends on the

type of the variable on which an attribute is based. Presumably a scale of importance governs the

significance of attributes. However, the exact difference in significance between different types of

attributes is not known; and should logically depend on the individual characteristics of the program

(and may even be subjective), thus requiring expert knowledge to deduce. However, a basic way of

constructing such a scale for user-defined types would be to place greater importance on more

specialised or complex types. The explanation is that user-defined types are specified to model a

more specialised aspect of the application domain, thus the use of such a variable is more indicative

of a function’s purpose. Such a scale could be implemented in an automated approach, as the

complexity would be based on a count of the total number of data members belonging to a user-

defined type. However, it is not possible to automatically deduce the relative importance between

user-defined types having the same number of data members, as this would require expert

knowledge.

The Usage Principle also concerns the relative importance amongst attributes but is based on the

frequency-of-use of the variables on which the attributes are based. Some of the variables on which

the attributes are based will be used more times in a program than others.

In the context of the Relationship Principle, the relationship between attributes is affected by their

types. The types of local variables, global variables, returned values and formal parameters, may be

either predefined or user-defined. Possible predefined types include int, double, char and boolean.

The user may also apply the typedef operation to an elementary type, thus creating a new type

identifier. From these elementary types it is possible to construct the more complex types: pointer

types (such as int*) and reference types (such as double&). In turn, from these types the user may

create more complex types: array and enumeration. Finally, the user may create even more complex

13

types by defining data structures consisting of two or more data members. These data members may

belong to any of the above types, or they may themselves be data structures.

An important point to note is that a type may be more closely related to some types than others. For

example, the type int is more similar to float than char, or the type double is more closely related to

the float than int. Such relationships may also occur between user-defined types. When considering

an automatic approach to program clustering, without the need for a user’s expert knowledge, the

relationships between user-defined types will fall into two main categories: automatically detectable

and non-automatically detectable.

Automatically detectable relationships can be detected through an automatic approach which does

not require expert knowledge. This concerns the type enum and the type struct. Variables belonging

to an enum type may be logically deduced to be related through the textual properties of a program,

thus easily incorporated into this approach. Variables belonging to types used to define data

members of a struct type may also be said to be related because they are members of the same parent

structure. Although there exists an intuitive relationship between the predefined types, it is clear that

if two functions use the same predefined type, it is does not indicate that these may belong to a

common subsystem, as the predefined types exist to represent the most basic objects of any

application domain. It follows that the Relationship Principle is not applicable to variables of

predefined types.

Non-automatically detectable relationships are those that cannot be detected through an automatic

approach without expert knowledge. Incorporating such reasoning is beyond the scope of this work.

4.3 Similarity metrics

A significant part of this investigation is the criteria for grouping program entities into clusters. The

precise metrics to be used depend on the specification of the input data model, and metrics may have

to be tailored to produce meaningful results for the application domain of source code. The main

requirements regarding metrics were informed by the discussion above regarding the basic principles

and are as follows:

1. The metric must be suitable for comparing binary or qualitative attributes, as this type of

attributes is largely predominant in the application domain of source code.

2. The metric must take into account the relative importance of attributes, as the presence of some

features may be more significant than the presence of others.

3. The metric must consider the distribution and rarity of features throughout the set of entities.

4. The metric must consider relationships between attributes themselves. When several entities

share no common attributes, it is such relationships that could determine which entity is more

similar to any of the rest.

5. The metric must normalise similarity measures taking into account the probability of a match

between attribute values of two entities. This is because the significance of a match on an

attribute depends on the characteristics of the complete set of attributes.

14

4.3.1 Choosing an appropriate metric

Different types of similarity measures were investigated including distance measures, correlation

coefficients, probabilistic coefficients and association coefficients.

Distance measures are best suited to entities described by two or three numerical, continuous

attributes. This measure has intuitive appeal because of the plots it uses to visually display the

distribution of entities in the measurement space. However, this method loses its visual appeal when

more than three attributes are considered, and the problem becomes multi-dimensional. The

distribution of entities can no longer be observed on a plot. OLAP tools were developed to solve

such problems [31].

Using distance measures on the binary attributes derived from source code would mean only two

gradations, 1 and 0, on each axis. Furthermore, entities may have null scores for some attributes.

The calculated distance between entities would then be a very crude measure of similarity, providing

very little information content. Therefore, the advantages of using distance measures would not be

exploited in this clustering application domain.

Correlation Coefficients [32] are mainly used to determine correlation, measured across a sample of

entities, between pairs of continuous, numerical variables. For clustering source code, it is

inappropriate to determine similarity between attributes, as opposed to entities, because clustering

relies on the latter rather than the former. Furthermore, the binary, qualitative attributes derived from

source code do not readily suit such similarity measures.

Association Coefficients [32] calculate similarity based on the number of features present and absent

in entities and are suited to binary attributes. Anderberg [29] uses a grid to summarise this, as

depicted in Table 1.

Table 1: Association Coefficients grid [29]

In Table 1, a represents the number of features present in both entities and d represents the number

of features absent in both entities. b is the number of features present in entity i but absent in entity

j. c is the number of features present in j but absent in i. There are a number of coefficients available

that measure similarity based on the values of a, b, c and d. Examples are the Matching Coefficient

and the Jaccard Coefficient. Many others exist but these are unnamed [33]. These coefficients vary

in the relative importance given to each of the four parameters. This means that weight may be added

to give preference, say, to presence of features over absence of features.

These coefficients may need to be modified with source code entities because the presence of some

features may be more significant than the presence of other features. A similar argument states that

0-0 matches are not an indication of similarity between entities. This is because entities may score

null on numerous features. If this was interpreted as a sign of similarity, it would lead to such entities

forming meaningless clusters.

Entity j

Entity i

Present Absent

Present a b

Absent c d

15

Finally Probabilistic Coefficients [32] are based on the idea that agreement on rare features

contributes more to the similarity between two entities than agreement on features that are frequently

present. Probabilistic coefficients take into account the distribution of the presence of features over

the set of entities. Probabilistic coefficients are developed to include feature distributions into

similarity calculations. Given that probability coefficients are complex and must be tailored to suit

a particular application, a similar function may be achieved by incorporating attribute-weight into

association coefficients, which would be much simpler, yet effective.

4.3.2 Customising the metrics

Four types of similarity measures were investigated. Association Coefficients was identified to be

the type of measure most suited to determine the similarity between program entities. These,

however, need to be modified to account for the three principles mentioned above and tailored for

the particularity of source code.

Accounting for similarity based on use of global variables, we suggest that one should differentiate

between variables of two types: predefined or user-defined. The similarity metric for the use of

global variable is specified separately for each type because the Significance Principle and the

Relationship Principle are applicable to user-defined, but not predefined types. The two ‘sub-

metrics’ are then combined to give an overall similarity metric.

Consider the basic data grid that leads to a simple association coefficient for two entities, i and j.

This is now presented in a modified form to account for two types of global variables.

Table 2: Association Coefficients grid for two variables

The subscript u indicates that the count is for attributes based on a global variable of user-defined

type, whereas the subscript p indicates that the count is for attributes based on a global variable of

predefined type.

Firstly, consider attributes based on User-defined type Global Variables (UGV).

A basic similarity coefficient for any such UGV attribute is given by (6):

𝑆𝑈𝐺𝑉
𝐵𝑎𝑠𝑖𝑐 =

𝑎𝑈

𝑎𝑈 + 𝑏𝑈 + 𝑐𝑈 + 𝑑𝑈

. (6)

This metric gives an elementary indication of the similarity between i and j. It is simply the ratio of

the attributes common to i and j to the total number of attributes (based on the use of global

variables).

A similarity metric based on the Usage Principle is given by (7):

𝑆𝑈𝐺𝑉
𝑈𝑠𝑎𝑔𝑒

= ∑
2

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 𝑢𝑠𝑒 𝑡ℎ𝑒 𝑈𝐺𝑉

𝑎𝑈

1

. (7)

Entity j

Entity i

Present Absent

Present au+ap bu+bp

Absent cu+cp du+dp

16

Thus, if a UGV is used predominantly by i and j, this contributes a large value to the coefficient. If

the UGV is also used by numerous other functions, then the contribution will be small. If a UGV is

used exclusively by i and j then this will produce a maximum contribution of 1 to the above metric.

In the special case where all of the UGVs covered by aU are used exclusively by i and j, the metric

will have a maximum value of aU.

A similarity metric based on the Significance Principle is given by (8):

𝑆𝑈𝐺𝑉
𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒

= ∑
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑖𝑡𝑒𝑚𝑠 𝑖𝑛 𝑈𝐺𝑉

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑖𝑡𝑒𝑚𝑠 𝑖𝑛 𝑎 𝑈𝐺𝑉

𝑎𝑈

1

. (8)

The contribution of an attribute to this metric will be higher if the attribute is based on a more

specialised UGV, that is, one with more data members, whereas an elementary UGV will produce

a smaller contribution to the coefficient.

A coefficient based on the Relationship Principle is given by (9):

𝑆𝑈𝐺𝑉
𝑅𝑒 𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑖𝑛 ′𝑏𝑈 + 𝑐𝑈′

𝑏𝑈 + 𝑐𝑈

. (9)

This metric analyses the attributes that are present in i but not in j, and vice versa. Such attributes

are covered by the bU and cU counts. With a basic association coefficient, these ‘mismatched’

attributes would not count toward similarity whatsoever. This coefficient will exploit the usage of

related global variables, as opposed to the usage of the same global variable, and thus contribute to

the similarity measure. The more variables in bU and cU that are related, the higher the contribution

will be.

Therefore, the overall similarity metric for attributes based on UGVs is calculated by combining the

above four metrics. SUGV
Basic and SUGV

Relationship do not need normalisation as their possible values lie

between 0 and 1. However, SUGV
Usage and SUGV

Significance need normalisation, as they have a maximum

value of aU. Therefore, these two metrics will be divided by the total number of UGVs (sum of aU,

bU, cU and dU) to constrain their values between 0 and 1.

The overall similarity metric for attributes based on UGVs is given by (10):

𝑆𝑈𝐺𝑉 =
𝑆𝑈𝐺𝑉

𝐵𝑎𝑠𝑖𝑐 +
𝑆𝑈𝐺𝑉

𝑈𝑠𝑎𝑔𝑒

𝑎𝑈 + 𝑏𝑈 + 𝑐𝑈 + 𝑑𝑈
+

𝑆𝑈𝐺𝑉
𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒

𝑎𝑈 + 𝑏𝑈 + 𝑐𝑈 + 𝑑𝑈
+ 𝑆𝑈𝐺𝑉

𝑅𝑒 𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝

4
. (10)

Note that the denominator of 4 applied in the above metric in order to constrain its value between

0 and 1.

Now consider the attributes based on Predefined type Global Variables (PGV); that is counts with

subscript p. These will only produce a coefficient based on the Usage Principle. There will be no

coefficient based on the Significance Principle and the Relationship Principle. In a similar manner

to before, the overall similarity metric for PGV attributes is given by (11):

𝑆𝑃𝐺𝑉 =
𝑆𝑃𝐺𝑉

𝐵𝑎𝑠𝑖𝑐 +
𝑆𝑃𝐺𝑉

𝑈𝑠𝑎𝑔𝑒

𝑎𝑃 + 𝑏𝑃 + 𝑐𝑃 + 𝑑𝑃

2
. (11)

where:

17

𝑆𝑃𝐺𝑉
𝐵𝑎𝑠𝑖𝑐 =

𝑎𝑃

𝑎𝑃 + 𝑏𝑃 + 𝑐𝑃 + 𝑑𝑃

. (12)

and:

𝑆𝑃𝐺𝑉
𝑈𝑠𝑎𝑔𝑒

= ∑
2

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 𝑢𝑠𝑒 𝑡ℎ𝑒 𝑃𝐺𝑉
. (13)

𝑎𝑃

1

The coefficients SUGV and SPGV are now combined to give the overall similarity metric based on this

class of attributes. Thus, the overall similarity metric for use of global variables, between entities i

and j is given by (14):

𝑆𝐺𝑙𝑜𝑏𝑎𝑙𝑈𝑠𝑎𝑔𝑒 =
𝑊𝑈 × (

𝑁𝑈

𝑁𝑇
× 𝑆𝑈𝐺𝑉) + 𝑊𝑃 × (

𝑁𝑃

𝑁𝑇
× 𝑆𝑃𝐺𝑉)

𝑊𝑈 + 𝑊𝑃

. (14)

NU, NP and NT represent the number of User-defined, Predefined and Total global variables in the

program, respectively. WU and WP represent optional weights that can be applied in order to vary the

relative importance of User-defined global variables of user-defined and Predefined type.

This similarity metric accounts for the ratio of user-defined over predefined type global variables in

a program. It does this by placing more weight on the majority class of global variable. The division

by NT is performed to normalise the value of each term to between 0 and 1. The optional weights

have been included in order to allow the relative importance of attributes based on attributes based

on Global Variables of user-defined and predefined type. Although the former attributes will always

be more significant than the latter, it was decided not to fix this relative importance, but rather allow

it to vary. This way, the performance of the approach can be evaluated using several different

weights. In addition, in the tool, it may be left to the user to specify the value of these weights.

In a similar manner overall similarity metrics between entities i and j, based on the rest of the

attributes, are given. The overall similarity metric for use of Local Variables (LV) between entities

i and j is given by (15):

𝑆𝐿𝑜𝑐𝑎𝑙𝑈𝑠𝑎𝑔𝑒 =
𝑆𝐿𝑉

𝐵𝑎𝑠𝑖𝑐 +
𝑆𝐿𝑉

𝑈𝑠𝑎𝑔𝑒

𝑎 + 𝑏 + 𝑐 + 𝑑
2

. (15)

where:

𝑆𝐿𝑉
𝐵𝑎𝑠𝑖𝑐 =

𝑎

𝑎 + 𝑏 + 𝑐 + 𝑑
. (16)

and:

𝑆𝐿𝑉
𝑈𝑠𝑎𝑔𝑒

= ∑
2

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 𝑢𝑠𝑒 𝑡ℎ𝑒 𝐿𝑉
. (17)

𝑎

1

It should be noted that user defined and predefined types are treated collectively, since the

significance and relationship principals do not need to be considered, as explained in section 4.2.2.

The overall similarity metric for local variable types is given by (18):

18

𝑆𝐿𝑜𝑐𝑎𝑙𝑇𝑦𝑝𝑒𝑠 =
𝑊𝑈 × (

𝑁𝑈

𝑁𝑇
× 𝑆𝑈𝐿𝑉) + 𝑊𝑃 × (

𝑁𝑈

𝑁𝑇
× 𝑆𝑃𝐿𝑉)

𝑊𝑈 + 𝑊𝑃

. (18)

where:

𝑆𝑈𝐿𝑉 =
𝑆𝑈𝐿𝑉

𝐵𝑎𝑠𝑖𝑐 +
𝑆𝑈𝐿𝑉

𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒

𝑎𝑈 + 𝑏𝑈 + 𝑐𝑈 + 𝑑𝑈
+ 𝑆𝑈𝐿𝑉

𝑅𝑒 𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝

3
. (19)

𝑆𝑈𝐿𝑉
𝐵𝑎𝑠𝑖𝑐 =

𝑎𝑈

𝑎𝑈 + 𝑏𝑈 + 𝑐𝑈 + 𝑑𝑈

. (20)

𝑆𝑈𝐿𝑉
𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒

= ∑
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑖𝑡𝑒𝑚𝑠 𝑖𝑛 𝐿𝑃

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑖𝑡𝑒𝑚𝑠 𝑖𝑛 𝑎 𝐿𝑃
.

𝑎𝑈

0

(21)

𝑆𝑈𝐿𝑉
𝑅𝑒 𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑖𝑛 ′𝑏𝑈 + 𝑐𝑈′

𝑏𝑈 + 𝑐𝑈

. (22)

and:

𝑆𝑃𝐿𝑉 = 𝑆𝑃𝐿𝑉
𝐵𝑎𝑠𝑖𝑐 =

𝑎𝑃

𝑎𝑃 + 𝑏𝑃 + 𝑐𝑃 + 𝑑𝑃

. (23)

The overall similarity metric for formal parameter types is given by (24):

𝑆𝐹𝑜𝑟𝑚𝑎𝑙𝑇𝑦𝑝𝑒𝑠 =
𝑊𝑈 × (

𝑁𝑈

𝑁𝑇
× 𝑆𝑈𝐹𝑃) + 𝑊𝑃 × (

𝑁𝑈

𝑁𝑇
× 𝑆𝑃𝐹𝑃)

𝑊𝑈 + 𝑊𝑃

. (24)

where:

𝑆𝑈𝐹𝑃 =
𝑆𝑈𝐹𝑃

𝐵𝑎𝑠𝑖𝑐+
𝑆𝑈𝐹𝑃

𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒

𝑎𝑈+𝑏𝑈+𝑐𝑈+𝑑𝑈
+𝑆𝑈𝐹𝑃

𝑹𝒆 𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝

3
. (25)

𝑆𝑈𝐹𝑃
𝐵𝑎𝑠𝑖𝑐 =

𝑎𝑈

𝑎𝑈 + 𝑏𝑈 + 𝑐𝑈 + 𝑑𝑈

. (26)

𝑆𝑈𝐹𝑃
𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒

= ∑
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑖𝑡𝑒𝑚𝑠 𝑖𝑛 𝐹𝑃

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑖𝑡𝑒𝑚𝑠 𝑖𝑛 𝑎 𝐹𝑃
.

𝑎𝑈

0

 (27)

𝑆𝑈𝐹𝑃
𝑅𝑒 𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑖𝑛 ′𝑏𝑈+𝑐𝑈′

𝑏𝑈+𝑐𝑈
. (28)

and:

𝑆𝑃𝐹𝑃 = 𝑆𝑃𝐹𝑃
𝐵𝑎𝑠𝑖𝑐 =

𝑎𝑃

𝑎𝑃 + 𝑏𝑃 + 𝑐𝑃 + 𝑑𝑃

. (29)

Finally, for returned values types SRetVal equals 0 if either of the functions under comparison does

not return a value.

If they both return values of the same type, then:

19

𝑆𝑅𝑒 𝑡𝑉𝑎𝑙 =
𝑆𝑅𝑉

𝐵𝑎𝑠𝑖𝑐 + 𝑆𝑈
𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒

2
. (30)

where:

𝑆𝑅𝑉
𝐵𝑎𝑠𝑖𝑐 = 1 (31)

and also, for user defined types:

𝑆𝑈𝑅𝑉
𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑖𝑡𝑒𝑚𝑠 𝑖𝑛 𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑡𝑦𝑝𝑒

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑖𝑡𝑒𝑚𝑠 𝑖𝑛 𝑎 𝑡𝑦𝑝𝑒
. (32)

while for predefined types:

 𝑆𝑈𝑅𝑉
𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒

= 0 (33)

otherwise if they return values of different types:

𝑆𝑅𝑉
𝐵𝑎𝑠𝑖𝑐 = 0. (34)

thus:

𝑆𝑅𝑒 𝑡𝑉𝑎𝑙 = 𝑆𝑈𝑅𝑉
𝑅𝑒 𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 𝑜𝑓 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑦𝑝𝑒𝑠 𝑖𝑛 ′𝑏+𝑐′

𝑏+𝑐
. (35)

Note that SRetVal can only have a value of either 0 or ½. Note also that since a function can only return

a single value or none at all, this implies that the significance of this similarity metric will be

relatively small compared to the metrics specified earlier. This will be taken into account when

specifying the total similarity metric

To summarise the above it can be said that the similarity metric based on each class of attributes is

specified separately, as each class has different characteristics to be considered. Furthermore, it was

defined such that for all but one class of attribute, attributes based on variables of user-defined and

predefined type are considered separately. The following four types of similarity metric were

specified, with which to determine the similarity between program entities:

1. The basic similarity metric

2. The similarity metric based on the Usage Principle

3. The similarity metric based on the Significance Principle

4. The similarity metric based on the Relationship Principle

These metrics were found not to be applicable to all classes of attributes, and the latter two were

deemed not to be applicable to attributes based on variables of predefined type. The following Table

3 summarises the applicability of the metrics to each class of attributes.

U and D represent attributes based on parameters of user-defined and predefined type, respectively.

Note that only local-variable-usage attributes allow attributes based on variables of user-defined

and predefined type to be analysed collectively.

Now that the similarity metrics based on each of the five classes of attributes have been specified,

these must be combined to give the total similarity between two entities. For every entity, it will be

20

this total similarity value that will be computed with respect to every other entity. This complete set

of similarity values forms the input to the clustering step.

Table 3: Applicability of similarity metrics to each class of attribute

Class of Attribute
Similarity Metric

Basic Usage Signif. Relation.

Attributes based

on Global Variable Usage

U ● ● ● ●

P ● ●

Attributes based

on Local Variable Usage

 ● ●

Attributes based

on the Type of Local Variables

U ● ● ●

P ●

Attributes based

on the Type of Formal Parameters

U ● ● ●

P ●

Attributes based

on the Type of Returned Values

U ● ● ●

P ●

The main issue to consider here is that of inter-class importance amongst attributes. This means

that, for a given program, one class of attributes may be more important than another class. This is

explained by the two examples below.

• A program may use a very limited number of user-defined data types, but there may exist

extensive interaction between entities via calls from one function to another. This indicates that

the information content of attributes based on use of local variables will be considerably more

than attributes based on the types of local variables. Thus, the similarity metric based on the

former class of attributes should be given more weight when computing the total similarity

metric.

• Inevitably, there will be domain-specific features that will determine the relative importance

amongst attribute classes; hence the importance of similarity metrics based on the attribute

classes. Such features cannot be considered in an automatic approach to program understanding

without the use of expert knowledge.

It follows that in this approach to program understanding, the importance placed on each similarity

metric specified in the previous paragraphs is based on the relative numbers of attributes present in

an attribute class. Thus, the total similarity between two entities, i and j, is as follows:

𝑆𝑇𝑜𝑡𝑎𝑙

=
(𝑁𝐺𝑉 × 𝑆𝐺𝑙𝑜𝑏𝑎𝑙𝑈𝑠𝑎𝑔𝑒) + (𝑁𝐿𝑉 × 𝑆𝐿𝑜𝑐𝑎𝑙𝑈𝑠𝑎𝑔𝑒) + (𝑁𝐿𝑉 × 𝑆𝐿𝑜𝑐𝑎𝑙𝑇𝑦𝑝𝑒) + (𝑁𝐹𝑃 × 𝑆𝐹𝑜𝑟𝑚𝑎𝑙𝑇𝑦𝑝𝑒𝑠) + (𝑁𝑅𝑉 × 𝑆𝑅𝑒 𝑡𝑉𝑎𝑙)

𝑁𝐺𝑉 + 2 ∗ 𝑁𝐿𝑉 + 𝑁𝐹𝑃 + 𝑁𝑅𝑉

. 36)

This metric applies a weight to each of the five metrics specified earlier. This weight depends on the

relative numbers of variables on which each individual metric is based. These weights are:

𝑁𝐺𝑉 , 𝑁𝐿𝑉 , 𝑁𝐹𝑃 , 𝑁𝑅𝑉 representing the number of global variables, local variables, formal parameters

and returned values respectively. For example, if a program contains a larger proportion of global

variables, then the metric based on global variables have the highest potential for information

content. Thus, this metric will have the highest contribution to the total similarity metric. In a typical

program, the count NRV will have the smallest value of all the counts. Thus, the metric based on the

21

types of returned values, which is typically the least informative metric as pointed out in the previous

section, should justifiably have the smallest contribution to the total metric.

4.4 Clustering strategy

This part reflects the algorithmic means by which subsystem structure of a program is derived.

Several classes of clustering algorithms have been surveyed. The main requirements for the

clustering strategy were as follows:

1. The clustering technique must create several solutions to the problem, as opposed to a single

cluster distribution. This allows for the most meaningful clustering to be selected as a

representation of the final subsystem abstraction. It should ideally form clusters incrementally,

as opposed to a single step. The steps involved in this incremental cluster formation must be as

small as possible so that if a suitable abstraction is not produced then it is possible to pinpoint

the step in which the solution started to deviate from a model solution given by an expert.

2. The clustering technique must not rely on an initial partitioning to be made to the entities by the

user, as this is only feasible when the user has some idea of the nature of the required clustering.

Furthermore, the initial partition may influence the final result in an undesirable manner.

3. The clustering technique must not require the final number of clusters to be specified.

Different types of clustering algorithms were investigated including Partitional/Optimisation,

density search and hierarchical algorithms. Hierarchical agglomerative algorithms were considered

to be the most suitable ones for this work. They create a range of entity partitions. The starting point

is when each cluster contains a single entity and the ending when all entities are contained in a single

cluster. Clusters are formed incrementally, meaning that a single entity at a time is placed in a cluster.

The algorithm does not require an initial partition, nor does it require the final number of clusters to

be specified. Finally, the only data required by the algorithm is a similarity value for every possible

pair of entities in the set. Therefore, all the requirements of the clustering strategy set above are

satisfied.

Updating similarity measures is another ability of for hierarchical clustering algorithms. The

similarity metrics discussed earlier can determine similarity between individual objects, but we also

need to determine similarity between clusters containing a number of objects. The main methods

used to that end are single linkage, complete linkage and average linkage rules [29].

Agglomerative hierarchical clustering algorithms utilise the total similarity metric described above

taking into account the strength of all pair wise relationships between program entities, stored in a

similarity matrix. Entities are grouped together depending on these similarities. This process

visualised culminates in a ‘dendrogram’ as shown in Fig. 1. The branches on the left-most side of

the figure represent the starting point where all clusters contain a single entity. Moving to the right,

the tree depicts an increasing aggregation of entities into clusters. The ending point is the tree root

where all entities belong to the same cluster. Entities and clusters are merged with other entities and

clusters, one at a time.

It follows that when the analysis for a set of n entities is complete; there are n sets of clusters from

which to choose the most meaningful solution. For the tree of Fig. 1, there are six possible solutions

as shown in Table 4.

22

Figure 1: The dendrogram for a problem with single entities

Table 4: Possible solutions to the clustering problem of six entities

Clusters Clusters

1 {{{1,2}, {3}}, {4,5}, {6}}

2 {6}, {{{1,2}, {3}}, {4,5}}

3 {{1,2}, {3}}, {4,5}, {6}

4 {1,2}, {3}, {4,5}, {6}

5 {1,2}, {3}, {4}, {5}, {6}

6 {1}, {2}, {3}, {4}, {5}, {6}

In practice, if clustering is allowed to continue until all of the entities are contained in a single cluster,

this may result in forced clustering; that means an entity may be forced into a cluster even though it

is highly dissimilar to the entities in the cluster. This can be avoided by specifying a similarity

threshold, where the clustering process is stopped if the maximum similarity between two clusters

does not exceed the threshold value.

A more formal description of the clustering algorithm, for a problem of n entities, with a similarity

threshold of ST, is depicted in Fig. 2.

1. Begin with n clusters, each containing a single entity. Let the clusters be labelled with labels

from 1 to n.

2. Calculate the similarity between every pair of clusters, using the method described previously;

Search for the most similar pair of clusters using the associated similarity values. Let these

clusters be labelled p and q, and let their associated similarity value be Spq.

3. (a) Merge clusters p and q into a single new cluster r. Reduce the number of clusters by one.

If Spq < ST, mark the current cluster distribution with a tag indicating that the similarity

threshold is exceeded. Proceed to step 4.

 (b) If Spq < ST, terminate the clustering process. The current cluster distribution is the

proposed optimum solution.

4. Perform steps 2 and 3 at most n-1 times, until all entities belong to a single cluster.

Figure 2: The clustering algorithm

The algorithm accounts for a decision whether to continue or stop the clustering process once the

similarity threshold exceeded. Therefore, at step 3, paths (a) and (b) represents processing when is

or is not used respectively.

2

3

4

5

1

Root

23

4.5 Assumptions and Limitations

DMCC is an approach designed to operate on C and non-object-oriented features of C++ code; it

does not address concepts such as inheritance or polymorphism. It processes code within functions

and ignores code outside functions. DMCC performs static analysis, not dynamic analysis. It is an

automated approach and as such it does not require expert knowledge about the system under

examination, nor does it use any domain specific information; it only uses the language’s grammar

and syntax.

Along with these generic assumptions and limitations, there are also certain assumptions and

limitations which apply to the input model used by DMCC. More specifically, user defined types

may better discriminate parameters than predefined ones. The usefulness of a global variable as an

attribute depends on its nature, which is largely influenced by its type. More effective global

variables are likely to belong to a user-defined type. This is because most user-defined types are

specified to model a particular aspect of the problem domain, and functions that use these are likely

to be associated with this aspect of the problem domain, indicating membership of a common

subsystem. Thus, the differentiation on whether the type of attributes is user defined or predefined

was considered to be necessary and will be also used for other types of attributes, where applicable.

It is hypothesised that the overall purpose of a function, hence its parent subsystem, can be predicted

by examining the nature of the data items on which it operates. The nature of the data items can be

determined by their type. It follows that functions having in common the types of several variables

are likely to have a similar purpose, hence may belong to the same subsystem.

The use of attributes based on the types of formal parameters has the same justification as above.

The type of the data operated upon is likely to be an indication of the function’s parent subsystem.

However, this type of attribute cannot be useful for functions without any formal parameters.

The use of function attributes based on the types of returned values has also the same justification

as above. The type of the data operated upon is likely to be an indication of the parent subsystem of

a function. However, this type of attribute will not be useful for void functions.

Presumably a scale of importance governs the significance of attributes. However, the exact

difference in significance between different types of attributes is not apparent and should depend on

the individual characteristics of the program (and may even be subjective), thus requiring expert

knowledge to deduce. However, a basic way of constructing such a scale for user-defined types

would be to place greater importance on more specialised or complex types. This is because user-

defined types are specified to model a more specialised aspect of the application domain, thus the

use of such a variable is more indicative of a function’s purpose.

An important point to note is that a type may be more closely related to some types than others. For

example, the type int is more closely related to float than char, or the type double is more closely

related to the float than int. Such relationships may also occur between user-defined types.

5. EXPERIMENTATION AND EVALUATION

The method for deriving the input model from C/C++ source code by extracting entities and the

relevant attributes was described earlier in this chapter. The way that these entities could be clustered

24

in order to retrieve a potentially meaningful modularization of a system was formulated. The

approach was evaluated in practice, to assess its effectiveness and to seek possible improvements.

A prototype clustering tool was thus developed in order to experiment with real programs.

In order to assess DMCC an evaluation procedure was devised. The proposed procedure comprises

four main steps as depicted in Fig. 3.

Experts’ mental models represent an indication of the subsystem structure of the programs and can

be largely subjective. Therefore, it is advisable whenever results are not consistent with the mental

model, that the input-model is examined, to give an insight into the accuracy of the mental model

and indicate possible reasons for the inconsistency.

1. Parse and search source code to produce the input for the clustering engine.

2. Feed the input to the clustering engine.

3. Derive subsystem abstractions of the program in the form of dendrograms using single

(minimum), complete (maximum) and average (weighted) linkage methods. It is shown that

the choice of the method affects the nature of the clustering produced.

4. Compare the derived subsystem abstractions to an expert’s mental model of the system, if

available.

Figure 3: The evaluation procedure for DMCC

It should be noted for the purposes of this evaluation, the similarity threshold was not used to stop

the clustering process, so that all possible sets of clusters could be derived and convergence to or

divergence from the expert’s mental model could be observed. The threshold was merely used as a

means to indicate different clustering schemes at different levels in the hierarchy of clusters.

Precision and recall were introduced as a quantitative element in judging the accuracy of the results

of the approach [12]. In this case, the precision p for a subsystem is the percentage of entities in the

subsystem that belong to the subsystem according to the expert’s mental model. Therefore, precision

is high if a cluster (subsystem) contains few only entities which belong to other subsystems. On the

contrary, precision is low if a cluster contains many entities which belong to other subsystems. The

recall r for a subsystem is the percentage of entities belonging to the subsystem’s mental model

which are actually present in the subsystem. Therefore, recall is high if the subsystem contains most

of the entities suggested by the mental model; it is low if the subsystem contains few only of the

entities suggested by the mental model. Consequently, a subsystem of ‘good quality’ should present

both high precision and high recall.

However, it is known that normally there is a tradeoff between precision and recall, in other words

if one tries to increase recall precision deteriorates. In order to assess overall accuracy taking into

account both the precision and the recall at the same time let us propose a simple indicator called

the performance P of a clustering method, which is the sum of the products (precision) x (recall) for

every subsystem. An alternative measure, often used in the literature, is the balanced F-score, which

is the weighted harmonic mean of precision (p) and recall (r). The balanced F-score is a value from

0 to 1 inclusive, given by the formula (37):

F =
2 * p * r

 p + r
 . (37)

25

The total balanced F-score Ft for a system is the sum of the F-scores of all constituent subsystems.

However, it should be noted that neither P nor Ft takes into account the size of these subsystems.

This implies that capturing accurately a small subsystem contributes equally to the value of P or Ft,

as compared to capturing accurately a large subsystem. For example, correct identification of a

subsystem which only contains one function contributes equally to correct identification of a

subsystem which contains twenty functions which by comparison is not such a trivial task.

To account for the size of various subsystems let us introduce another accuracy measure the

Performance Index (PI). PI is calculated by summing up the weighted products of precision and

recall for each subsystem; weights depend on the number of entities that are present in each

subsystem. PI for a clustering at a specific level, is given by the formula (38):

𝑃𝐼 = ∑
𝑝𝑘 ∗ 𝑟𝑘 ∗ 𝑒𝑘

𝑛

𝑚

𝑘=1

 . (38)

where m is the number of subsystems, n is the total number of entities, and pk, rk and ek are

respectively the precision, recall and number of entities of each subsystem. PI is more informative

compared to P or Ft as used the same principles, but penalises trivial classification success, in favour

of more challenging tasks.

The source code of four programs has been used for experimentation. T22 was analysed to verify the

applicability of the approach and explore its potential. T2 is a small/medium C program with a

known mental model, which contains 46 functions in 18 modules. Plunder3 was analysed to evaluate

the suitability of the approach for C++ code. Plunder is a small exemplary C++ program with a

known mental model, which contains 21 functions in a single module. Ccg4 was analysed to assess

the scalability of the approach and its suitability when dealing with unfamiliar software. Ccg is a

medium/large C program with known functionality but without a known mental model, consisting

of 63 functions in 8 modules. Finally, two systems, Ccg and the Combiner5, were merged into one,

which was analyzed to assess how robust the approach was when given “unexpected” inputs. The

system consists of 118 functions in nine modules and lacks a mental model. The following

paragraphs detail the results from these experiments.

5.1 Results for T2

T2 is a program that constructs decision trees used for classification. It is perceived to contain six

subsystems, with 6, 5, 8, 9, 5, 11 functions respectively and two autonomous functions. In the

baseline case, with all the entities grouped together resulting in a recall of 100%, the precision for

each subsystem is respectively: 13%, 11%, 17%, 20%, 11%, 24%, and 2% for each of the two

2 T2 computes optimal 2-level decision trees. It was written in C by P. Auer and modified by M. Sahami to

generate intervals for the MLC++ interface. The code is public domain and can be found at:

http://openscience.org/mlc/.
3 Plunder was developed at the School of Computer Science, University of Manchester.
4 Ccg is a C parser developed at the Dept. of Computer Science, University of Durham.
5 This module is essentially the "combiner" phase of the U. of Arizona Portable Optimizer but was redone in

order to be used for optimising the GNU compiler (Copyright (C) 1995 Free Software Foundation, Inc.) by

combining instructions.

http://openscience.org/mlc/

26

autonomous functions. The baseline performance would thus be P=1, the total balanced F-score Ft

=0.215 and the Performance Index PI=0.167.

 The single linkage method produced numerous clusters containing 2 or 3 entities that, according to

the mental model, belong to the same subsystem. However, accuracy was greatly reduced when the

smaller clusters were merged with other clusters. That is because the method uses the minimum

entity-to-entity similarity across two clusters when calculating their similarity. This means that a

number of strong entity-to-entity relationships across two clusters do not increase their similarity.

There were several points in the clustering process where the formation of a subsystem started

accurately, but then deviated from the mental model, due to the small value of the minimum entity-

to-entity similarity across the clusters, which would have otherwise been merged. The best

performance for subsystem 1 was achieved after 30 steps of clustering, where precision was 67%,

recall 33%, and F=0.442. The best performance for subsystem 2 was achieved after 6 steps of

clustering, where precision was 100%, recall 40% and F=0.571. The best performance for subsystem

3 was achieved after 21 steps of clustering, where precision was 100%, recall 38% and F=0.551.

The best performance for subsystem 4 was achieved after 10 steps of clustering, where precision

was 100%, recall 22% and F=0.361. The best performance for subsystem 5 was achieved after 18

steps of clustering, where precision was only 50%, recall 40% and F=0.444. The best performance

for subsystem 6 was achieved after 8 steps of clustering, where precision was 100%, recall 36% and

F=0.529. The best overall performance of this method was reached after 21 steps, where P=3.44,

Ft=0.591 and PI=0.283 and similarity was above 0.0135.

The complete linkage method did not produce meaningful results, but simply one large cluster into

which all other entities were merged one by one. This effect was also observed in the analysis of

Plunder and Ccg, and it was also described in the literature survey on file clustering conducted in

[17]. The best performance for subsystem 1 was the same as the baseline: precision of 13%, recall

100%, and F=0.231 at the top level of the hierarchy after 45 steps of clustering. In other words,

subsystem 1 was not captured, expect from when all entities were in one cluster. The best

performance for subsystem 2 was achieved after 11 steps of clustering, where precision was 100%,

recall 40% and F=0.571. The best performance for subsystem 3 was achieved after 30 steps of

clustering, where precision was 23%, recall 88% and F=0.365. The best performance for subsystem

4 was achieved after 35 steps of clustering, where precision was 25%, recall 100% and F=0.400.

The best performance for subsystem 5 was achieved after 7 steps of clustering, where precision was

38%, recall 60% and F=0.465. The best performance for subsystem 6 was achieved after 12 steps

of clustering, where precision was 75%, recall 82% and F=0.783. The best overall performance of

this method was reached after 41 steps, where P=2.97, Ft=0.46 and PI=0.215 and similarity was

above 0.0080.

The average linkage method initially produced clusters containing 2 or 3 entities, which were

consistent with the mental model. Several smaller clusters were subsequently merged with them to

form larger clusters, which were also consistent with the mental model. The best performance for

subsystem 1 was the same as the baseline: precision of 13%, recall 100% and F=0.231, at the top

level of the hierarchy after 45 steps of clustering. The best performance for subsystem 2 was

achieved after 16 steps of clustering, where precision was 100%, recall 60% and F= 0.750. The best

27

performance for subsystem 3 was achieved after 27 steps of clustering, where precision was 100%,

recall 50% and F=0.667. The best performance for subsystem 4 was achieved after 37 steps of

clustering, where precision was 25%, recall 89% and F=0.390. The best performance for subsystem

5 was achieved after 12 steps of clustering, where precision was 30%, recall 60% and F=0.4. The

best performance for subsystem 6 was achieved after 10 steps of clustering, where precision was

78%, recall 64% and F=0.703. The best overall performance of this method was reached after 16

steps, where P= 3.23, Ft=0.652 and PI=0.257 and similarity was above 0.0110.

The optimal results achieved by each linkage type along with the baselines values for P, Ft, and PI

are summarised in Fig. 4. We can observe here, that single linkage outperformed both average and

complete linkage when applied to T2, in terms of Performance P and the Performance Index PI, but

it was average linkage performing better in terms of the total balanced F-score Ft; complete linkage

clearly ranked last, in terms of every global accuracy indicator.

Figure 4: Summary of DMCC results for T2

A more comprehensive summary of the results is given in Table 5, which details how the single,

complete and average linkage methods faired in comparison to the baseline performance. The table

shows results for performance P, Performance Index PI and total balanced F-score Ft for the full

system (Table 5-a) or precision p, recall r, performance P, and balanced F-score F for the six

subsystems (Table 5 b & c). Numbers in bold indicate the highest value per column.

Table 5: DMCC results for T2 and its six subsystems

 T2

 P PI Ft

Baseline 1.00 0.167 0.215

Single 3.44 0.283 0.591

Complete 2.97 0.215 0.460

Average 3.23 0.257 0.652

(a)

 Subsystem 1 Subsystem 2 Subsystem 3

 p r P F p r P F p r P F

Baseline 0.13 1.00 0.13 0.231 0.11 1.00 0.11 0.196 0.17 1.00 0.17 0.296

Single 0.67 0.33 0.22 0.442 1.00 0.40 0.40 0.571 1.00 0.38 0.38 0.551

Complete 0.13 1.00 0.13 0.231 1.00 0.40 0.40 0.571 0.23 0.88 0.20 0.365

Average 0.13 1.00 0.13 0.231 1.00 0.60 0.60 0.750 1.00 0.50 0.50 0.667

0

0.5

1

1.5

2

2.5

3

3.5

4

baseline single complete average

P

PI

Ft

28

(b)

 Subsystem 4 Subsystem 5 Subsystem 6

 p r P F p r P F p r P F

Baseline 0.20 1.00 0.20 0.327 0.11 1.00 0.11 0.196 0.24 1.00 0.24 0.386

Single 1.00 0.22 0.22 0.361 0.50 0.40 0.20 0.444 1.00 0.36 0.36 0.529

Complete 0.25 1.00 0.25 0.400 0.38 0.60 0.23 0.465 0.75 0.82 0.62 0.783

Average 0.25 0.89 0.22 0.390 0.30 0.60 0.18 0.400 0.78 0.64 0.50 0.703

(c)

Examining the results, it becomes apparent that, in terms of Performance P, complete linkage gives

better “local” results in three out of six subsystems when single linkage gives better results in just

one out of six subsystems (Table 5 b & c). However, single linkage is the best overall performer at

the system level (Table 5-a). Similarly, complete linkage gives better “local” results in three out of

six subsystems, in terms of balanced F-score F, when average linkage gives better results in two out

of six subsystems (Table 5 b & c). Again, when it comes to overall performance, average linkage is

best at the system level and complete linkages is the worst (Table 5-a). This indicates that local

optima can be achieved by complete linkage but for global optimum one should select either single

or average linkage.

Overall, it can be claimed that experimenting with T2 not only indicated the feasibility of the

approach, but also highlighted its strengths in capturing the logical modularity of the system, as it

was up to 3.44 times, in terms of Performance P, up 3.03 times, in terms of total balanced F-score

Ft, and up 1.54 times, in terms of Performance Index PI, more accurate than a “wild guess”, which

would place all the entities in a single cluster.

5.2 Results for Plunder

Plunder is a small program that is used to create and maintain a register of residents in a hotel.

According to an expert’s mental model this program contains two main subsystems, consisting of 6

and 7 functions each respectively, and 8 autonomous functions, which do not belong to any

particular subsystem. In the baseline case, with all the entities grouped together, resulting in 100%

recall, the precision for each subsystem is respectively 29% and 33% while precision for the

autonomous entities is 4.8%. The baseline performance thus is P=1, Ft=0.167 and PI=0.21.

The single linkage method successfully produced a subsystem abstraction. The most meaningful

clustering for subsystem 1 was formed with 100% precision, 83% recall and F=0.907, after 12

clustering steps. For subsystem 2, the most meaningful clustering was achieved after 10 steps, with

87% precision, 100% recall and F=0.930. The best overall performance of this method was achieved

after 12 steps; at this stage, the overall precision was 95%, as only one out of 21 entities was

misclassified. It can be observed in Fig. 5, how functions 0,1,2,3,4 and 5 (in bold) that belong to

subsystem 1, eventually gravitate towards the cluster on the left, while functions 6,9,10,11,12,13

and 14 (in italic) which belong to subsystem 2, eventually gravitate towards the cluster in the middle,

and 7 out of 8 autonomous functions (7,8,15,16,18,19,20) remain separate. Similarity was 0, P=8.74,

Ft=0.891 and PI=0.83.

29

0 1096113175421 201918161587141312

0

9

8

7

6

5

4

3

2

1

11

10

12Figure 5: Single Linkage Dendrogram for Plunder

In the complete linkage method subsystem 2 is formed consistently with the mental model early in

the clustering process. Subsystem 1 began to form consistently with the mental model, but later it

deviated from it. The most meaningful clustering for subsystem 1 was formed with 100% precision,

66% recall and F=0.795, after only 4 clustering steps. For subsystem 2, the most meaningful

clustering was achieved after 6 steps, with 100% precision, 71% recall and F=0.830. After just 6

clustering steps the overall precision was 71% but it did not get any better. Similarity was above

0.5668 at this point, while P=8.96, Ft=0.933 and PI=0.676.

Using the average linkage method both subsystems were reproduced accurately. The most

meaningful clustering for subsystem 1 was formed with 100% precision, 83% recall and F=0.907,

after 11 clustering steps. For subsystem 2, the most meaningful clustering was achieved after 10

steps, with 88% precision, 100% recall and F=0.936. The optimum level appeared after 11 clustering

steps, where similarity was above 0.0162. At this point, all entities that were perceived not to belong

to any particular subsystem were not placed in any subsystem. The overall precision was 95%, as

only one entity out of 21 was misclassified, while P=9.71, Ft=0.984 and PI=0.911.

The optimal results achieved by each linkage type along with the baselines values for P, Ft and PI

are summarised in Fig. 6. We can observe here that average linkage outperformed both single and

complete linkage when applied to Plunder.

A more comprehensive summary of the results is given in Table 6, which details how the single,

complete and average linkage methods faired in comparison to the baseline performance. The table

shows results for performance P, Performance Index PI and total balanced F-score Ft for the full

system (Table 6-a) or precision p, recall r, performance P, and balanced F-score F for the two

subsystems (Table 6.3 b). Numbers in bold indicate the highest value per column.

Results show that average linkage achieves higher Performance P both at the system and the

subsystem level, while single linkage only fairs well at the subsystem level. The same is largely

true in terms of the balanced F-score F: average linkage is the best both at the system and the

30

subsystem level, while single linkage only fairs well at the subsystem level. So, for Plunder average

linkage was shown to be best both locally and globally.

Figure 6: Summary of DMCC results for Plunder

Table 6: DMCC results on Plunder and its two subsystems

 Plunder

 P PI Ft

Baseline 1.00 0.210 0.167

Single 8.74 0.830 0.891

Complete 8.96 0.676 0.933

Average 9.71 0.911 0.984

(a)

 Subsystem 1 Subsystem 2

 p r P F p r P F

Baseline 0.29 1.00 0.29 0.444 0.33 1.00 0.33 0.500

Single 1.00 0.83 0.83 0.907 0.87 1.00 0.87 0.930

Complete 1.00 0.66 0.66 0.795 1.00 0.71 0.71 0.830

Average 1.00 0.83 0.83 0.907 0.88 1.00 0.88 0.936

(b)

These results are consistent, although not entirely identical to these observed by experimenting with

T2. The underlying message appears to be that of selecting either single or average linkage with a

similarity threshold of 0.01, when aiming at getting globally accurate system decomposition. It

should be emphasised however that experiments with Plunder were primarily aimed at confirming

the applicability of DMCC to C++ systems. Its small size does not allow for conclusions from the

clustering to be generalised.

The accuracy of DMCC was up to 9.71 times better in terms of Performance P, 5.89 times in terms

of total balanced F-score Ft and 4.34 times better in terms of Performance Index PI, compared to the

baseline. This experiment showed also the applicability and suitability of the approach for C++, as

it accurately captured the structure of the system.

5.3 Results for Ccg

Ccg is a C parser consisting of a rather large number of modules and functions. As stated before,

there was no mental model available, and the program was mainly used to evaluate the scalability

0

2

4

6

8

10

12

baseline single complete average

P

PI

Ft

31

of the proposed approach and its suitability for larger software systems. All three methods of linkage

(single, complete, average) were used again. However, complete linkage was already known from

the previous experiments, to result in one big cluster which eventually “absorbs” all the others, thus

limiting its potential to reveal the true subsystem structure; this was once again shown to be the case.

Due to the absence of a mental model, one can only observe the results in relation with the previous

findings of this approach and interpret them, just like a maintainer unfamiliar with the program

would do.

The single linkage method resulted in an even spread of clusters. At the top level there were 13

clusters and 2 autonomous entities. Imposing a threshold to the similarity at 3 levels, namely 0.0025,

0.005 and 0.01 resulted in 13 clusters and 10 autonomous entities, 15 clusters and 21 autonomous

entities, 5 clusters and 49 autonomous entities, respectively.

The complete linkage method resulted, as expected, in a single large cluster at the top level. Imposing

a threshold to the similarity at 3 levels, namely 0.0025, 0.005 and 0.01 resulted in 3 clusters and 5

autonomous entities, 7 clusters and 19 autonomous entities, 2 clusters and 47 autonomous entities,

respectively. Comparing the clusters derived by this method to the ones derived by the complete

linkage, one may conclude that initially the clusters formed are similar, but later they deviate as the

single linkage forced entities to be grouped together in one large cluster.

Using the average linkage method, which was known to give reliable results, as long as similarity is

kept above 0.01, it was decided to impose this threshold at first and examine the outcomes. 3 clusters

were then produced leaving out 53 autonomous entities. All three clusters contained functions

belonging to different modules. However, by examining closely the code for these functions, one

can see that they have similar functionality and are related, like for example functions

make_declaration and dec_list_insert, in Fig. 7. 3 larger clusters were formed, and 49 autonomous

entities were left out, when the similarity threshold was set to 0.005. Consistency to the above

principal of related functions grouped together was preserved. Setting the threshold to 0.0025 led to

the formation of 13 clusters, leaving out 20 autonomous entities. This time some functions grouped

together appeared not to be closely related to each other. At the top level there is a single cluster

grouping all the entities together. Interestingly, when applying a threshold of 0.0013 the model

derived is nearly identical to the one derived by the single linkage method with a threshold of 0.0025.

There are 10 identical clusters and three clusters of the latter method containing the same entities as

the ones in the last cluster of the former method.

One may conclude, given the results from T2 and Plunder that the average linkage method is indeed

the most accurate one, and used in conjunction with the single linkage can give a good overview of

a system’s decomposition. The approach described earlier was shown to be scalable, although it

could be tested on yet larger programs. It can also be claimed that using the models derived by the

single and the average linkage methods, facilitated understanding Ccg, however the claim is

subjective and its justification beyond the scope of this work.

32

DECLARATION_PTR make_declaration (int type, DEC_SPEC_PTR dec_spec, DEC_LIST_PTR

dec_list, DECLARATION_PTR next)

{ DECLARATION_PTR helpp;

 if ((helpp = (DECLARATION_PTR) malloc(sizeof (DECLARATION))) == NULL){

 fprintf(stderr, "Out of Memory\n");

 return (NULL);

 }

 helpp->type = type;

 helpp->dec_spec = dec_spec;

 helpp->dec_list = dec_list;

 helpp->next = next;

 return(helpp);}

DEC_LIST_PTR dec_list_insert (DEC_LIST_PTR list, DEC_LIST_PTR element)

{ DEC_LIST_PTR help;

 help = list;

 if (element == NULL)

 return (list);

 if (list == NULL)

 return (element);

 while (help->next != NULL)

 help = help->next;

 help->next = element;

 return (list);}

Figure 7: Excerpts from Ccg source code

5.4 Results for Ccg mixed with Combiner

A final experiment was run this time mixing the entities derived from Ccg with the ones derived

from another program, the Combiner. The Combiner is in fact a C program which was originally

meant to be used to test the parsing capabilities of Ccg. It consists of a single module of 55 functions.

The idea behind this experiment was to attempt to “confuse” DMCC and test its response when

inputted two merged systems instead of one. The objective of this experiment was to validate the

ability of the system to cope with “unexpected” input.

The single linkage method avoided grouping functions from the two different programs together

even at the top level. There was only one exception, when two functions were clustered together at

the very final step when the similarity had dropped to 0.001. Other than that, this method resulted

in a clustering scheme for Ccg very similar to the one produced by the previous experiment.

Combiner’s entities were grouped in separate clusters, which appeared to be meaningful.

Using the complete linkage method ended up mixing entities of the two programs soon after

similarity dropped below 0.005, but even before that, clusters failed to portray similarity in a

comprehensive manner, unlike the other two methods.

33

Using the average linkage method the two systems were kept separate, as long as the similarity

threshold was kept above 0.001. More precisely 54 out of the 55 functions in Combiner were put

together in clusters consisting of functions belonging only to Combiner while the last one was kept

autonomous. In the same manner, except from 7 autonomous functions that belonged to Ccg, all the

56 remaining functions were grouped in clusters consisting of functions belonging only to Ccg.

Eventually the method resulted on a single cluster at the top level. However, the results of this

method were once again consistent to the ones derived by the single linkage method.

This final experiment produced evidence that DMCC could be used to retrieve the original

constituent components of a single system which contains a number of such merged components. It

has also confirmed the complete linkage method’s known weakness of forcing clusters together

when little actual similarity exists.

5.5 Evaluation

DMCC was evaluated using data extracted from C/C++ systems of various sizes, of up to 118

functions (or up to 18 modules). Experimental results showed that a multi-layered, high-level

abstraction of system, as a number of subsystems containing “similar” functions, can be achieved

by clustering program functions into groups.

The accuracy of the results was evaluated by comparing the produced subsystem abstractions with

experts’ mental models. The abstractions were shown to be accurate, capturing subsystems

consistently with the mental models. Pair wise values of precision and recall ranged between (13%,

100%) and (88%, 100%). The highest precision achieved was 100%, the highest recall 100% and

the highest balanced F-score F was 0.936. The lowest values for precision, recall and balanced F-

score were respectively: 13%, 22/%, 0.231, but DMCC never performed worse than the baseline

accuracy.

Experimentation with Plunder and T2 demonstrated that the approach could successfully be applied

to both C and C++ programs. It was indicated however, that the more the entities and the subsystems

the less accurate the approach. This is not surprising, given that the larger the system the higher the

entity misclassification probability. It was also shown that complete linkage is not very suitable for

capturing a system’s modularity but can give insights into the subsystems that come up accurately

enough during the early stages of clustering.

It was the average, and to a lesser degree the single linkage method which gave better results and

captured accurately the structure of subsystems. In fact, experiments strongly suggested that the best

results can be achieved using these methods, whilst setting the similarity threshold to approximately

0.01; below this threshold clusters tend to be less accurate. At this stage, one can get an accurate

overview of the system and its decomposition into subsystems, which of course is only the first step

towards understanding it.

DMCC was not only shown to be applicable to C code (T2, Ccg, Combiner) and to non object-

oriented aspects of C++ code (Plunder), but also scalable and robust. It was shown to be scalable as

it can handle not only small systems (Plunder) but also medium sized (T2) and larger systems (Ccg,

Combiner). Robustness was shown when DMCC dealt successfully with code originating from two

different systems (Ccg merged with Combiner). DMCC was shown to produce accurate results

34

wherever there was an expert’s mental model to compare to, or at least meaningful results wherever

there was no such model. In other words, it can be reasonably expected that DMCC can assist

software maintainers to understand the structure of unfamiliar systems.

DMCC produces systems’ overviews, which aid comprehension. Grouping program components

into subsystems can reduce the perceived complexity thus facilitating maintainers. Complexity can

be detected by identifying subsystems which consist of comparatively large number of functions.

Large, complex and strongly interrelated subsystems are likely to be fault-prone [34].

DMCC forms clusters of functions using the similarity between attributes, which are derived based

on the use and types of variables or parameters and the types of returned values. It should be

graspable how this approach can facilitate maintenance tasks, such as code modifications. For

example, if the maintenance engineer planned to change the use of parameters within the body of a

function it would be advisable to check whether other “similar” functions are affected. This can

facilitate impact analysis and risk assessment related with fast code modifications.

DMCC could also be used in perfective maintenance, when attempting to improve systems cohesion

and coherence, in other words when the goal is to increase system modularity. This could happen

by relocating functions into modules where they “naturally” belong. For example, a function may

have limited similarity with functions in the same module but high similarity with functions in

another module: in this case moving it to this other module should be considered. Alternatively, one

could consider adjusting what a function does, in a manner reflecting consistently the overall

functionality of the module it belongs to; increasing similarity within the module should result from

this adjustment.

6. CONCLUSIONS AND FUTURE WORK

This work was concerned with software maintainers’ need to understand a system before performing

maintenance tasks if they are unfamiliar with it; a system overview is obviously highly desirable

[1]. Earlier work has produced evidence that data mining techniques can derive high level system

overviews [16]. However, it is clear, that such overviews are necessary both at the level of files and

programs and at a lower level, such as the function level. Furthermore, deriving system abstractions

could indicate interconnections between system parts in a manner that could expose potential risks

when modifying the system.

Innovative advanced data analysis has also been found to support software development teams, by

increasing cognition and decision making [40]. This is achieved by gathering input raw data to

calculate and visualize more advanced metrics and find correlations between them. High-level data

are then shown to product owners to increase their cognition, situational awareness, and decision-

making capabilities.

The proposed approach enhances the existing ways of using data mining in support of program

comprehension in that it addresses components at the program level, while other methods operate at

the system level [11], [12], [15], [16], and [20]. It bears similarities with other non data mining based

methods in that it produces dependency relationships between software artefacts, like the

dependency tracer proposed in [35] or the approach for decomposing legacy systems into objects

[36].

35

DMCC is more similar to ISA [15], MDG [16] and ASDC [11] in that it requires only general

computer science knowledge as they seek an understanding in a rather model free, opportunistic

fashion. That differentiates it from other program comprehension techniques which require specific

domain knowledge, and as a results significant pre-processing effort [37], [38].

This work focused on addressing the issue of assessing the feasibility of clustering program

functions depending on the types and use of a number of parameters. It also investigated the

appropriateness of different clustering strategies. Finally, it explored the suitability of the approach

for different types of programming languages and sizes of programs. A tool was developed for this

reason.

The tool was used to obtain the subsystem abstraction of 3 programs. The accuracy of the results

was evaluated by comparing the subsystem abstractions with experts’ mental models for two of the

programs. The produced results were found to be meaningful in most cases. In any case, even when

inaccurate results occur, it could be argued that this happens partly because of possible

inconsistencies of the expert’s mental model with the actual organisation of the program.

In addition to evaluating the accuracy of the results, the feasibility of this approach was evaluated

by assessing the complete process of obtaining a subsystem abstraction of a program. Overall, this

investigation demonstrated the potential of the proposed approach for obtaining a subsystem

program abstraction and for identifying interrelations between modules and functions. Admittedly

further improvements would be required before the approach produces optimum results. Limitations

for the approach were identified and suggestions made on how to further develop it and improve its

accuracy.

The process of extracting the input data from the program and pre-processing it needs further

automation. We plan to investigate the use of compilers and parsers to this end. So far, we have

managed to acquire a subset of the input data using a parser. The approach needs to be further

specified and enriched to facilitate as much automation of the derivation of the input data model as

possible. Alternatives, including using empirical data to assign weights (e.g., from empirical studies,

or from learning algorithms) can be explored. It would also be desirable if this approach could be

incremental in a manner accommodating changes in software, as the assumption of static software

is unrealistic.

Furthermore, the indication that the approach may lose accuracy as programs grow larger, needs

further investigation. Other directions for future work include fine tuning of tool-related parameters

for optimal results, allow processing of program files containing non-syntactic constructs such as

textual macros [39], extending the input data model with more attributes such as function calls, and

also exploring the possibility of utilising features related to classes in object oriented programming

languages, such as C++ or C# [41].

ACKNOWLEDGEMENTS

The author would like to thank Emeritus Professor of Software Engineering Malcolm Munro at the

Dept. of Computer Science, University of Durham, for providing the source code of Ccg.

36

REFERENCES

1. C. Tjortjis and P.J. Layzell, “Expert Maintainers’ Strategies and Needs when Understanding

Software: A Qualitative Empirical Study”, Proc. IEEE 8th Asia-Pacific Software Engineering

Conf. (APSEC 01), IEEE Comp. Soc. Press, pp. 281-287, 2001.

2. I. Sommerville, Software Engineering, 10th ed., Addison-Wesley, 2016.

3. P. Grubb, A.A. Takang, Software maintenance: concepts and practice, 2nd ed., World Scientific,

2003.

4. B. Eddy, “Structured source retrieval for improving software search during program

comprehension tasks”, Proc. ACM SIGPLAN Conf. Systems, Programming, and Applications:

Software for Humanity (SPLASH '14), pp. 13-15, 2014.

5. R. Brooks, “Towards a theory of the Comprehension of Computer Programs”, Int’l. Journal of

Man-Machine Studies, Vol. 18, no. 6, pp. 543-554, 1983.

6. E. Soloway and K. Ehrlich, “Empirical Studies of Programming Knowledge”, IEEE

Transactions Software Engineering, Vol. 10, no. 5, pp.595-609, 1984.

7. S. Letovsky, “Cognitive Processes in Program Comprehension”, 1st Workshop Empirical

Studies of Programmers, Ablex Publishing Norwood, pp 58-79, 1986.

8. D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway, “Mental Models and Software

Maintenance”, Empirical Studies of Programmers, Albex, Norwood NJ, pp. 80-98, 1986.

9. A. Lakhotia, “A Unified System for expressing Software Subsystem classification techniques”,

Journal of Systems and Software, Vol. 36, no 3, pp. 211-231, 1997.

10. T. Kunz and J. P. Black, “Using Automatic Process Clustering for Design Recovery and

Distributed Debugging”, IEEE Transactions Software Engineering, Vol. 21, no. 6, pp. 515-527,

1995.

11. V. Tzerpos and R. Holt, “Software Botryology: Automatic Clustering of Software Systems”,

Proc. 9th Int’l Workshop Database Expert Systems Applications (DEXA98) IEEE Computer

Society Press, pp. 811, 1998.

12. N. Anquetil and T. C. Lethbridge, “Experiments with Clustering as a Software

Remodularisation method”, Proc. 6th Working Conf. Reverse Engineering (WCRE 99), IEEE

Comp. Soc. Press, pp. 235-255, 1999.

13. R.W. Schwanke and S.J. Hanson, Using Neural Networks to Modularize Software, Machine

Learning, 15, pp. 137-168, 1994.

14. M. Shtern, V. Tzerpos, “Methods for selecting and improving software clustering algorithms”.

Software Practice and Experience, Vol. 44, no. 1, pp. 33-46, 2014.

15. C. M. DeOca and D. L. Carver, “Identification of Data Cohesive Subsystems using Data Mining

Techniques”, Proc. Int'l Conf. Software Maintenance (ICSM 98), IEEE Comp. Soc. Press,

pp.16-23, 1998.

16. S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen and E. R. Gansner, “Using Automatic

Clustering to Produce High-Level System Organisations of Source Code”, Proc. 6th Int'l

Workshop Program Understanding (IWPC 98), IEEE Comp. Soc. Press, pp. 45-53, 1998.

17. T. A. Wiggerts, “Using Clustering Algorithms in Legacy Systems Remodularization”, Proc.

4th Working Conf. Reverse Engineering (WCRE 97), IEEE Comp. Soc. Press, pp. 33-43, 1997.

37

18. B.S. Mitchell and S. Mancoridis, “On the Automatic Modularization of Software Systems Using

the Bunch Tool”, IEEE Trans. Software Eng., Vol. 32, no. 3, 2006, pp. 193-208.

19. C. Xiao, V. Tzerpos, “Software Clustering on Dynamic Dependencies”, Proc. 9th European

Conf. Software Maintenance and Reengineering (CSMR 05), IEEE Comp. Soc. Press, pp. 124-

133, 2005.

20. K. Sartipi, K. Kontogiannis and F. Mavaddat, “Architectural Design Recovery Using Data

Mining Techniques”, Proc. 2nd European Working Conf. Software Maintenance Reengineering

(CSMR 00), IEEE Comp. Soc. Press, pp. 129-140, 2000.

21. D. Rousidis, C. Tjortjis, “Clustering Data Retrieved from Java Source Code to Support Software

Maintenance: A Case Study”, Proc. IEEE 9th European Conf. Software Maintenance

Reengineering (CSMR 05), IEEE Comp. Soc. Press, pp. 276-279, 2005.

22. Y. Kanellopoulos, C. Tjortjis, “Data Mining Source Code to Facilitate Program

Comprehension: Experiments on Clustering Data Retrieved from C++ Programs”, Proc. IEEE

12th Int’l Workshop Program Comprehension (IWPC 2004), IEEE Comp. Soc. Press, pp. 214-

223, 2004.

23. C. Tjortjis, L. Sinos and P.J. Layzell, “Facilitating Program Comprehension by Mining

Association Rules from Source Code”, Proc. IEEE 11th Int’l Workshop Program

Comprehension (IWPC 03), IEEE Comp. Soc. Press, pp. 125-132, 2003.

24. Y. Kanellopoulos, C. Makris and C. Tjortjis, “An Improved Methodology on Information

Distillation by Mining Program Source Code”, Data & Knowledge Engineering, Vol. 61, no. 2,

pp. 359-383, 2007.

25. D. Papas and C. Tjortjis, “Combining Clustering and Classification for Software Quality

Evaluation”, Lecture Notes Computer Science, Springer-Verlag, Vol. 8445, pp. 273-286, 2014.

26. O. Maqbool, H.A. Babri, A. Karim, M. Sarwar, “Metarule-guided association rule mining for

program understanding”, IEE Proc. Software, Vol. 152, No. 6, pp. 281-296, 2005.

27. A.T. Misirli, A.B. Bener, B. Turhan, “An industrial case study of classifier ensembles for

locating software defects”, Software Quality Journal, Vol. 19, No. 3, pp. 515-536, 2011.

28. H. Tribus, I. Morrigl, S. Axelsson, “Using Data Mining for Static Code Analysis of C”, Proc.

8th Int’l Conf. Advanced Data Mining and Applications (ADMA 2012), LNAI 7713, pp. 603-

614, 2012.

29. M. R. Anderberg, Cluster Analysis for Applications, Academic Press Inc., 1973.

30. A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, Prentice-Hall, 1988.

31. I. Witten, E. Frank, M. Hall, and C.J. Pal, Data Mining: Practical Machine Learning Tools and

Techniques, 4th Ed., Morgan Kaufmann, 2016.

32. P. H. A. Sneath and R. R. Sokal, Principles of Numerical Taxonomy, W. H. Freeman & Co.,

1973.

33. B.S. Everitt, S. Landau, M. Leese, D. Stahl, Cluster Analysis, 5th ed., John Wiley & Sons, 2010.

34. T. Khoshgoftaar, E. Allen and R. Shan, “Improving Tree-based Models of Software Quality

with Principal Components Analysis”, Proc. 11th Int’l Symposium Software Reliability

Engineering (ISSRE 2000), IEEE Comp. Soc. Press, pp. 198-209, 2000.

38

35. A.R. Fasolino and G. Visaggio, “Improving Software Comprehension through an Automated

Dependency Tracer”, Proc. 7th Int'l Workshop Program Understanding (IWPC 99), IEEE

Comp. Soc. Press, pp. 58-65, 1999.

36. G. Canfora, A. Cimitile, A. De Lucia and G.A. Di Lucca, “Decomposing legacy systems into

objects: an eclectic approach”, Information and Software Technology, Vol. 43, pp. 401-412,

2001.

37. T.J. Biggerstaff, B.G. Mitbander and D.E. Webster, "Program Understanding and the Concept

Assignment Problem", Communications of the ACM, Vol. 37, No. 5, pp. 72-82, 1994.

38. N.E. Gold, “Hypothesis-Based Concept Assignment to Support Software Maintenance”, PhD.

Thesis, Dept. of Comp. Sc., University of Durham, 2000.

39. D.C. Atkinson and W.G. Griswold, Effective pattern matching of source code using abstract

syntax patterns, Software-Practice and Experience, Vol. 36 no. 4, pp. 413-447, 2006.

40. M. Choraś, R. Kozik, D. Puchalski, R. Renk, “Increasing product owners’ cognition and

decision-making capabilities by data analysis approach”, Cognition, Technology & Work,

May 2019, Vol. 21, no. 2, pp 191–200.

41. S. Arshad, C. Tjortjis, “Clustering Software Metric Values Extracted from C# Code for

Maintainability Assessment”, SETN 16, Article No. 24, ACM Int’l Conf. Proc. Series, 2016.

