
Code4Thought Project: Employing the ISO/IEC-9126 standard for
Software Engineering - Product Quality Assessment

Panos Antonellis1, Dimitris Antoniou1, Yiannis Kanellopoulos2, Christos Makris1,

Christos Tjortjis3, Vangelis Theodoridis1, Nikos Tsirakis1

1. University Of Patras, Department of Computer Engineering and Informatics, Greece

2. The University Of Manchester, School of Computer Science, U.K.
3. University of Ioannina and University of Western Macedonia, Greece

adonel, antonid, makri, theodori, tsirakis@ceid.upatras.gr,

Yiannis.Kanellopoulos@postgrad.manchester.ac.uk, christos.tjortjis@manchester.ac.uk

Abstract

The aim of the Code4Thought project was to deliver a
tool supported methodology that would facilitate the
evaluation of a software product's quality according to
ISO/IEC-9126 software engineering quality standard. It
was a joint collaboration between Dynacomp S.A. and the
Laboratory for Graphics, Multimedia and GIS of the
Department of Computer Engineering and Informatics of
the University of Patras. The Code4thought project
focused its research on extending the ISO/IEC-9126
standard by employing additional metrics and developing
new methods for facilitating system evaluators to define
their own set of evaluation attributes. Furthermore, to
develop innovative and platform-free methods for the
extraction of elements and metrics from source code data.
Finally, to design and implement new data mining
algorithms tailored for the analysis of software
engineering data.

1. Introduction
Software is playing a crucial role in modern societies.

Not only people rely on it for their daily operations or
business, but for their lives as well. For this reason a
correct and consistent behaviour of a software system is a
fundamental part of users’ expectations.

Therefore the demand for software quality is
increasing and is setting it as a differentiator, which can
determine the success or failure of a software product.
Moreover delivering high quality products is becoming
not just a competitive advantage but a necessary factor for
companies to be successful.

The goal of the Code4Thought project was to deliver a
tool supported methodology that would facilitate the
evaluation of a software product's quality according to
ISO/IEC-9126 software engineering quality standard.

It was a joint collaboration between Dynacomp S.A.
and the Laboratory for Graphics, Multimedia and GIS of
the Department of Computer Engineering and Informatics
of the University of Patras. It was a 2 years R&D project
co-funded by G.S.R.T. (General Secretariat of Research
and Technology) and Dynacomp S.A. The project ended
in May 2008 and its budget was 422,000 Euro. The
members consisting the project’s team were Dr Christos
Tjortjis as the Project Coordinator, from the Manchester
School of Computer Science and Dynacomp S.A. Then Dr
Christos Makris University of Patras Coordinator, from
CEID (School of Engineering Department of Computer
Engineering and Informatics). The Project Manager was
Yiannis Kanellopoulos, PhD student from Dynacomp S.A.
and Manchester School of Computer Science. Then there
were Evangelos Theodoridis, Antoniou Dimitris, Tsirakis
Nikos, and Antonellis Panagiotis, all PhD candidates from
CEID.
The SQO-OSS project was also related to Code4Thought
Error! Reference source not found.. Both projects were
focusing on software quality and on employing data
mining techniques for the analysis of the derived software
measurement data.

2. Research Focus
The research on the Code4Thought project was related

to software quality and data mining. For this reason, the
research focus in this project was the on extending at first,
the ISO/IEC-9126 standard by employing additional
metrics and developing new methods for facilitating
system evaluators to define their own set of evaluation
attributes [1], [4]. Furthermore innovative and platform
free methods for the extraction of elements and metrics
from source code data were developed. Finally new data
mining algorithms or combination of data mining
techniques tailored for the analysis of software
engineering data were designed and implemented [2], [3].

3. Project Achievements

The Code4Thought project developed at first a
generalised quality model for the assessment of both
structural and OO software systems. The characteristics of
this model were:

The main characteristics of this methodology are:
• The necessary metrics were elements extracted

solely from source code.
• It employed the ISO/IEC-9126 standard as a

frame of reference for communication concerning
software product quality.

• It proposed a three-step approach and an
associated model, in order to link system level quality
characteristics to code-level metrics.

• It applied the Analytic Hierarchy Process (AHP)
in every level of the model’s hierarchy in order to reflect
the importance of metrics and system properties on
evaluating quality characteristics according to ISO/IEC-
9126.

Furthermore, k-Attractors, a clustering algorithm
tailored for the analysis of software measurement data was
developed for the purposes of this project [3]. The
characteristics of this algorithm are:

• It defines the desired number of clusters (i.e. the
number of k), without user intervention.

• It locates the initial attractors of cluster centers
with great precision.

• It measures similarity based on a composite
metric that combines the Hamming distance and the inner
product of transactions and clusters’ attractors.

• It can be used for large data sets.
4. Project Deliverable

The final deliverable of the project was a data mining
tool that was responsible for the extraction, analysis and
visualisation of data and results concerning the evaluation
of a software system. This tool consisted of the following
modules:

• Data Extraction and Preparation.

• Data Analysis.
• Results Visualization.

The objective of the data extraction and preparation
module was two-fold:

• At first to collect appropriate elements that
describe the software architecture and its
characteristics. These elements included native
source code attributes and metrics.

• Then to analyze the collected elements, choose a
refinement subset of them and store them in a
relational database system for further analysis.

Native attributes included definition files, classes,
structure blocks etc. Metrics, on the other hand, provided
additional system information and described more
effectively the system’s characteristics and behaviour.

All the metrics were associated with a native source
code attribute, e.g. the lack of cohesion is associated with
a class member method. All of the above collected
attributes and metrics were stored into appropriate
structured XML files. XML was chosen because of its
interoperability and its wide acceptance as a de facto
standard for data representation and exchange. Storing the
metrics in XML files enables further processing and
analysis with a variety of tools.

For simplicity, a refinement subset of the most
important collected elements was chosen for analysis. This
subset should be small enough in order to be easily
analyzed and large enough to contain all the necessary
system information. Based on this requirement, only the
metrics and their associated native attributes were stored
and further analyzed.

The elements chosen needed to be extracted from the
XML files and stored permanently in a relational database.
For this reason tools that mapped XML elements and
nodes into any relational database, keeping the extraction
method transparent from the underlying database were
used.

Figure 1 depicts the general architecture of the data
extraction and preparation module.

Figure 1: Data Preparation and Extraction Module

Source code
analysis

Attributes extraction
Metrics calculation

XML files

storing

RDBS
refined subset

XML mapping

Figure 2: Data Analysis Module

Figure 3: Data Visualisation Module

As depicted in Figure 2, the data analysis module is the

core of the Code 4 Thought methodology. At first, the data
mining algorithm, accepts data from the source code
analyzer, by performing queries on the database, where
the data reside. The outcome of the analysis is stored in
XML files, in order to be visualized by the corresponding
module. The primary objective of the data analysis is to
obtain a general but illuminating view of a software
system that may lead maintenance engineers to useful
conclusions about its structure and maintainability.

The visualization module now consists of the
following parts:

• An XML reader for the clustering results.
• Text files for the results derived from association

rules and classification algorithms.
Figure 3 shows the parts of the visualization procedure

for the XML files, from the moment data are being
imported until the final results are available to the user.

5. Research Evaluation

The work during this project was evaluated on both
open source and proprietary systems of industrial scale.
Results were reviewed by domain experts who provided
their comments and assessments. The criteria for this
evaluation included accuracy of the tool and the ability to
capture knowledge that is valid, novel and potentially
useful to maintenance engineers.

In the first case study [2] a framework that combined
clustering and association rules mining was evaluated. An
industrial-scale proprietary system concerning books
publication developed in C#, was used as a test-bed. By
examining the patterns found from clustering, several
observations were derived. At first the existence of “god
classes” was discovered as there are classes that their
number of methods is much above the average which is 5
methods per class. Patterns that reflected the niches of the
Books Publishing System were also discovered. For
example a cluster of the Member Methods consists of
methods that were responsible for the format and rounding
of numbers. Some also from the derived association rules
like Some of them like supervisorNameTxt->addressTxt,
contract_id->_published_book_id, Assign Parameters-

>Get Parameters were characterised by system’s
developers interesting.

In the second case study clustering was applied in
JBoss AS, an open source application server [5]. The aim
of this study was to facilitate maintenance engineers to
comprehend the structure of a software system and assess
its maintainability. For this reason source code elements
and metrics were collected. As derived from the clustering
(based on its structural characteristics), JBoss is an OO
system that is built based on the JMX (Java Management
Extension) infrastructure and supports also Aspect
Oriented Programming middleware. The assumption here
was that packages which play the most significant role in
formulating clusters would be the main packages of JBoss.
The inspection of clusters showed that this assumption
was valid. For example a cluster was formed by classes
that belong to org.jboss.console which provides a simple
web interface for managing the MBean server and
org.jboss.ejb3 which is the most basic package for an EJB
implementation. A very interesting cluster which
comprises of packages that implement AOP (Aspect
Oriented Programming) – based services, was also
discovered. Another observation was that most of the
classes of JBoss have very low complexity values and
they do not expose too much afferent or efferent
couplings. They also have no children and they do not use
inheritance very much. Interestingly, classes related to the
implementation of the AOP services support, have very
low complexity (WMC) values. It was also observed that
most of the classes with high WMC and CBO values have
member methods that their return types are not primitives.

The second case employed as test-bed Apache
Geronimo, another open source application server [1]. It
combined clustering with Analytic Hierarchy Process
(AHP) for the evaluation of a software product’s
maintainability according to the ISO/IEC-9126 software
product quality standard. The intuition was to integrate
measurement data extracted from source code’s elements
with the expertise of a system’s engineers by providing
them the ability to define a number of attributes suitable
for such evaluation. In this case study a cluster that
contained classes that exhibited very low maintainability
values was discovered. These classes were provided to

Data Reader Data Structure
Validator Visualizer

Vizualization Module

XML
DATA

Results

domain experts (that is, software engineers familiar with
the Geronimo Apache source code) in order to inspect
them and give their feedback concerning additional
attention for improving their maintainability. From the
classes of this cluster, they indicated that
CdrOutputStream and CdrInputStream needed further
attention. These classes were used fairly widely within the
application server, for, among others, serializing non-
primitive data structures, hence the high complexity
values. They were of interest to the domain experts, since
they are at Geronimo’s core and widely used, so for
maintainability and runtime performance they were
important classes.

The third case study was similar to the previous one, in
the sense that combined clustering and AHP for the
evaluation of maintainability according the ISO/IEC-9126
standard [4]. However its main difference was that
clustering was applied on the raw source code metrics and
not on the derived ISO/IEC-9126 maintainability values.
The aim here was to demonstrate how to summarise
information concerning the evaluation of maintainability
in the various levels of a software system, from raw
source code metrics describing a system’s artefacts, to the
system itself as a whole. By using the proposed
methodology maintenance engineers were able to quickly
obtain high-level, but constructive information about the
system’s maintainability. The method compared well with
the most naïve technique for interpreting source code
metrics, being the identification of outliers for individual
metrics. Secondly, it compared well with existing methods
for translating source code measurements into high-level
quality characteristics. The introduction of clustering into
the process ensured that aggregation was done on
relatively homogenous groups of units. Thirdly, the use of
AHP, rather than other weighting schemes turned out to
scale up nicely to the high number of metrics and system
properties addressed in this case study.

Finally, k-Attractors, a clustering algorithm presented
in [3] was tested in two proprietary systems. The results of
this experiment showed that in its main phase k-Attractors
is about 600% faster than k-Means. This is attributed to its
initialization phase which adds a significant overhead to
the overall algorithm’s performance. It was also
demonstrated that regarding software measurement data,
k-Attractors appears to form better, in terms of quality,
and more concrete clusters. So as long as the initialisation
phase contributes significantly to the algorithm’s accuracy
this overhead is considered justifiable.

6. Conclusions
The evaluation results shown at first, that descriptive

data mining techniques have the ability to support
program comprehension and maintainability evaluation
according to ISO-IEC/9126. It was shown that clustering
can be complementary to association rules mining in the
sense that their combination can form a single and
coherent framework [2]. Then it was demonstrated that k-

Attractors is significantly faster than k-Means, a
prominent clustering algorithm. Additionally, regarding
software measurement data, k-Attractors appeared to form
better, in terms of quality, and more concrete clusters [3].
Also it was demonstrated that clustering software metrics
can create groups of artefacts with similar measurements
and spot potentially important maintainability issues [1],
[2], [5]. Finally, it was shown how to translate source code
measurements into high-level quality characteristics (like
maintainability) [1], [4].

All cases have shown promising results concerning the
combination of data mining techniques with a model
based on the ISO/IEC-9126. Furthermore, concerning the
project’s planned activities there were difficulties getting
data from proprietary systems. In some cases non-
disclosure agreements had to be signed and in other cases
there was no access granted. That is the reason that most
of the experiments were conducted using open source
systems.

References
[1.] Antonellis et al. “A Data Mining Methodology for

Evaluating Maintainability according to ISO/IEC-9126
Software Engineering-Product Quality Standard”, in
the proceedings of IEEE 11th Conference on Software
Maintenance and Reengineering (CSMR 2007) special
session on System Quality and Maintainability (SQM
2007)

[2.] Kanellopoulos Y., Makris C. and Tjortjis C., “An
Improved Methodology on Information Distillation by
Mining Program Source Code”, Data & Knowledge
Engineering, (Elsevier) May 2007, Volume 61, Issue
2, pp. 359 - 383.

[3.] Kanellopoulos Y., Antonellis P., Tjortjis C, Makris C.,
“k-Attractors: A Clustering Algorithm for Software
Measurement Data Analysis”, In the proceedings of
IEEE 19th International Conference on Tools with
Artificial Intelligence, (ICTAI 2007)

[4.] Kanellopoulos Y., Heitlager I., Tjortjis C., Visser J.,
“Interpretation of source code clusters in terms of
ISO/IEC-9126 Quality Aspects”, in the proceedings of
IEEE 12th Conference of Software Maintenance and
Reengineering (CSMR 2008).

[5.] Kanellopoulos Y., Dimopoulos T., Tjortjis C. and
Makris C., “Mining Source Code Elements for
Comprehending Object-Oriented Systems and
Evaluating Their Maintainability” ACM SIGKDD
Explorations Vol. 8 Issue 1, Special Issue on
Successful Real-World Data Mining Applications, pp
33-40 June 2006

[6.] Code4Thought: www.code4thought.org
[7.] SQO-OSS: www.sqo-oss.org

