
978-1-7281-4959-2/19/$31.00 ©2019 IEEE

Big Data Mining for Smart Cities: Predicting Traffic

Congestion using Classification

Aristeidis Mystakidis

The Data Mining and Analytics Research Group

School of Science & Technology

International Hellenic University

Thessaloniki, Greece

a.mystakidis@ihu.edu.gr

Christos Tjortjis

The Data Mining and Analytics Research Group

School of Science & Technology

International Hellenic University

Thessaloniki, Greece

c.tjortjis@ihu.edu.gr

Abstract—This paper provides an analysis and proposes a

methodology for predicting traffic congestion. Several machine

learning algorithms and approaches are compared to select the

most appropriate one. The methodology was implemented using

Data Mining and Big Data techniques along with Python, SQL,

and GIS technologies and was tested on data originating from one

of the most problematic, regarding traffic congestion, streets in

Thessaloniki, the 2nd most populated city in Greece. Evaluation and

results have shown that data quality and size were the most critical

factors towards algorithmic accuracy. Result comparison showed

that Decision Trees were more accurate than Logistic Regression.

Keywords — Data Mining, Big Data, Machine learning, Smart

Cities, Prediction, Classification, Traffic Congestion

I. INTRODUCTION

These days, more and more data regarding cities and urban

areas are produced. This information is critical for

automating several procedures, such as road traffic control.

With urban living increased exponentially in the last

century, road traffic congestion has become a significant

problem of our era. Moreover, it is common sense, that high

traffic congestion may affect other areas such as the

environment, health, the economy etc. [1]. There is no

panacea, but as far as the solution for this problem is

concerned, analyzing congestion data for future traffic

prediction could make a significant difference.

It is predicted that by 2050 more than 67 percent of the total

global population will live in urban areas [2]. This report

also indicates that from 1950 to 2018, urban living

exponentially increased from 751 million to 4.2 billion

people.

This overpopulation, with the large amount of data which

record smart cities procedures and functions broaden the

horizon of data science for smart cities. These data can be

analyzed for the sake of each city’s procedure optimization.

One of these procedures that needs to be optimized is traffic

flow, which causes many issues related to several social and

economic sectors [1].

Our paper researches and develops a prototype model to

forecast traffic congestion. We evaluated this model in

Thessaloniki, Greece, a highly populated city with average

at best public transport infrastructures and no metro subway,

with Tsimiski Street (one of the busiest main roads in the

city) as a case study. We present a step by step

methodology, describing the data engineering part, the data

transformation part, and the data mining part.

An important aspect of this work relates to results and

evaluation, including a detailed comparison of different

classifiers, used for traffic congestion prediction.

Furthermore, the most accurate classifier scored over 73%

on accuracy, utilizing however a low-cost methodology for

data extraction.

The remaining of the paper reviews related literature in

section II, describes the methodology in section III, presents

results and evaluation in section IV and concludes with

directions for future work in section V.

II. BACKGROUND

A. Smart City applications

Big data mining and machine learning for smart cities

utilization assists in solving production, transport, and

traffic management problems in real-time approaches using

frameworks and systems that are incorporated and provide

data transfer efficiently through apps and stakeholders [3].

There are several cases of smart cities supporting big

data mining technologies like Smart education [4], Smart

grid [5] and electricity consumption prediction [6], [7].

However, an important aspect relates to Smart traffic lights

[8] and traffic congestion management and prediction [9],

[10], [11].

A key smart city feature is efficient traffic flow

management, that could boost transportation networks flow

and optimize traffic conditions for people and cities in

general [8]. As population grows, there are traffic issues,

increased emissions, and environmental and economic

issues. Because of the above, the utilization of relevant

strategies (for example traffic congestion prediction or smart

traffic lights) used by smart cities to deal with increasing

traffic congestion problems is very important.

The cost of many of these techniques, however, as well

as the costs of the necessary technology related to then

appears to be very high [9]. For example, one strategy in

order to provide enough data on traffic patterns, smart traffic

lights and signals must be integrated throughout traffic

grids. Every sensor could measure a particular traffic flow

variable like vehicle velocity, traffic density, lights waiting

time, distances, etc. The number of sensors needed for this

would be many as well as the multiplied cost for all of them.

B. Traffic congestion prediction and related work

Real- or future-time traffic jam knowledge would be

very important for congested and overpopulated locations.

smart or Intelligent Transportation Systems (ITS) could help

develop certain congestion data reports via sophisticated

prediction algorithms.

Many programs were developed and introduced both by

corporate and state agencies to collect traffic information to

supply ITS systems. According to [9], many actions are

based on selective setup of static detectors like loop coils

and smart video processing recorders. Considering the cost

of hardware, plus setup and maintenance costs, the expenses

of such technologies seem to be quite heavy [9].

In addition, such static detectors in most locations are

exposed to severe weather events. What is more, it is hardly

cost effective or technically feasible to deploy fixed

detectors to cover all streets in major urban areas. Therefore,

an alternative method for collecting traffic information and

predicting traffic congestion with greater coverage at a

reduced cost is required.

Estimation methodologies for the congestion rate can

differ according on the characteristics of the data gathered.

There are two different kinds of detectors that can indeed

automatically collect traffic data: a fixed sensor and a

mobile detector. Street cameras, speedometers etc.,

considered to be fixed sensors/detectors while mobile

phones, vehicle GPS considered to be mobile

sensors/detectors.

The research in [12] utilized the algorithm of the neural

network from the mobile phone data gathered. this

study utilized Cell Dwell Time (CDT), the moment a mobile

phone connects to a mobile phone service antenna, offering

a rough travel velocity, combined with video recording of

traffic from the driver’s perspective. The accuracy of the

model was 79%. In [9] the authors used another machine

learning methodology that was better suited to the data

morphology getting very high accuracy (91%).

GPS measurements could offer further reliable traffic

information rather than the CDT results. This study utilised

a decision tree (J48/C4.5) Classification approach on mobile

sensors to identify road traffic congestion rates from GPS

data, but also capturing and utilizing images of road traffic

conditions by a video camera. Getting data via mobile

sensors could monitor much broader areas of traffic. The

algorithm would indeed learn about vehicle's motion

patterns. The fixed window sliding methodology was also

utilized. The studies of [13] and [14] predicted the rate of

traffic jams by implementing fuzzy logic and hidden

Markov methods, respectively, utilizing traffic camera

information.

In addition, the studies reported in [15], [16] and [17]

explored numerous alternative approaches related to traffic

congestion research. For instance, in several countries, as

shown in the surveys of [18] and [19], the key criteria

utilized to describe traffic congestion rates are duration,

velocity, size, quality of service, and the traffic signal

periods that drivers need to stop for.

As it can been seen, there are several highly efficient

traffic congestion prediction models, using however costly

detectors like cameras to capture video recordings and

images in order to score high accuracy. With that being

mentioned, it is clear that the challenge is to develop a cost-

effective way to deal with traffic congestion management

and manage to utilize accurate traffic congestion prediction

methods using machine learning algorithms without using

costly detectors and cameras.

III. METHODOLOGY

The aim of this work was to deal with traffic congestion

management problems. Our main strategy was to develop

data mining/machine learning techniques for traffic

congestion prediction in order to predict the traffic

depending the street, the specific time etc.

This would help drivers to avoid high traffic and choose

routes with better flow. Another advantage of utilizing this

strategy could be that in a city, ridden with transportation

problems, the use of ITS based on the traffic prediction

algorithms could make a difference. What is more, based on

these algorithms, smart traffic lights mechanisms could be

utilized on future studies.

The idea was to extract data from a specific API, get data

from json array, use several technologies and techniques for

data pre-processing and mining to predict traffic. For this

project three main tasks have been combined.

1 Data engineering phase

2 Data pre-processing phase

3 Classification for traffic congestion forecasting.

A. Data engineering

There were 3 different sources regarding data extraction.

Traffic congestion data: Traffic congestion data

originated from http://opendata.imet.gr/dataset/network-

congestion. This is a website that contains traffic data

regarding speed, congestion, road links, travel times,

historical data etc. about the city of Thessaloniki. Data were

gathered from various sources [20], [21], [22]. In the json

file for congestion we collected data including Link_id,

Link_Direction, Timestamp, Congestion using the urllib

library.

Emisia Database: This database, offered by Emisia S.A.,

was created for an application called Wiseride. This App

used to provide real time data from osmosis database (a

database that contains data from taxi drivers and other

sources). Although these real time data were no longer

accessible, the database contains data about the Link_id‘s of

part 1 and it could be very useful to have an idea about the

street names of the max speed of each road.

Openstreetmaps and PostGIS database: The data of part

two can be visualized by QGIS 2.18 app in cooperation with

open source opensteetmap.org. OpenStreetMap (OSM) is a

community project involving a world map that is publicly

available. The data generated by the project are regarded to

be its main output instead of the map itself. OSM's creation

and growth has been driven by restrictions to the use or

accessibility of map data throughout much of the world, as

well as the advent of affordable portable satellite navigation

devices. OSM is regarded to be a notable example of

voluntary information on geography.

http://opendata.imet.gr/dataset/network-congestion
http://opendata.imet.gr/dataset/network-congestion

Figure 1: Thessaloniki via QGIS

For this work, we developed a database to store data.

Initially, a Thessaloniki table has been created containing

data about streets, such as street name, the maximum

allowed speed, the road type (main, secondary etc.) as

shown in TABLE 1. This table’s data originated from the

Emisia Wiseride application and contained several

information, some of it regarding unknown parameters.

TABLE 1: THESSALONIKI’S IMPORTANT PARAMETERS

DETAILED DESCRIPTION.

Variable Type Description

id NUMBER(15)

UNIQUE NOT

NULL

Id of the part of the

road of the wiseride

app

osm_id NUMBER(15)

UNIQUE NOT

NULL

Id of the open street

map part of the road.

This matches with the

traffic data, therefore it

is the part of the road

for traffic congestion

prediction.

osmname VARCHAR2(100) Name of the road

osm_source

_id

NUMBER(15) The first osm_id of the

road

osm_target

_id

NUMBER(15) The last osm_id of the

road

clazz NUMBER(5) Unknown

flags NUMBER(1) Unknown

source NUMBER(15) Unknown

Target NUMBER(15) Unknown

Length FLOAT The length of each Id

Kmh NUMBER(3) Top speed

Cost FLOAT Unknown

reverse_cost FLOAT Unknown

x1 FLOAT Map coordinates in X

axis, where the Id starts

y1 FLOAT Map coordinates in Y

axis, where the Id starts

x2 FLOAT Map coordinates in X

axis, where the Id ends

y2 FLOAT Map coordinates in Y

axis, where the Id ends

category VARCHAR2(10) Type of the road

There were several important notes to be mentioned.

• An osm_id included several id’s

• In most of the cases an osm_id was the part of the road

that describes the distance from one traffic light to the

next traffic light

• An Id described the road for one block.

• There were several street categories as presented in

TABLE 2.

TABLE 2:: STREET CATEGORIES

Also, a very important table was the traffic congestion

table (TABLE 3). This table has several variables. Ιn order for

this table to be filled, two data extracting methods were

developed.

• In early stages of the project, data were extracted from

http://opendata.imet.gr/dataset/network-congestion into

a csv file or copied to a txt file as a Json array. Later, all

these files were parsed using python 3.6 with Spyder

IDE. As mentioned, each record of the json array

contains information about Link_id, Link_Direction,

Timestamp and Congestion. The Link_id,

Link_Direction and Timestamp provided the unique

LINK_TIMESTAMP_ ID of this table, while the other

values were extracted as they were.

• In order to have the best possible algorithm for traffic

prediction, the amount of data required was vast. To

achieve this, an algorithm has been developed in order

to extract traffic data from the aforementioned API and

insert them to the table avoiding duplicate records. The

link was renewed almost every 15 minutes, so the

algorithm could extract data every quarter of an hour. In

total, 828897 records have been inserted.

The overall extraction phase was completed during

August–October 2019. Our SQL and Python code can be

found here: https://github.com/ArisMyst/ParseTrafficData

TABLE 3: TRAFFIC CONGESTION TABLE

Variable Type Description

LINK_
TIMESTAMP

_ID

VARCHAR2(

100) UNIQUE

NOT NULL

Unique Id of the open

street map part of the

road and timestamp

LINK_ID NUMBER(10)

NOT NULL

Id of the open street map

part of the road. This

matches with the osm_id

from Thessaloniki table

LINK_

DIRECTION

NUMBER(1)

NOT NULL

If it has 2 directions, it is

a two-way road

TIME_STAMP TIMESTAMP Exact time of the

response data. The

provided data renewed

every 15 minutes

CONGESTION VARCHAR2(

10)

Low, Medium, or High

KS_2K Main collector road 2-way without median strip

DA_2K secondary arterial road 2-way without median strip

KS_1K Main collector road One-way or two-way with median strip

KT600 unknown unknown

KT100 unknown unknown

DS_XX Secondary collector road unknown

DA_1K secondary arterial road One-way or two-way with median strip

KA_1K main arterial road One-way or two-way with median strip

KA_2K main arterial road 2-way without median strip

http://opendata.imet.gr/dataset/network-congestion
https://github.com/ArisMyst/ParseTrafficData

B. Data preprocessing

The data preprocessing phase was one of the most

challenging parts of this project. In order to use

classification for traffic congestion forecasting all data

required preprocessing.

A problem is related with the max allowed speed for each

road. New parameters had to be created for non-continuous

values providing details about the road, such as road length

and sequence.

The idea was to combine information from Tables 1, 2 and 3

and discretize continuous values. For example, the

timestamp was to be divided into different time slots, like

per 15 minutes or per day of the week or per shopping

hours, as explained in the following paragraphs.

Timestamp. An empirical evaluation about shopping - office

hours and traffic congestion involved interviewing several

employees and freelancers motivated us to divide the 24-

hour daily cycle into 4 segments. This segmentation is

variable and depends on the type of day and store/office

opening hours.

• From 09:00 to 20:59 on Tuesdays, Thursdays, and

Fridays the stores are 'open'.

• From 09:00 to 17:59 on Mondays, Wednesdays, and

Saturdays the stores are 'open'.

• From 07:30 to 08:59 every day except Sundays the

stores are 'opening'.

• From 21:00 to 22:00 on Tuesdays, Thursdays, and

Fridays the stores are 'closing'.

• From 18:00 to 19:00 on Mondays, Wednesdays, and

Saturdays the stores are 'closing'.

• In all other cases the stores are 'closed'.

Another important segmentation we performed, was based

on the timestamp providing the day of the week. The

prediction was modeled based on a weekly cycle model.

Road length and sequence. As already mentioned, an

osm_id or link_id (they were the same object) contained

several simple ids (TABLE 1 - TABLE 3). It was easy to

identify what ids contained a link_id using the database.

However, the difficulty occurred when the sequence of

osm_id was needed. To achieve that, the starting and the end

point of each osm_id needed to be identified.

Also, the sequence and the location of simple ids was

known via x1, x2, y1 and y2 (Table 1). So, the end of each

link_id was like where the spot of the end of id was while

the link_id was not the same. A similar procedure was

applied to find the overall road length of link_id.

Also, as far as the road length is concerned, the average

link_id road length was almost 200 meters. For this reason,

a new categorical value was created to characterize if a

link_id is over 200 meters or not.

C. Data Μining / Machine Learning

1) Selected data

The data selected were:

• Time

• Day

• Stores

• Congestion

• Osm_id

• Road larger than 200 meters

• Max kilometers allowed on the road

• Road category

Traffic prediction was attempted for one of the busiest roads

in Thessaloniki, Tsimiski St., the part with osm_id

corresponding to Tsimiski intersections with Venizelou St.

and Dragoumi St. This part is not very long and only few

traffic records for this osm_id were extracted. This was a

common issue regarding data extracted for the whole city of

Thessaloniki.

In Fig. 2Error! Reference source not found., green color

describes all the osm_ids that Thessaloniki has, while brown

color describes the osm_ids that contained more than 10

traffic congestion timestamp records. As it can been seen,

there were several roads that did not contain enough data.

Similarly, the traffic congestion data about the 13769164

osm_id were not enough. For this reason, the selected data

would cover exactly two preceding and one following

osm_id, both having sufficient data. These 3 extra osm_id’s

were 197107696,176665188 and 174019380.

Figure 2: All OMS_ID’s vs OMS_ID’s with traffic data vs 13769164 ID

As far as the selection is concerned, low congestion output

was 0, medium output was 1 and high congestion output

was 2. Also, there was a chance that each osm_id contained

several different street categories (TABLE 2). This may

occurred because each osm_id described several ids and

some of them could be in different road categories. An

osm_id is assigned the road category with the most

occurrences for this specific osm_id.

2) Initial Prediction Algorithm

In general, categorical data work well with Decision Trees

[23], [24], [25] so all the available parameters in the traffic

dataset were discretized. As a result, a decision tree

classifier was developed for traffic congestion forecasting

using Python’s 3.6 Scikit learn library with Jupyter

Notebook. In a later step, the same decision tree algorithm

was developed utilizing Big Data technologies with Pyspark

and Mllib library.

Initially, the exported data in csv format were parsed using

Pandas library. The extracted records were 2155 in total. As

a first step, removal and targeting of congestion column was

done in order for the model to identify the prediction

parameter.

The next step was to use label encoder in order to properly

categorize the values time, day, open stores, osm_id, road

length greater than 200 meters and road category, and pass

the information to the model as inputs.

After this, the text variables were removed so the dataset

contained only categorical values, as it can been seen in

Figure 3, while the targeted congestion was transformed like

the previous categorical values.

Figure 3: Text variables removed

The next step of this process was to train the algorithm,

using 80% of the dataset for training and 20% for testing.

Then the tree algorithm, from the sklearn library was used

and a decision tree classifier model was created. The

model’s parameters such as criterion = ‘gini index’, splitter

= ‘best’ etc. can been seen in Figure 4. This model was

trained utilizing the data generated by the training set.

Moreover, the model score was very high, reaching 93%

Figure 4: Creating a decision tree classifier

IV. RESULTS AND EVALUATION

A. Decision tree algorithm results

After the creation of the model, it was time to check the

prediction results. For example, it is almost sure that at

04.00 in the morning during a weekday like Wednesday that

traffic congestion is low. This case will be mentioned from

now on as case 1. The categorical value for 04.00 was 16,

while for Wednesday was 6. Also, the categorical osm_id

for 13769164 was 0, the kmh parameter 1 and the road

category 1 as it can been seen in Fig. 5.

Figure 5: Example for osm_id 13769164

After inserting these labeled parameters in the prediction

function, the model’s response was 0. That means that the

traffic congestion at the aforementioned case 1 was low,

which was an expected outcome.

After this prediction, it was time to check the model for a

more uncertain case. The model was tested for 20.30 in the

afternoon on a Wednesday (case 2). The categorical value

for 20.30 was 82, while for Wednesday it was 6. Also, the

categorical osm_id for 13769164 was 0, the kmh parameter

1 and the road category 1.

For case 2 the model’s response was 1. That means that the

traffic congestion was medium, which was expected. As far

as the accuracy is concerned, results showed that after

importing the necessary metrics, generalization accuracy

was 67.8%.

B. Improving Prediction Algorithms

 In this stage, several efforts were made for accuracy

improvement. First, as far as the splitting criterion is

concerned, the default was “gini”. This feature provides the

user the ability to use different attribute selection measures.

One possible attempt to improve accuracy was to choose a

different attribute selection measure. Two supported criteria

are “gini” (gini index) and “entropy” (information gain).

Figure 6: Choosing information gain

After this, the model score remained comparable. As for the

predictions, the results remained the same, 0 (low) for case 1

and 1 (medium) for case 2. However, generalization

accuracy dropped to 67.5% from 67.8%. As it seems,

utilizing entropy did not increase performance.

For optimizing decision tree performance, another attempt

was to change the split strategy of the algorithm. Two

supported strategies were “best” to select the best split and

“random” to select a random split. The split strategy was

changed from “best” to “random” (Figure 7).

Figure 7: Changing the split strategy

After this change accuracy remained roughly the same,

however, the results did not remain the same. For case 1 the

traffic congestion prediction was 0 (low) and 0 (low) for

case 2. However, generalization accuracy dropped to 67.1%.

As it can been assumed, utilizing the random split did not

improve the algorithm’s performance. All in all,

implementing the decision tree algorithm with Gini index

and best split was the best performed algorithm.

An alternative means to improving accuracy would involve

extracting more data. For these reasons, an extra extraction

stage was implemented gathering a total number of 4355

records, almost twice as the original data set. The initial

decision tree algorithm with Gini index and best split was

the best performing algorithm and selected for this attempt

(Figure 8).

 Figure 8: Decision tree algorithm with Gini index and best split

After this change, the model score dropped to 86.7% and

the prediction results remained the same with the 1st

algorithm, providing 0 (low) for case 1 and 1 (medium) for

case 2.

However, generalization accuracy increased almost to 70%.

As it seems, gathering, extracting, and selecting more data

and utilizing more information increased the algorithm’s

performance.

C. Decision Tree Vs Logistic Regression Algorithms

In this phase, we compared Decision trees and Logistic

regression in terms of accuracy. As far as the selection was

concerned, the only difference was to road length that was

set to numerical instead of categorical (Figure 9). After the

data were imported via csv parsing, the label encoder was

utilized so the data to be categorized.

Figure 9: Data for Logistic Regression

Before splitting the algorithm, Logistic Regression from

sklearn library was used and a Logistic regression classifier

model was created. This model was trained from the training

set, as it can been seen in Figure 10.

Figure 10: Creating a Logistic regression classifier and splitting the data

As a result of these changes, the model score was low, close

to 66%. Regarding the predictions, the results did not

remain the same. The logistic regression algorithm provided

1 (medium) for case 1 and 1 (medium) for case 2.

What is more, the generalization accuracy dropped to 67.4%

compared to 70% for Decision Trees. As it was realized,

utilizing a Logistic regression algorithm was not the best

option when using the specific dataset (Figure 11).

Figure 11: Accuracy while utilizing Logistic regression

D. Big Data Vs Data Mining

So far it seems that the size and quality of the input

information is very significant to the model’s accuracy. The

data collection process only lasted for about 2-3 months. So,

what happens if the data collection process lasts for years or

if we have significantly more data?

In this step, the so far developed and optimized sklearn

Decision tree algorithm was recreated utilizing Big Data

technologies like spark and Mllib library and compared to

sklearn’s Decision tree algorithm based on their accuracy.

By default, pyspark’s Mllib maximum different inputs of a

parameter (maxBins) are 32. The ‘time’ parameter used in

the original sklearn model had 96 different inputs (24 hours

x 4 quarters of an hour). In order for the big data model to

work, the ‘time’ parameter was split into 2 different

parameters: ‘Hour of the day’ and ‘Quarter of the hour’.

Besides this difference the overall process of developing the

model was quite similar, targeting the value for prediction,

properly categorizing the string data and developing the

model. The data columns were combined as features array

and the target columns as label ‘CONGESTION’ (Figure

12).

Figure 12: Big Data Decision Tree Input

The data were split into training and test set and the

Decision tree model was used utilizing both ‘gini’ and

‘entropy’ criterion. (Figure 13).

Figure 13: Big Data Decision Tree with entropy criterion

As far the evaluation was concerned the generalization

accuracy increased to 71% with ‘gini’ index and 73% with

‘entropy’. As it seems, the accuracy was almost equal to the

previous model, however splitting the ‘Time’ parameter into

‘Hour of the day’ and ‘Quarter of the hour’ could have

increased the algorithm’s performance.

Figure 14: Big Data Decision Tree with entropy criterion accuracy

TABLE 4 summarizes generalization accuracy results for

various algorithms, parameter settings and python libraries

used.
TABLE 4: CLASSIFIER’S RESULTS

Classifier Criterion /

Split

No of

parameters

Data

Records

Python

Library

Accuracy

%

Decision

Tree

Gini / Best 7 2155 Scikit

learn

67.8

Decision

Tree

Entropy /

Best

7 2155 Scikit

learn

67.5

Decision

Tree

Gini /

Random

7 2155 Scikit

learn

67.1

Decision

Tree

Gini / Best 7 4355 Scikit

learn

70

Logistic

regression

Best 7 4355 Scikit

learn

67.4

Decision

Tree

Gini /

Random

8 4355 PySpark

Mllib

71

Decision

Tree

Entropy /

Random

8 4355 PySpark

Mllib

73

V. CONCLUSIONS AND FUTURE WORK

A. Conlusions

This final section summarizes our conclusions. This

research was conducted to manage and predict in a low

costly but accurate way the traffic congestion in a not very

organized, from a public transport infrastructures point of

view, city using Thessaloniki as a case study. The example

presented was for one of the busiest city streets: Tsimiski St.

 After collecting, storing, and pre-processing data from an

API for 3 months (August, September, October 2019) using

SQL, Python, Geo information system, Machine learning

and Big data technologies, a decision tree classification

model for predicting the traffic congestion was developed

and was compared to other classification algorithms, like

logistic regression.

The model was tested to predict the traffic congestion,

providing results for 2 different timestamps (04.00 and

20.30 in Wednesday) in a very busy road. While the

outcomes were the expected (low congestion in 04.00 and

medium in 20.30), extra testing adjusting split strategies,

criterions were made to increase accuracy. For this reason,

six different tests were conducted with different strategies

proposed and applied for traffic congestion prediction.

When the algorithm compiled with more extracted data (a

second phase of data gathering was done and used for

training the model), the model provided a better accuracy.

Moreover, when the same data were further parsed to be

adjusted to big data technologies generalization accuracy

was further increased (71.1%).

The result of these attempts shown that was the quality and

the size of the input data have a significant role in the

model’s accuracy and results. Besides the importance of the

data, these experiments showed that the Decision Tree

Classifier was more accurate than Logistic Regression.

Finally, this analysis highlighted that there could be still an

accurate model with over 71% accuracy without the costly

data gathering procedure using cameras and other detectors

presented in section II.

B. Challenges

Although a specific data set was used, the data extraction

and pre-processing phase was challenging. The first

challenge was to find the data needed to complete the

analysis. The goal was to retrieve sufficient information to

reflect traffic conditions.

After that important decision we needed to select the most

appropriate algorithm for traffic prediction. Generally,

categorical data work well with Decision Tree algorithms,

while continuous data work well with Logistic Regression

algorithms [23], [24], [25]. All the parameters provided

were discretised and the Decision Tree algorithm was

selected.

C. Future work

Such research requires time-consuming analysis and

different approaches. It is hard to explore every aspect.

However, there are several ideas that could be implemented

in the future.

Regarding data, one idea would be to alter the pre-

processing phase by adding extra normalization, such as hot

encoding. This feature changes all the categorical data to

Boolean adding columns to all possible parameters.

Moreover, another aspect of the data part would be to use

the label encoder, but within specific ranges (for example 0

to 1 or Z scores) to avoid the weight in cases like multiple

categorical values for the same parameter (this would work

better with timestamp categorical values). Furthermore,

regarding the numerical values (road length in our case),

there could be a standardization pre-processing phase. We

could also try different classifiers to see if accuracy

improves, as for instance in benchmark work reported in

[23, 24, 25]. For example, a different approach would be a

combination of one hot encoded and labelled encoded

within 0-1 range categorical values, followed by

standardized numerical values utilizing different machine

learning classifier (e.g. Naïve Bayes, Support Vector

Machine, Random Forest, Neural Network etc.)

What is more, it is already mentioned, a key feature of a

smart city is efficient traffic flow management throughout

the city, that could boost transportation networks flow and

optimize traffic conditions for people and cities in general.

As the population grows, there are traffic issues, increased

emissions, and environmental and economic issues. Because

of the above, the utilization of smart traffic lights is among

the most relevant strategies used by smart cities to come

face to face regarding increasing traffic congestion

problems. An idea would be to use the prediction results

utilizing a smart traffic lights framework that would operate

dynamically based on the predicted traffic congestion.

ACKNOWLEDGMENT

We would like to thank EMISIA SA

(https://www.emisia.com/) for providing access to

significant data.

REFERENCES

[1] Zhanga, K. & Batterman, S., (2013). Air pollution and health risks

due to vehicle traffic. Science of The Total Environment.

[2] United Nations. World Urbanization Prospects: The 2018 Revision.

2018.

[3] Bertot, J.C. & Choi, H., (2013). Big data and e-government: issues,

policies, and recommendations.

[4] West, D.M. (2012). Big Data for Education: Data Mining, Data

Analytics, and Web Dashboards.

[5] U.S. Department of Energy, Smart Grid / Department of Energy,

Retrieved Sep. 29, 2019

[6] Christantonis, K. & Tjortjis C. Data Mining for Smart Cities:

Predicting Electricity Consumption by Classification, Proc. 10th

IEEE Int’l Conf. on Information, Intelligence, Systems and

Applications (IISA 2019), pp. 67-73, 2019.

[7] Christantonis, K., Tjortjis C., Manos A., Filippidou D. & Christelis E.

(2020). Smart Cities Data Classification for Electricity Consumption

https://www.emisia.com/

& Traffic Prediction, Automatics & Software Enginery, 31(1), 49-69

[8] Aguilera, G., Galan, J.L., Campos, J.C. & Rodríguez, P. (2013). An

Accelerated-Time Simulation for Traffic Flow in a Smart City.

[9] Thianniwet, T., Phosaard, S. & Pattara-Atikom, W. (2009).

Classification of Road Traffic Congestion Levels from GPS Data

using a Decision Tree Algorithm and Sliding Windows.

[10] Christantonis, K., Tjortjis C., Manos A., Filippidou D., Mougiakou Ε.

& Christelis E. (2020). Using Classification for Traffic Prediction in

Smart Cities, Proc. 16th IFIP Int’l Conf. on Artificial Intelligence

Applications and Innovations (AIAI 20), pp. 52-61.

[11] Theodorou, T.I., Salamanis, A., Kehagias, D., Tzovaras, D. & Tjortjis

C. (2017). Short-Term Traffic Prediction Under both Typical and

Atypical Traffic Conditions using a Pattern Transition Model, Proc.

3rd Int’l Conf. Vehicle Technology and Intelligent Transport Systems

(VEHITS 17), pp. 79-89.

[12] Pattara-Atikom, W. & Peachavanish, R. (2007). Estimating Road

Traffic Congestion from Cell Dwell Time using Neural Network.

[13] Pongpaibool, P., Tangamchit, P. & Noodwong, K. (2007). Evaluation

of Road Traffic Congestion Using Fuzzy Techniques.

[14] Porikli, F. & Li, X. (2004). Traffic congestion estimation using hmm

models without vehicle tracking.

[15] Lu, J. & Cao, L. (2003) Congestion evaluation from traffic flow

information based on fuzzy logic.

[16] Krause, B. & von Altrock, C. (1996). Intelligent highway by fuzzy

logic: Congestion detection and traffic control on multi-lane roads

with variable road signs.

[17] Alessandri, R. B. A. & M. Repetto. (2003). Estimating of freeway

traffic variables using information from mobile phones.

[18] Lomax, T., Turner, S., Shunk, G., Levinson, H.S., Pratt, R. H., Bay,

P. N. & Douglas B. B. (1997). Quantifying Congestion. Volume 1:

Final Report.

[19] Bertini, R. L. (2005). Congestion and Its Extent.

[20] Mitsakis, E., Salanova, J. M., Chrysohoou, E. & Aifadopoulou G.

(2015). A robust method for real time estimation of travel times for

dense urban road networks using point-to-point detectors. Transport

30(3) 2015, pp. 264-272. Special Issue on Smart and Sustainable

Transport. [DOI:10.3846/16484142.2015.1078845]

[21] Mitsakis, E., Stamos, I., Salanova, J.M. G., Chrysohoou, E. &

Aifadopoulou, G. (2013). Urban Mobility Indicators for Thessaloniki.

Journal of Traffic and Logistics Engineering. (JTLE) (ISSN: 2301-

3680), Vol. 1 No. 2, June 2013. pp. 148 – 152.

[DOI:10.12720/jtle.1.2.148-152]

[22] Salanova, J. M., Chaniotakis, E., Mitsakis, E., Aifandopoulou, G. &

Bischoff J. (2016). Mobile data for transportation. Mobile Data,

Geography, LBS, 29/06 - 01/07 Tartu, Estonia

[23] Tjortjis C., Saraee M., Theodoulidis B., Keane J.A, 'Using T3, an

Improved Decision Tree Classifier, for Mining Stroke Related

Medical Data', Methods of Information in Medicine, Vol. 46, No. 5,

pp. 523-529, 2007,

[24] Zhang S., Tjortjis C., Zeng X., Qiao H., Buchan I., and Keane J.,

'Comparing Data Mining Methods with Logistic Regression in

Childhood Obesity Prediction', Information Systems Frontiers

Journal, Vol. 11, No. 4, pp. 449-460, 2009, (Springer),

[25] Tatsis V.A., Tjortjis C., Tzirakis P., 'Evaluating data mining

algorithms using molecular dynamics trajectories', Int'l Journal of

Data Mining and Bioinformatics (IJDMB), Vol. 8, No. 2, pp. 169-

187, 2013, (Inderscience),

