
Clustering Software Metric Values Extracted from C# Code
for Maintainability Assessment

Shumail Arshad
School of Computer Science,
The University of Manchester,

PO Box 88,
Manchester M60 1QD, U.K

+44 161 306 3304
shumailarshad@gmail.com

Christos Tjortjis
School of Science & Technology,
International Hellenic University,
14th km Thessaloniki - Moudania

57001 Thermi, Greece
+30 2310807576

c.tjortjis@ihu.edu.gr

ABSTRACT
This paper proposes an automated approach for supporting
software maintenance using software metrics and data mining. We
gather metric values from C# source code elements, such as
projects, files, namespaces, classes, and interfaces. These elements
are clustered together, based on their similarity, with regards to
these metrics, in order to identify problematic, complex classes that
might be error prone. We applied this approach to two open source
software systems in C#. Results show that it supports identification
of potentially problematic code parts, which require further
examination and proactive maintenance.

CCS Concepts
• Information systems ➝ Information systems applications➝
Data mining➝ Clustering
• Software and its engineering ➝ Software creation and
management ➝ Software post-development issues ➝
Maintaining software

Keywords
Clustering; Data mining; Software Metrics; Software Maintenance

1. INTRODUCTION
Maintenance is a complex part of the software lifecycle. Evaluating
maintainability is difficult, as one has to consider many
contradicting aspects. Metrics are used to measure software
characteristics and support software quality and maintainability
assessment, as well as “complexity hotspot” identification [2].
However, collecting and analyzing metric values for large software
systems can be very hard and time consuming [4].

Data mining can be used to analyze software metrics for
maintenance purposes, as it can extract information and discover
hidden patterns in them [3], [7], [16]. As data mining can deal with
large amounts of data in the absence of any prior domain
knowledge, it is considered to be a suitable solution for large,
unfamiliar software systems [6].

This paper proposes an automated approach for supporting
software maintenance using software metrics and data mining. The
primary objective of this work is to facilitate maintenance engineers
in identifying source code “complexity hotspots”. This is done by
extracting Object Oriented (OO) software metric values from code
and storing these in a database. We then apply K-Means to extract
useful patterns. These patterns facilitate pinpointing exceptional
and potentially problematic parts of the code, which require further
examination and perfective maintenance. We experimented by
applying this approach to two open source software written in C#,
and produced very promising results.

The remaining of the paper is organized as follows: Section 2
introduces key concepts on software metrics, data mining and
clustering; Section 3 discusses the proposed approach; Section 4
presents experimental results and Section 5 discusses and evaluates
results. Finally, Section 6 completes the paper with conclusions and
directions for further work.

2. BACKGROUND
This paper uses core concepts from software metrics, data mining,
machine learning and clustering. We briefly discuss these concepts
in the following sub-sections.

2.1 Software Metrics
Metrics are quantitative measures that enable software engineers
and managers to gain understanding of a software system. This
work emphasizes on OO metrics and follows up C# code mining
work we have reported in [9] and Java code and metric mining we
reported in [7]. Given the promising results when clustering
elements derived from code, particularly metrics derived from Java
systems, we decided to follow a similar line of attack when
addressing C# systems. We used the following metrics: Weighted
Methods per Class (WMC), Depth of Inheritance Tree (DIT),
Number Of Children (NOC), Coupling Between Object classes
(CBO), Lack of Cohesion Of Methods (LCOM2), Response For a
Class (RFC), and Number of Public Methods (NPM) [1], [5], [13].

2.2 Clustering
Clustering is useful when there is little prior information about the
data. Entities can be grouped together according to the similarity of
their attributes; often, distance measures are used to this effect [6].
Cluster creation can be performed in a number of ways. The
purposed method uses K-Means, one of the most popular partitional
clustering algorithms [12]. K-Means has a number of weaknesses
as it requires the user to specify the total number of clusters, it
works with numerical data and cannot handle noise [7].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
SETN '16, May 18 - 20, 2016, Thessaloniki, Greece
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3734-2/16/05…$15.00
DOI: http://dx.doi.org/10.1145/2903220.2903252.

2.3 Data Mining for Software Engineering
Data mining algorithms have been used to support software
engineering tasks. Tribus et al. [19] used classifiers for knowledge
discovery and troubleshooting software in C. Menzies et al. used
data mining to predict errors and assist large project management
[14]. They used metrics such as McCabe’s Cyclomatic Complexity
and classifiers such as C4.5 for C code. Prasad et al. proposed an
approach for source code evaluation by knowledge engineering
[17]. It discovers weaknesses and errors in code using the frequency
of words or symbols in C++ code.

Data mining has also been proposed as a potential technology for
supporting and enhancing our understanding of software metrics
and their relationship to software quality [3], [7]. Large amounts of
measurement data are produced when developing software.
According to following general steps, software data can be used for
extracting useful information, thus better understanding their
processes and products [3].

 Define the goal of the data mining process.
 Assemble the dataset by extracting data from a software

system.
 Data cleaning and preprocessing.
 Select the data mining task (clustering in this case).
 Select the data mining algorithm (we use K-Means).
 Apply data mining and evaluate the results.
 Consolidate results with prior knowledge, review and use the

knowledge extracted.

3. PROPOSED APPROACH
This work aims to facilitate program comprehension by assisting
maintenance engineers to focus on possible errors and problematic
classes in the source code.

3.1 Systems analysis
In this work, we analyse OO systems. We use classes, methods and
member data to calculate OO software metric values which act as
input to the clustering process.

3.2 Data extraction process
After creating a suitable input data model, the next step is to extract
data from the source code. For this purpose, our system uses
MetaSpec Parser Library which is fully compliant with ECMA-334
and ECMA-335 standards. OO metric values are calculated from
the data extracted by the parser.

3.3 Data mining process
We use a custom implementation of K-means clustering on OO
metric values extracted from C# source code. As clustering has also
the potential to discover programming patterns and ‘‘unusual’’ or
outlier cases which may require further attention, our system
generates graphs showing potential problematic, highly complex
classes that might be error prone.

4. EXPERIMENTAL RESULTS
To evaluate our approach, we have analyzed the following two
open source applications:

 Sharp Develop is an open source IDE written in C# that
contains 3634 classes [18].

 NUnit is an open source unit testing framework, written in C#
that contains 698 classes [15].

Table 1 details various metrics and aspects of the two systems under
examination. NUnit contains fewer classes than Sharp Develop.

NUnit also demonstrates lower average values than Sharp Develop,
for all metrics except LCOM2. For NUnit the average WMC is
approximately 8, which shows that classes are not very complex
and can be easier to understand than these of Sharp Develop, having
on average WMC approximately 13.

Table 1 Metrics for the two systems analyzed

NUnit Sharp Develop
Avg. Max. Avg. Max.

WMC 7.9985 216 12.9785 1057
DIT 1.7450 6 2.2642 6
NOC 0.3138 18 0.5410 218
CBO 3.2957 37 4.1835 110
LCOM2 0.0064 0.9103 0.0012 0.9908
RFC 16.1948 673 18.4408 1422
NPM 4.7894 212 5.5894 317

Similarly, for NUnit the average DIT is 1.745, which shows that
most of the classes are at the top of the inheritance tree, given that
C# classes have a minimum DIT equal to 1. This indicates that the
program is simple, although Sharp Develop fairs also well with DIT
about 2.26 on average. Average NOC for NUnit is 0.3138 which
shows that classes have overall few children classes, allowing
maintainers to amend these without affecting other classes.
Average CBO for NUnit is about 3, which shows that most of the
classes have limited coupling with the other classes and that if one
changes one class they will have to test approximately 4 classes in
total. LCOM2 in NUnit is greater than Sharp Develop which shows
that classes in Sharp Develop are more cohesive than in NUnit and
possibly some classes in NUnit could be broken into subclasses.
Average RFC is almost equal in both systems; their values show
that classes do not have very complex response sets. Maximum
values for each metric show the most complex classes of the
system.

5. EVALUATION
We produce two types of results: a) statistical analysis of the metric
values across classes, presented as metric value graphs, discussed
in 5.1 and b) results after clustering classes, where these are treated
as entities and metric values as attributes, discussed and visualized
as groups (clusters) and their respective plots against each one of
the metrics used in 5.2.

5.1 Metric Value Graphs
We produced graphs for the metric for each of the two systems we
examined (NUnit and Sharp Develop) and will discuss the most
indicative ones for illustration purposes.

5.1.1 WMC:
This graph helps maintainers appreciate the complexity of the
whole system. As shown in Fig. 1, more than 130 classes have
WMC=2 and more than 90 have WMC= 1 which means that 220
classes have very low complexity in NUnit.

5.1.2 NOC:
This graph helps maintainers’ to view the breadth of the inheritance
tree of all the classes. As shown in Fig. 2, some 620 classes have
NOC = 0 in NUnit.

5.2 Metrics Cluster Graphs
We used classes as entities for clustering, their seven attributes
being the respective metric values. These graphs show the clusters
created by K-Means for k=5, a value known to be a sensible choice
[16]. By examining these clusters, a maintainer can identify outliers

(classes with exceptional metric values) and may consider
improving or even refactoring them. The x-Axis shows clusters 1
to 5, and the y-axis shows the metric values present in each
respective cluster. We show indicative metric cluster graphs for
NUnit and Sharp Develop.

Figure 1: WMC value graph for NUnit

Figure 2: NOC value graph for NUnit

Figure 3: WMC cluster graph for NUnit

Figure 4: WMC cluster graph for Sharp Develop

5.2.1 WMC
In Fig. 3 for NUnit, clusters 2, 3, 4 and 5 consist of 93% of the total
class population and have low WMC values. These classes are not
very complex. Cluster 1 contains classes with high WMC values
which should be considered for closer scrutiny. Similarly, in Fig. 4
for Sharp Develop, clusters 1, 3, 4 and 5 contain 95% of the classes

and have low WMC. Cluster 2 contains classes with high WMC
that can be considered for redesign.

5.2.2 NOC
In Fig. 5 for NUnit, clusters 1, 2, 3 and 4 (88% of total population)
contain classes with fewer children than these of classes in cluster
5, which means these classes are easier to maintain. Similarly, in
Fig. 6 for Sharp Develop, clusters 1, 2, 4 and 5 contain classes with
fewer children than these of classes in cluster 3. Classes with high
NOC values can potentially become maintenance bottlenecks.

5.3 Discussion
By examining results in 5.1, we observe how the generated metric
value graphs can assist in identifying class level complexity
hotspots. One can look for classes with high complexity, coupling,
breadth and depth of inheritance and so on, either in isolation or
comparing various systems. For instance there are two classes in
NUnit with WMC values around 150 and one with WMC over 200.
Even worse, there are two classes in Sharp Develop with WMC
values over 400 and one with WMC over 1050. Similarly it can be
observed that outliers can be found also for NOC. Although there
may be good reasons for designing such classes, in most cases, this
should raise the alarm for perfective maintenance. Similarly, one
can look at the clustering results in 5.2, which confirm findings
from 5.1.

Figure 5: NOC cluster graph for NUnit

Figure 6: NOC cluster graph for Sharp DevelopIt is clear for
instance, that classes in cluster 1 for NUnit and in cluster 2 for
Sharp Develop require attention, as they exhibit higher than
average WMC values (Fig. 3, 4). However, one can observe that
cluster 5 for NUnit and cluster 3 for Sharp Develop exhibit higher
than average NOC values (Fig. 5, 6), even though their respective
WMC values are normal (Fig. 3, 4).

Similar work, employing K-Means and Neural – Gas for clustering
modules with similar software measurements (LOC, Cyclomatic
Complexity etc.), in order to predict their fault proneness and
potential noisy modules was presented in [21]. Our work here
extends this by employing object oriented metrics, which are more
suitable for modern software systems. External, alas subjective and

hard to acquire for open source systems, validation is a useful
extension for our work.

6. Conclusions and Future Work
In this work we proposed and evaluated an approach for clustering
C# classes based on a number of selected OO metrics. The idea is
based on the notion that complex, difficult to maintain classes
might score low across a number of dimensions, although in theory
one could design classes which only “fail” on a single criterion. The
approach follows up work we have done in mining source code
elements as well as metric values extracted from Java code [7].
Given these early promising results on clustering elements derived
from code as well as metrics, we followed a similar line of attack
when addressing C# systems here.
Given the explorative nature of this work, we combined existing
technologies wherever possible, particularly for parsing and pre-
processing source code and for visualizing results. At the heart of
our approach lies K-Means which we tailored to suit this particular
domain. We experimented with two modest open source systems
which have adequately demonstrated the viability of the concept.
However, proper validation is required in order to assess our key
findings and the value these add to software maintenance. We plan
to conduct this validation in the future along with further work to
optimize the approach.
We also recognize further threats to the validity of our approach
related with very nature of software metrics, such as the perceived
immaturity and unprofessionalism of the field metrics or the high
cost of metrics programs [4]. In some cases, metrics programs are
rejected because they “do more harm than good” [10]. It is also
known that existing OO software metric tools interpret and
implement the definitions of metrics differently [11].

6.1 Future Work
Apart from a more comprehensive validation we also plan to
experiment by varying the focus of our approach. So far we
monitored complexity and maintainability at the class level, but we
could alternatively focus on the project, file, namespace, interfaces,
member data, or even at the method and parameters level. Other
OO properties, such as cohesion, coupling, code clones, and rule
violations need to be considered in the future.
Also, even though K-means was shown to be a sensible choice for
clustering data extracted from source code [8], there are promising
alternatives available. For instance constraint K-Means avoids
creating empty clusters the way K-means does, by introducing an
extra step defining constraints for the algorithm at the beginning
[20]. Also weighted K-Means could be used as it calculates each
cluster’s centroid not by simply calculating the mean of all attribute
values but by assigning weights to these [11]. This way each metric
can be assigned weights using expert opinion. Finally we can avoid
having to define the number of clusters in advance, and to depend
on initial centre definition, if we employ clustering algorithms
automating this process [7].

7. REFERENCES
[1] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for

Object-Oriented Design”, IEEE Trans. Software
Engineering, Vol. 20, No. 6, pp. 476-493, 1994.

[2] D. Coleman, D. Ash, B. Lowther, and P. Oman, “Using
Metrics to Evaluate Software System Maintainability”,
IEEE Computer, Vol. 27 No. 8, pp. 44-49, 1994.

[3] S. Dick, A. Meeks, M. Last, H. Bunke, and A. Kandel,
“Data mining in software metrics databases”, Fuzzy Sets
and Systems, Vol. 145, No. 1, pp. 81–110, 2004.

[4] N.E. Fenton and M. Neil, “Software metrics: successes,
failures and new directions”, Journal of Systems and
Software, Vol. 47, No. 2-3, pp. 149-157, 1999.

[5] R. Ferenc, I. Siket, and T. Gyimothy, “Extracting Facts from
Open Source Software”, Proc. 20th IEEE Int’l Conf.
Software Maintenance, p.60-69, 2004.

[6] J. Han, and M. Kamber, “Data Mining, Concepts and
Techniques”, 3rd Ed., Morgan Kaufmann, 2011.

[7] Y. Kanellopoulos, P. Antonellis, C. Tjortjis, and C. Makris,
“k-Attractors: A Clustering Algorithm for Software
Measurement Data Analysis”, Proc. 19th IEEE Int’l Conf.
on Tools with Artificial Intelligence (ICTAI 07), pp. 358-
365, 2007.

[8] Y. Kanellopoulos, T. Dimopoulos, C. Tjortjis and C.
Makris, “Mining Source Code Elements for Comprehending
Object-Oriented Systems and Evaluating Their
Maintainability”, ACM SIGKDD Explorations, Vol. 8 No. 1,
pp. 33-40, 2006.

[9] Y. Kanellopoulos, C. Makris and C. Tjortjis, “An Improved
Methodology on Information Distillation by Mining
Program Source Code”, Data & Knowledge Engineering,
Vol. 61, No 2, pp. 359-383, 2007.

[10] C. Kaner, W.P. Bond, “Software Engineering Metrics: What
do they measure and how do we know”, 10th Int’l Software
Metrics Symposium, 2004.

[11] K. Kerdprasop, N. Kerdprasop and P. Sattayatham,
“Weighted K-Means for Density-Biased Clustering”, Data
Warehousing and Knowledge Discovery, Lecture Notes in
Computer Science, Vol. 3589, pp. 488-497, 2005.

[12] J. B. MacQueen: "Some Methods for classification and
Analysis of Multivariate Observations”, Proc. of 5th

Berkeley Symposium on Mathematical Statistics and
Probability, Berkeley, 1:281-29, 1967.

[13] McCabe, “A Complexity Measure”, IEEE Transactions
Software Engineering, Vol. SE-2, No. 4, p.p. 308- 320,
1976.

[14] T. Menzies, J. Greenwald, A. Frank, “Data Mining Static
Code Attributes to Learn Defect Predictors”, IEEE
Transactions on Software Engineering, Vol. 32, No. 11, pp.
2-13, January 2007.

[15] NUnit http://www.nunit.org/ (last access 12/15).
[16] D. Papas and C. Tjortjis, “Combining Clustering and

Classification for Software Quality Evaluation”, SETN
2014, LNCS, Vol. 8445, pp. 273-286, 2014.

[17] A.V.K. Prasad, S.R. Krishna, “Data Mining for Secure
Software Engineering-Source Code Management Tool Case
Study”, Int’l Journal of Engineering Science and
Technology, Vol. 2 (7), pp. 2667-2677, 2010.

[18] SharpDevelop www.icsharpcode.net/OpenSource/SD/ (last
access 12/15).

[19] H. Tribus, I. Morrigl, S. Axelsson, “Using Data Mining for
Static Code Analysis of C”, Proc. 8th Int’l Conf. Advanced
Data Mining and Applications (ADMA 2012), LNAI 7713,
pp. 603-614, 2012.

[20] K. Wagstaff, C. Cardie, S. Rogers and S. Schroedl,
“Constrained k-means clustering with background
knowledge”, Proc. 18th Intl. Conf. on Machine Learning,
pp. 577–584, 2001.

[21] S. Zhong, T.M. Khoshgoftaar, and N. Seliya, “Analyzing
Software Measurement Data with Clustering Techniques”,
IEEE Intelligent Systems, Vol. 19, No. 2, pp. 20-27, 2004.

