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Abstract—This paper provides an analysis and proposes a 

methodology for predicting traffic congestion. Several machine 

learning algorithms and approaches are compared to select the 

most appropriate one. The methodology was implemented using 

Data Mining and Big Data techniques along with Python, SQL, 

and GIS technologies and was tested on data originating from one 

of the most problematic, regarding traffic congestion, streets in 

Thessaloniki, the 2nd most populated city in Greece. Evaluation and 

results have shown that data quality and size were the most critical 

factors towards algorithmic accuracy. Result comparison showed 

that Decision Trees were more accurate than Logistic Regression. 
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I. INTRODUCTION 

These days, more and more data regarding cities and urban 

areas are produced. This information is critical for 

automating several procedures, such as road traffic control. 

With urban living increased exponentially in the last 

century, road traffic congestion has become a significant 

problem of our era. Moreover, it is common sense, that high 

traffic congestion may affect other areas such as the 

environment, health, the economy etc. [1].  There is no 

panacea, but as far as the solution for this problem is 

concerned, analyzing congestion data for future traffic 

prediction could make a significant difference.  

It is predicted that by 2050 more than 67 percent of the total 

global population will live in urban areas [2]. This report 

also indicates that from 1950 to 2018, urban living 

exponentially increased from 751 million to 4.2 billion 

people.  

This overpopulation, with the large amount of data which 

record smart cities procedures and functions broaden the 

horizon of data science for smart cities. These data can be 

analyzed for the sake of each city’s procedure optimization. 

One of these procedures that needs to be optimized is traffic 

flow, which causes many issues related to several social and 

economic sectors [1]. 

Our paper researches and develops a prototype model to 

forecast traffic congestion. We evaluated this model in 

Thessaloniki, Greece, a highly populated city with average 

at best public transport infrastructures and no metro subway, 

with Tsimiski Street (one of the busiest main roads in the 

city) as a case study. We present a step by step 

methodology, describing the data engineering part, the data 

transformation part, and the data mining part. 

An important aspect of this work relates to results and 

evaluation, including a detailed comparison of different 

classifiers, used for traffic congestion prediction. 

Furthermore, the most accurate classifier scored over 73% 

on accuracy, utilizing however a low-cost methodology for 

data extraction. 

The remaining of the paper reviews related literature in 

section II, describes the methodology in section III, presents 

results and evaluation in section IV and concludes with 

directions for future work in section V.   

 

II. BACKGROUND 

A. Smart City applications 

Big data mining and machine learning for smart cities 

utilization assists in solving production, transport, and 

traffic management problems in real-time approaches using 

frameworks and systems that are incorporated and provide 

data transfer efficiently through apps and stakeholders [3]. 

There are several cases of smart cities supporting big 

data mining technologies like Smart education [4], Smart 

grid [5] and electricity consumption prediction [6], [7]. 

However, an important aspect relates to Smart traffic lights 

[8] and traffic congestion management and prediction [9], 

[10], [11]. 

A key smart city feature is efficient traffic flow 

management, that could boost transportation networks flow 

and optimize traffic conditions for people and cities in 

general [8]. As population grows, there are traffic issues, 

increased emissions, and environmental and economic 

issues. Because of the above, the utilization of relevant 

strategies (for example traffic congestion prediction or smart 

traffic lights) used by smart cities to deal with increasing 

traffic congestion problems is very important.  

The cost of many of these techniques, however, as well 

as the costs of the necessary technology related to then 

appears to be very high [9]. For example, one strategy in 

order to provide enough data on traffic patterns, smart traffic 

lights and signals must be integrated throughout traffic 

grids. Every sensor could measure a particular traffic flow 

variable like vehicle velocity, traffic density, lights waiting 

time, distances, etc. The number of sensors needed for this 

would be many as well as the multiplied cost for all of them. 

 

B. Traffic congestion prediction and related work 

Real- or future-time traffic jam knowledge would be 

very important for congested and overpopulated locations. 



smart or Intelligent Transportation Systems (ITS) could help 

develop certain congestion data reports via sophisticated 

prediction algorithms.  

Many programs were developed and introduced both by 

corporate and state agencies to collect traffic information to 

supply ITS systems. According to [9], many actions are 

based on selective setup of static detectors like loop coils 

and smart video processing recorders. Considering the cost 

of hardware, plus setup and maintenance costs, the expenses 

of such technologies seem to be quite heavy [9]. 

In addition, such static detectors in most locations are 

exposed to severe weather events. What is more, it is hardly 

cost effective or technically feasible to deploy fixed 

detectors to cover all streets in major urban areas. Therefore, 

an alternative method for collecting traffic information and 

predicting traffic congestion with greater coverage at a 

reduced cost is required. 

Estimation methodologies for the congestion rate can 

differ according on the characteristics of the data gathered. 

There are two different kinds of detectors that can indeed 

automatically collect traffic data: a fixed sensor and a 

mobile detector. Street cameras, speedometers etc., 

considered to be fixed sensors/detectors while mobile 

phones, vehicle GPS considered to be mobile 

sensors/detectors.  

The research in [12] utilized the algorithm of the neural 

network from the mobile phone data gathered. this 

study utilized Cell Dwell Time (CDT), the moment a mobile 

phone connects to a mobile phone service antenna, offering 

a rough travel velocity, combined with video recording of 

traffic from the driver’s perspective. The accuracy of the 

model was 79%. In [9] the authors used another machine 

learning methodology that was better suited to the data 

morphology getting very high accuracy (91%). 

GPS measurements could offer further reliable traffic 

information rather than the CDT results. This study utilised 

a decision tree (J48/C4.5) Classification approach on mobile 

sensors to identify road traffic congestion rates from GPS 

data, but also capturing and utilizing images of road traffic 

conditions by a video camera. Getting data via mobile 

sensors could monitor much broader areas of traffic. The 

algorithm would indeed learn about vehicle's motion 

patterns. The fixed window sliding methodology was also 

utilized. The studies of [13] and [14] predicted the rate of 

traffic jams by implementing fuzzy logic and hidden 

Markov methods, respectively, utilizing traffic camera 

information. 

In addition, the studies reported in [15], [16] and [17] 

explored numerous alternative approaches related to traffic 

congestion research. For instance, in several countries, as 

shown in the surveys of [18] and [19], the key criteria 

utilized to describe traffic congestion rates are duration, 

velocity, size, quality of service, and the traffic signal 

periods that drivers need to stop for. 

As it can been seen, there are several highly efficient 

traffic congestion prediction models, using however costly 

detectors like cameras to capture video recordings and 

images in order to score high accuracy. With that being 

mentioned, it is clear that the challenge is to develop a cost-

effective way to deal with traffic congestion management 

and manage to utilize accurate traffic congestion prediction 

methods using machine learning algorithms without using 

costly detectors and cameras. 

 

III. METHODOLOGY 

The aim of this work was to deal with traffic congestion 

management problems. Our main strategy was to develop 

data mining/machine learning techniques for traffic 

congestion prediction in order to predict the traffic 

depending the street, the specific time etc.  

This would help drivers to avoid high traffic and choose 

routes with better flow. Another advantage of utilizing this 

strategy could be that in a city, ridden with transportation 

problems, the use of ITS based on the traffic prediction 

algorithms could make a difference. What is more, based on 

these algorithms, smart traffic lights mechanisms could be 

utilized on future studies. 

The idea was to extract data from a specific API, get data 

from json array, use several technologies and techniques for 

data pre-processing and mining to predict traffic. For this 

project three main tasks have been combined. 

1 Data engineering phase  

2 Data pre-processing phase 

3 Classification for traffic congestion forecasting. 

 

A. Data engineering 

There were 3 different sources regarding data extraction.  

Traffic congestion data: Traffic congestion data 

originated from http://opendata.imet.gr/dataset/network-

congestion. This is a website that contains traffic data 

regarding speed, congestion, road links, travel times, 

historical data etc. about the city of Thessaloniki. Data were 

gathered from various sources [20], [21], [22]. In the json 

file for congestion we collected data including Link_id, 

Link_Direction, Timestamp, Congestion using the urllib 

library. 

Emisia Database: This database, offered by Emisia S.A., 

was created for an application called Wiseride. This App 

used to provide real time data from osmosis database (a 

database that contains data from taxi drivers and other 

sources). Although these real time data were no longer 

accessible, the database contains data about the Link_id‘s of 

part 1 and it could be very useful to have an idea about the 

street names of the max speed of each road. 

Openstreetmaps and PostGIS database: The data of part 

two can be visualized by QGIS 2.18 app in cooperation with 

open source opensteetmap.org. OpenStreetMap (OSM) is a 

community project involving a world map that is publicly 

available. The data generated by the project are regarded to 

be its main output instead of the map itself. OSM's creation 

and growth has been driven by restrictions to the use or 

accessibility of map data throughout much of the world, as 

well as the advent of affordable portable satellite navigation 

devices. OSM is regarded to be a notable example of 

voluntary information on geography. 

http://opendata.imet.gr/dataset/network-congestion
http://opendata.imet.gr/dataset/network-congestion


Figure 1: Thessaloniki via QGIS 

For this work, we developed a database to store data. 

Initially, a Thessaloniki table has been created containing 

data about streets, such as street name, the maximum 

allowed speed, the road type (main, secondary etc.) as 

shown in TABLE 1. This table’s data originated from the 

Emisia Wiseride application and contained several 

information, some of it regarding unknown parameters. 

TABLE 1: THESSALONIKI’S IMPORTANT PARAMETERS 

DETAILED DESCRIPTION. 

Variable Type Description 

id NUMBER(15)  

UNIQUE NOT 

NULL 

Id of the part of the 

road of the wiseride 

app 

osm_id  NUMBER(15) 

UNIQUE NOT 

NULL 

Id of the open street 

map part of the road. 

This matches with the 

traffic data, therefore it 

is the part of the road 

for traffic congestion 

prediction. 

osmname VARCHAR2(100) Name of the road 

osm_source 

_id 

NUMBER(15) The first osm_id of the 

road 

osm_target 

_id 

NUMBER(15) The last osm_id of the 

road 

clazz NUMBER(5) Unknown 

flags NUMBER(1) Unknown 

source NUMBER(15) Unknown 

Target NUMBER(15) Unknown 

Length FLOAT The length of each Id 

Kmh NUMBER(3) Top speed 

Cost FLOAT Unknown 

reverse_cost FLOAT Unknown 

x1 FLOAT Map coordinates in X 

axis, where the Id starts   

y1 FLOAT Map coordinates in Y 

axis, where the Id starts   

x2 FLOAT Map coordinates in X 

axis, where the Id ends   

y2 FLOAT Map coordinates in Y 

axis, where the Id ends   

category VARCHAR2(10) Type of the road 

There were several important notes to be mentioned.  

• An osm_id included several id’s 

• In most of the cases an osm_id was the part of the road 

that describes the distance from one traffic light to the 

next traffic light 

• An Id described the road for one block. 

• There were several street categories as presented in 

TABLE 2. 

TABLE 2:: STREET CATEGORIES 

Also, a very important table was the traffic congestion 

table (TABLE 3). This table has several variables. Ιn order for 

this table to be filled, two data extracting methods were 

developed.  

• In early stages of the project, data were extracted from 

http://opendata.imet.gr/dataset/network-congestion into 

a csv file or copied to a txt file as a Json array. Later, all 

these files were parsed using python 3.6 with Spyder 

IDE. As mentioned, each record of the json array 

contains information about Link_id, Link_Direction, 

Timestamp and Congestion. The Link_id, 

Link_Direction and Timestamp provided the unique 

LINK_TIMESTAMP_ ID of this table, while the other 

values were extracted as they were. 

•  In order to have the best possible algorithm for traffic 

prediction, the amount of data required was vast. To 

achieve this, an algorithm has been developed in order 

to extract traffic data from the aforementioned API and 

insert them to the table avoiding duplicate records. The 

link was renewed almost every 15 minutes, so the 

algorithm could extract data every quarter of an hour. In 

total, 828897 records have been inserted. 

The overall extraction phase was completed during 

August–October 2019. Our SQL and Python code can be 

found here: https://github.com/ArisMyst/ParseTrafficData 

TABLE 3: TRAFFIC CONGESTION TABLE 

Variable Type Description 

LINK_ 
TIMESTAMP 

_ID 

VARCHAR2(

100) UNIQUE 

NOT NULL 

Unique Id of the open 

street map part of the 

road and timestamp  

LINK_ID NUMBER(10) 

NOT NULL 

Id of the open street map 

part of the road. This 

matches with the osm_id 

from Thessaloniki table 

LINK_ 

DIRECTION 

NUMBER(1) 

NOT NULL 

If it has 2 directions, it is 

a two-way road 

TIME_STAMP TIMESTAMP Exact time of the 

response data. The 

provided data renewed 

every 15 minutes 

CONGESTION VARCHAR2(

10) 

Low, Medium, or High 

KS_2K Main collector road 2-way without median strip

DA_2K secondary arterial road 2-way without median strip

KS_1K Main collector road One-way or two-way with median strip

KT600 unknown unknown

KT100 unknown unknown

DS_XX Secondary collector road unknown

DA_1K secondary arterial road One-way or two-way with median strip

KA_1K main arterial road One-way or two-way with median strip

KA_2K main arterial road 2-way without median strip

http://opendata.imet.gr/dataset/network-congestion
https://github.com/ArisMyst/ParseTrafficData


B. Data preprocessing 

The data preprocessing phase was one of the most 

challenging parts of this project. In order to use 

classification for traffic congestion forecasting all data 

required preprocessing.  

A problem is related with the max allowed speed for each 

road. New parameters had to be created for non-continuous 

values providing details about the road, such as road length 

and sequence. 

The idea was to combine information from Tables 1, 2 and 3 

and discretize continuous values. For example, the 

timestamp was to be divided into different time slots, like 

per 15 minutes or per day of the week or per shopping 

hours, as explained in the following paragraphs. 

Timestamp. An empirical evaluation about shopping - office 

hours and traffic congestion involved interviewing several 

employees and freelancers motivated us to divide the 24-

hour daily cycle into 4 segments. This segmentation is 

variable and depends on the type of day and store/office 

opening hours. 

• From 09:00 to 20:59 on Tuesdays, Thursdays, and 

Fridays the stores are 'open'. 

• From 09:00 to 17:59 on Mondays, Wednesdays, and 

Saturdays the stores are 'open'. 

• From 07:30 to 08:59 every day except Sundays the 

stores are 'opening'.  

• From 21:00 to 22:00 on Tuesdays, Thursdays, and 

Fridays the stores are 'closing'. 

• From 18:00 to 19:00 on Mondays, Wednesdays, and 

Saturdays the stores are 'closing'. 

• In all other cases the stores are 'closed'. 

Another important segmentation we performed, was based 

on the timestamp providing the day of the week. The 

prediction was modeled based on a weekly cycle model. 

Road length and sequence. As already mentioned, an 

osm_id or link_id (they were the same object) contained 

several simple ids (TABLE 1 - TABLE 3). It was easy to 

identify what ids contained a link_id using the database. 

However, the difficulty occurred when the sequence of 

osm_id was needed. To achieve that, the starting and the end 

point of each osm_id needed to be identified.  

Also, the sequence and the location of simple ids was 

known via x1, x2, y1 and y2 (Table 1). So, the end of each 

link_id was like where the spot of the end of id was while 

the link_id was not the same. A similar procedure was 

applied to find the overall road length of link_id. 

Also, as far as the road length is concerned, the average 

link_id road length was almost 200 meters. For this reason, 

a new categorical value was created to characterize if a 

link_id is over 200 meters or not. 

 

C. Data Μining / Machine Learning 

1) Selected data  

The data selected were:  

• Time 

• Day 

• Stores  

• Congestion 

• Osm_id 

• Road larger than 200 meters 

• Max kilometers allowed on the road 

• Road category 

Traffic prediction was attempted for one of the busiest roads 

in Thessaloniki, Tsimiski St., the part with osm_id 

corresponding to Tsimiski intersections with Venizelou St. 

and Dragoumi St. This part is not very long and only few 

traffic records for this osm_id were extracted. This was a 

common issue regarding data extracted for the whole city of 

Thessaloniki.  

In Fig. 2Error! Reference source not found., green color 

describes all the osm_ids that Thessaloniki has, while brown 

color describes the osm_ids that contained more than 10 

traffic congestion timestamp records. As it can been seen, 

there were several roads that did not contain enough data. 

Similarly, the traffic congestion data about the 13769164 

osm_id were not enough. For this reason, the selected data 

would cover exactly two preceding and one following 

osm_id, both having sufficient data. These 3 extra osm_id’s 

were 197107696,176665188 and 174019380.  

Figure 2: All OMS_ID’s vs OMS_ID’s with traffic data vs 13769164 ID 

As far as the selection is concerned, low congestion output 

was 0, medium output was 1 and high congestion output 

was 2. Also, there was a chance that each osm_id contained 

several different street categories (TABLE 2). This may 

occurred because each osm_id described several ids and 

some of them could be in different road categories. An 

osm_id is assigned the road category with the most 

occurrences for this specific osm_id.  

 

2) Initial Prediction Algorithm 

In general, categorical data work well with Decision Trees 

[23], [24], [25] so all the available parameters in the traffic 

dataset were discretized. As a result, a decision tree 

classifier was developed for traffic congestion forecasting 

using Python’s 3.6 Scikit learn library with Jupyter 

Notebook. In a later step, the same decision tree algorithm 

was developed utilizing Big Data technologies with Pyspark 

and Mllib library.   

Initially, the exported data in csv format were parsed using 

Pandas library. The extracted records were 2155 in total. As 

a first step, removal and targeting of congestion column was 

done in order for the model to identify the prediction 

parameter. 

The next step was to use label encoder in order to properly 

categorize the values time, day, open stores, osm_id, road 

length greater than 200 meters and road category, and pass 

the information to the model as inputs. 

After this, the text variables were removed so the dataset 

contained only categorical values, as it can been seen in 



Figure 3, while the targeted congestion was transformed like 

the previous categorical values. 

Figure 3: Text variables removed 

The next step of this process was to train the algorithm, 

using 80% of the dataset for training and 20% for testing. 

Then the tree algorithm, from the sklearn library was used 

and a decision tree classifier model was created. The 

model’s parameters such as criterion = ‘gini index’, splitter 

= ‘best’ etc. can been seen in Figure 4. This model was 

trained utilizing the data generated by the training set. 

Moreover, the model score was very high, reaching 93% 

 

Figure 4: Creating a decision tree classifier 

 

IV. RESULTS AND EVALUATION 

A. Decision tree algorithm results  

After the creation of the model, it was time to check the 

prediction results. For example, it is almost sure that at 

04.00 in the morning during a weekday like Wednesday that 

traffic congestion is low. This case will be mentioned from 

now on as case 1. The categorical value for 04.00 was 16, 

while for Wednesday was 6. Also, the categorical osm_id 

for 13769164 was 0, the kmh parameter 1 and the road 

category 1 as it can been seen in Fig. 5. 

Figure 5: Example for osm_id 13769164 

After inserting these labeled parameters in the prediction 

function, the model’s response was 0. That means that the 

traffic congestion at the aforementioned case 1 was low, 

which was an expected outcome. 

After this prediction, it was time to check the model for a 

more uncertain case. The model was tested for 20.30 in the 

afternoon on a Wednesday (case 2). The categorical value 

for 20.30 was 82, while for Wednesday it was 6. Also, the 

categorical osm_id for 13769164 was 0, the kmh parameter 

1 and the road category 1. 

For case 2 the model’s response was 1. That means that the 

traffic congestion was medium, which was expected. As far 

as the accuracy is concerned, results showed that after 

importing the necessary metrics, generalization accuracy 

was 67.8%. 

 

B. Improving Prediction Algorithms  

 In this stage, several efforts were made for accuracy 

improvement. First, as far as the splitting criterion is 

concerned, the default was “gini”. This feature provides the 

user the ability to use different attribute selection measures. 

One possible attempt to improve accuracy was to choose a 

different attribute selection measure. Two supported criteria 

are “gini” (gini index) and “entropy” (information gain). 

 

Figure 6: Choosing information gain 

After this, the model score remained comparable. As for the 

predictions, the results remained the same, 0 (low) for case 1 

and 1 (medium) for case 2. However, generalization 

accuracy dropped to 67.5% from 67.8%. As it seems, 

utilizing entropy did not increase performance. 

For optimizing decision tree performance, another attempt 

was to change the split strategy of the algorithm. Two 

supported strategies were “best” to select the best split and 

“random” to select a random split. The split strategy was 

changed from “best” to “random” (Figure 7). 

 

Figure 7: Changing the split strategy 

After this change accuracy remained roughly the same, 

however, the results did not remain the same. For case 1 the 

traffic congestion prediction was 0 (low) and 0 (low) for 

case 2. However, generalization accuracy dropped to 67.1%. 

As it can been assumed, utilizing the random split did not 

improve the algorithm’s performance. All in all, 

implementing the decision tree algorithm with Gini index 

and best split was the best performed algorithm.   

An alternative means to improving accuracy would involve 

extracting more data. For these reasons, an extra extraction 

stage was implemented gathering a total number of 4355 

records, almost twice as the original data set. The initial 

decision tree algorithm with Gini index and best split was 

the best performing algorithm and selected for this attempt 

(Figure 8). 

        Figure 8: Decision tree algorithm with Gini index and best split 

After this change,  the model score dropped to 86.7% and 

the prediction results remained the same with the 1st 

algorithm, providing 0 (low) for case 1 and 1 (medium) for 

case 2. 



However, generalization accuracy increased almost to 70%. 

As it seems, gathering, extracting, and selecting more data 

and utilizing more information increased the algorithm’s 

performance. 

 

C. Decision Tree Vs Logistic Regression Algorithms 

In this phase, we compared Decision trees and Logistic 

regression in terms of accuracy. As far as the selection was 

concerned, the only difference was to road length that was 

set to numerical instead of categorical (Figure 9). After the 

data were imported via csv parsing, the label encoder was 

utilized so the data to be categorized. 

 

Figure 9: Data for Logistic Regression 

Before splitting the algorithm, Logistic Regression from 

sklearn library was used and a Logistic regression classifier 

model was created. This model was trained from the training 

set, as it can been seen in Figure 10. 

 

Figure 10: Creating a Logistic regression classifier and splitting the data 

As a result of these changes, the model score was low, close 

to 66%. Regarding the predictions, the results did not 

remain the same. The logistic regression algorithm provided 

1 (medium) for case 1 and 1 (medium) for case 2.  

What is more, the generalization accuracy dropped to 67.4% 

compared to 70% for Decision Trees. As it was realized, 

utilizing a Logistic regression algorithm was not the best 

option when using the specific dataset (Figure 11). 

 

Figure 11: Accuracy while utilizing Logistic regression 

 

D. Big Data Vs Data Mining 

So far it seems that the size and quality of the input 

information is very significant to the model’s accuracy. The 

data collection process only lasted for about 2-3 months. So, 

what happens if the data collection process lasts for years or 

if we have significantly more data?  

In this step, the so far developed and optimized sklearn 

Decision tree algorithm was recreated utilizing Big Data 

technologies like spark and Mllib library and compared to 

sklearn’s Decision tree algorithm based on their accuracy. 

By default, pyspark’s Mllib maximum different inputs of a 

parameter (maxBins) are 32. The ‘time’ parameter used in 

the original sklearn model had 96 different inputs (24 hours 

x 4 quarters of an hour). In order for the big data model to 

work, the ‘time’ parameter was split into 2 different 

parameters: ‘Hour of the day’ and ‘Quarter of the hour’. 

Besides this difference the overall process of developing the 

model was quite similar, targeting the value for prediction, 

properly categorizing the string data and developing the 

model. The data columns were combined as features array 

and the target columns as label ‘CONGESTION’ (Figure 

12). 

 
Figure 12: Big Data Decision Tree Input 

The data were split into training and test set and the 

Decision tree model was used utilizing both ‘gini’ and 

‘entropy’ criterion. (Figure 13). 

  
Figure 13: Big Data Decision Tree with entropy criterion  

As far the evaluation was concerned the generalization 

accuracy increased to 71% with ‘gini’ index and 73% with 

‘entropy’. As it seems, the accuracy was almost equal to the 

previous model, however splitting the ‘Time’ parameter into 

‘Hour of the day’ and ‘Quarter of the hour’ could have 

increased the algorithm’s performance.  

 
Figure 14: Big Data Decision Tree with entropy criterion accuracy 

TABLE 4 summarizes generalization accuracy results for 

various algorithms, parameter settings and python libraries 

used.  
TABLE 4: CLASSIFIER’S RESULTS 

Classifier Criterion / 

Split 

No of 

parameters 

Data 

Records 

Python 

Library 

Accuracy 

% 

Decision 

Tree 

Gini / Best 7 2155 Scikit 

learn  

67.8 

Decision 

Tree 

Entropy / 

Best 

7 2155 Scikit 

learn  

67.5  

Decision 

Tree 

Gini / 

Random 

7 2155 Scikit 

learn  

67.1 

Decision 

Tree 

Gini / Best 7 4355 Scikit 

learn  

70 

Logistic 

regression  

Best 7 4355 Scikit 

learn  

67.4  

Decision 

Tree 

Gini / 

Random 

8 4355 PySpark 

Mllib 

71 



Decision 

Tree 

Entropy / 

Random 

8 4355 PySpark 

Mllib 

73 

 

V. CONCLUSIONS AND FUTURE WORK  

A. Conlusions  

This final section summarizes our conclusions. This 

research was conducted to manage and predict in a low 

costly but accurate way the traffic congestion in a not very 

organized, from a public transport infrastructures point of 

view, city using Thessaloniki as a case study. The example 

presented was for one of the busiest city streets: Tsimiski St. 

 After collecting, storing, and pre-processing data from an 

API for 3 months (August, September, October 2019) using 

SQL, Python, Geo information system, Machine learning 

and Big data technologies, a decision tree classification 

model for predicting the traffic congestion was developed 

and was compared to other classification algorithms, like 

logistic regression. 

The model was tested to predict the traffic congestion, 

providing results for 2 different timestamps (04.00 and 

20.30 in Wednesday) in a very busy road. While the 

outcomes were the expected (low congestion in 04.00 and 

medium in 20.30), extra testing adjusting split strategies, 

criterions were made to increase accuracy. For this reason, 

six different tests were conducted with different strategies 

proposed and applied for traffic congestion prediction. 

When the algorithm compiled with more extracted data (a 

second phase of data gathering was done and used for 

training the model), the model provided a better accuracy. 

Moreover, when the same data were further parsed to be 

adjusted to big data technologies generalization accuracy 

was further increased (71.1%). 

The result of these attempts shown that was the quality and 

the size of the input data have a significant role in the 

model’s accuracy and results. Besides the importance of the 

data, these experiments showed that the Decision Tree 

Classifier was more accurate than Logistic Regression. 

Finally, this analysis highlighted that there could be still an 

accurate model with over 71% accuracy without the costly 

data gathering procedure using cameras and other detectors 

presented in section II.  

 

B. Challenges 

Although a specific data set was used, the data extraction 

and pre-processing phase was challenging. The first 

challenge was to find the data needed to complete the 

analysis. The goal was to retrieve sufficient information to 

reflect traffic conditions.  

After that important decision we needed to select the most 

appropriate algorithm for traffic prediction. Generally, 

categorical data work well with Decision Tree algorithms, 

while continuous data work well with Logistic Regression 

algorithms [23], [24], [25].  All the parameters provided 

were discretised and the Decision Tree algorithm was 

selected. 

 

C. Future work 

Such research requires time-consuming analysis and 

different approaches. It is hard to explore every aspect. 

However, there are several ideas that could be implemented 

in the future.  

Regarding data, one idea would be to alter the pre-

processing phase by adding extra normalization, such as hot 

encoding. This feature changes all the categorical data to 

Boolean adding columns to all possible parameters. 

Moreover, another aspect of the data part would be to use 

the label encoder, but within specific ranges (for example 0 

to 1 or Z scores) to avoid the weight in cases like multiple 

categorical values for the same parameter (this would work 

better with timestamp categorical values). Furthermore, 

regarding the numerical values (road length in our case), 

there could be a standardization pre-processing phase. We 

could also try different classifiers to see if accuracy 

improves, as for instance in benchmark work reported in 

[23, 24, 25]. For example, a different approach would be a 

combination of one hot encoded and labelled encoded 

within 0-1 range categorical values, followed by 

standardized numerical values utilizing different machine 

learning classifier (e.g. Naïve Bayes, Support Vector 

Machine, Random Forest, Neural Network etc.) 

What is more, it is already mentioned, a key feature of a 

smart city is efficient traffic flow management throughout 

the city, that could boost transportation networks flow and 

optimize traffic conditions for people and cities in general. 

As the population grows, there are traffic issues, increased 

emissions, and environmental and economic issues. Because 

of the above, the utilization of smart traffic lights is among 

the most relevant strategies used by smart cities to come 

face to face regarding increasing traffic congestion 

problems. An idea would be to use the prediction results 

utilizing a smart traffic lights framework that would operate 

dynamically based on the predicted traffic congestion. 
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