
An Improved Methodology on Information Distillation by Mining

Program Source Code

Y. Kanellopoulos1, 2, C. Makris2 and C. Tjortjis1

1 School of Informatics, University of Manchester

2
 Computer Engineering & Informatics Department, University of Patras

Contact author:

Christos Tjortjis,

School of Informatics, University of Manchester,

P.O. Box 88, Manchester, M60 1QD, UK.

Tel: +44 161 3063304, Fax: +44 161 3061281

Email: christos.tjortjis@manchester.ac.uk

Abstract

This paper presents a methodology for knowledge acquisition from source code. We

use data mining to support semi-automated software maintenance and comprehension

and provide practical insights into systems specifics, assuming one has limited prior

familiarity with these systems.

We propose a methodology and an associated model for extracting information from

object oriented code by applying clustering and association rules mining. K-means

clustering produces system overviews and deductions, which support further

employment of an improved version of MMS Apriori that identifies hidden relationships

between classes, methods and member data. The methodology is evaluated on an

industrial case study, results are discussed and conclusions are drawn.

2

Keywords: Data/code mining, software maintenance issues, program

comprehension, knowledge acquisition methods.

1. Introduction

It is well understood and accepted that developing software systems of any size

which do not need to be changed is unattainable [23]. Such systems, once in use, need

to be functional and flexible in order to operate correctly and fulfil their mission, as new

requirements emerge. As a result, software systems remain subject to changes and

maintenance throughout their lifetime.

It is crucial to manage such changes, as a lot of effort and time are required in order

to keep software systems operational and fit for purpose. Several studies investigating

post delivery costs of changes have shown that such costs can be as high as 50-75%

of the total system cost throughout the entire system life cycle [21], [26].

The discipline concerned with post delivery changes applied to software systems is

known as software maintenance. Given the high costs, many organisations often

consider their maintenance processes as an area of competitive advantage [16].

Documentation should, in theory, assist maintainers to identify problematic files or

modules; alas, in practise, it is often outdated and unreliable [23], [26]. As a result, the

best alternative for software maintainers is to comprehend source code, which is both

costly and time consuming [4]. More specifically, 50-90% of the maintenance

engineers’ time is reported to be spent on program comprehension [26].

The work presented in this paper aims at developing a methodology for semi-

automated program comprehension and maintenance incorporating data mining

techniques. A fundamental underlying assumption is that the software maintainer may

have little or no knowledge of the program which is analysed.

The research objectives of this work include the definition of an input data model,

and an associated methodology to populate a database with elements extracted from

3

source code, the application of a selection of data mining techniques and the

evaluation of results in consultation with domain experts.

More specifically, first we define the input model needed to extract data from C#

source code; this requires defining entities and their related attributes. Then we

propose a methodology which extracts data from source code based on the defined

input model. Subsequently we employ Clustering in order to provide software

maintainers with a quick and rough grasp of a software system so that they can

operate with a level of confidence as if they had prior familiarity with the system. After

that, we apply Association Rules mining in order to identify hidden relationships

between classes, member data, and methods and we assess the feasibility of the

proposed methodology, in producing valid, useful and novel patterns and knowledge

about a software system.

C# was selected as the programming language to be examined as it is a new,

widely used language associated with comprehension difficulties when compared to

other programming languages [29]. It was also selected because it is reasonably

expected that a significant part of future legacy systems will have been written in C#.

C#, as an object oriented language, has the advantage that it can be analyzed at either

a detailed, technical level in the structural domain, (member data analysis), or at a

more abstract level in the behavioral domain (member methods analysis).

The contribution of this research work is twofold: first we propose a novel

algorithmic framework which combines two different kinds of data mining algorithms,

one for clustering and one for mining association rules from code; this provides

maintenance engineers with a more comprehensive view of the system under

maintenance, at various levels of abstraction. Secondly, the efficient implementation of

this framework required a number of key algorithmic decisions including the following:

• The choice of appropriate data mining algorithms.

• The definition of novel algorithmic metrics.

4

• The way that the chosen clustering algorithm interfaces and connects to the

chosen association rules mining algorithm.

Although both clustering and association rules have been used in isolation in the

past in order to support software maintenance, this is the first time combining these

techniques is attempted [14], [15], [17], [20]. The results are not only promising but also

address a fundamental requirement that maintenance engineers should be able to

switch focus between various levels of abstraction and partially understand a system

using a combination of the bottom-up, top-down or the middle out approach [26].

Combining the overviews provided by high level clustering and the insights into inter

and intra-cluster interrelationships provided by association rules are unique

contributions to facilitating software maintenance and comprehension.

The remaining of this paper is organised as follows. Section 2 reviews the existing

work in the area of data mining for program comprehension; and describes the data

mining algorithms we employed in this research work. Section 3 outlines the proposed

methodology for extracting data from C# source code, the input data model and the

data mining techniques we used. Section 4 assesses the accuracy of the output of this

methodology, analyses its results and outlines deductions from its application. Finally,

conclusions and directions for future work are presented in Section 5.

2. Background

Software maintenance is the most difficult and expensive stage in software lifecycle,

often performed with limited understanding of the design and the overall structure of a

system because of commercial pressures [18]. Fast, unplanned modifications, based

on partial understanding of a system, give rise to increased code complexity and

deteriorated modularity, thus resulting in 50-90% of the maintainers’ time to be spent

on program comprehension [26]. Furthermore it is recognised that there are no explicit

guidelines given a program understanding task, nor there are good criteria to decide

how to represent knowledge derived by and used for it [3].

5

2.1 Data Mining for Program Comprehension

Data mining and its ability to deal with vast amounts of data, has been considered a

suitable solution in assisting software maintenance, often resulting in remarkable

results [2], [12], [14], [15], [17], [20], [27], [30]. Data mining can discover non-trivial and

previously unknown relationships among records or attributes in large databases [7],

[8]. This highlights the capacity of data mining to obtain useful knowledge about the

structure of large systems. It has three features that make it useful for program

comprehension and related maintenance tasks [17]:

• It can be applied to large volumes of data. This implies that it has the

potential to analyse large systems with complex structure.

• It can be used to expose previously unknown non-trivial patterns and

associations between items in databases. Therefore, it can be used to reveal

hidden relationships among program components.

• It can extract information regardless of any previous domain knowledge.

This feature is ideal for maintaining software with poor knowledge about its

functionality or implementation details.

Data mining has been previously used for identification of subsystems based on

associations (ISA methodology) [17]. This approach provides a system abstraction up

to the program level as it produces a decomposition of a system into data cohesive

subsystems by detecting associations between programs sharing the same files.

Sartipi et al. used data mining for architectural design recovery [20]. They proposed

a model for the evaluation of the architectural design of a system based on

associations among system components and used system modularity measurement as

an indication of design quality and its decomposition into subsystems. Three

association views of a system were generated: a) control passing which represents

system components correlation based on function invocation, b) data exchange which

represents system components correlation based on aggregate data types and c) data

6

sharing which represents system components correlation based on functions sharing

global variables. This approach models software systems as attributed relational

graphs with system entities as nodes and data-control-dependencies as edges.

Application of association rules mining decomposes such graphs into domains of

entities based on the association property. This approach is based on the concept of

the association between the components of a system. There are however other

characteristics that can play a role in grouping system components, such as the

number of member data or functions in a class. These can be discovered by using

other data mining techniques like clustering.

This data mining technique has been used to support software maintenance and

software systems knowledge discovery [19]. This work proposes a methodology for

grouping Java code elements together, according to their similarity and focuses on

achieving a high level system understanding. The methodology derives system

structure and interrelationships as well as similarities among system components by

applying cluster analysis on data extracted from source code. It consists of two main

parts, the input model and the clustering algorithm. The input model takes into account

five basic Java code elements: files, packages, classes, methods, and parameters.

These elements form the entities to be stored in respective tables. Each entity also has

a number of associated members. A Hierarchical Agglomerative Clustering (HAC)

algorithm is employed to reveal similarities between classes and other code elements

thus facilitating software maintenance and Java program comprehension. The

methodology was evaluated on a small sized system (10-20 classes) only. It would be

very interesting to see how this methodology scales up to deal with real industrial scale

systems.

Understanding low/medium level concepts and relationships among components at

the function, paragraph or even line of code level by mining C and COBOL legacy

systems source code was addressed in [27], [28]. For C programs, functions were used

as entities, and attributes defined according to the use and types of parameters and

7

variables, and the types of returned values. Then clustering was applied to identify sub-

sets of source code that were grouped together according to custom-made similarity

metrics [28]. For COBOL programs, paragraphs were used as entities, and binary

attributes depending on the presence of user-defined and language-defined identifiers.

In this case association rules were derived in order to establish inter-group and intra-

group relationships [27]. Both approaches address software systems at medium and

low level and confirm that data mining can produce structural views of source code

thus facilitating legacy systems understanding. Their shortcoming is failing to capture

correlations across system components such as programs and files [27], [28].

An approach for the evaluation of dynamic clustering is presented in [31]. The scope

of this solution is to evaluate the usefulness of providing dynamic dependencies as

input to software clustering algorithms. This method consists of three phases: The first

is the analysis of dynamic dependencies by adding instrumentations when compiling

the source code. The second is the analysis of static dependencies by extracting them

with the use of Swagkit [9], a software architecture toolkit developed in the university of

Waterloo. The last step is filtering in order to help weigh the dynamic dependencies

graphs. The method was applied to Mozilla, a large open source software system with

more than four million lines of C/C++ [31]. The conclusion of this work is that there is

merit in clustering dynamic dependencies of a software system. That means that better

and fuller dynamic dependencies graphs and clustering algorithms should be

implemented in order to give better chances to dynamic clustering.

Clustering over a Module Dependency Graph (MDG) [14] uses a collection of

algorithms which facilitate the automatic recovery of the modular structure of a software

system from its source code. The method creates a hierarchical view of system

architecture into subsystems, based on the components and the relationships between

components that can be detected in source code. First the system modules and the

module-level relationships are presented as a module - dependency graph. Then this

graph is partitioned, so that the high - level subsystem structure can be derived from

8

the component level relationships extracted from the source code. Based on the

concepts of cohesion and coherence three parameters are introduced: intra-

connectivity, inter-connectivity and modularisation quality. The basic goal of this

modularisation technique is to automatically partition the components of a system into

clusters (subsystems) so that the resultant organisation concurrently minimises inter-

connectivity while maximising intra-connectivity. The underlying assumption is that a

well-designed system is organised into cohesive clusters that are loosely

interconnected. This approach provides a system abstraction up to the program level.

The main drawback of this solution is that as the number of files exceeds 20,

calculation time is greatly increased.

2.2 Data Mining Algorithms Selection

As clustering and association rule mining have been shown to be the most

promising data mining techniques in the area of software maintenance [15], [20], [27],

[30], we decided to use appropriate versions of K-Means clustering and MMS Apriori

for this work. The algorithms are detailed in the following subsections. Details on how

these algorithms were parameterised can be found in Section 3.

2.2.1 K-Means Description

K-means clustering is a commonly used partitioning algorithm. Each cluster is

represented by the mean value of the objects in the cluster. As a result, cluster

similarity is measured based on the distance between the object and the mean value of

the input data in a cluster. It is an iterative algorithm in which objects are moved among

clusters until a desired set is reached. The steps of the algorithm can be described as

follows [6]:

Given a set of n objects t1, t2,…,tn

and a number k of desired clusters,

9

i=1 p!Ci

assign initial values for means m1, m2,…, mk

repeat

 assign each item ti to the cluster with the closest mean;

 calculate new cluster mean;

until means m1, m2,…, mk do not change

The squared-error criterion is used to measure the sum of the squares of the

distance between each object and the mean. The sum should be minimized in order to

obtain a good clustering result. It is obvious that the smaller the sum, the more tightly

the objects are clustered around the mean value (centroid), and clustering is more

precise. The squared-error criterion can be expressed by the formula in equation 1:

SSE= ∑ ∑ dist(ci,p)
2 Equation 1

where dist is the standard Euclidean (L2) distance between two objects in Euclidean

space; p is an object belonging to the ith cluster Ci, and ci is the mean of the cluster.

The algorithm is suitable for discovering spherical-shaped clusters in small to

medium size databases. However, its main problems are that it is sensitive to noise

and to the initial partitioning. As many possible initial partitions lead to many different

results, the final clustering is influenced by the initial partition, which is indicated by the

user input [8].

2.2.2 MMS Apriori Description

Multiple Minimum Support (MMS) Apriori [11] is based on the combination of two

algorithms: MSApriori [13] and DIC [5]. More specifically Liu et al. in [13] presented an

algorithm called MSApriori, which was based on algorithm Apriori [1] and could find

rules among items with different supports. The support for each different item was

computed using the formula in equation 2:

 K

10

)()(

)()(
)(

ifiM

Otherwise

LSiM

LS

iM
iMIS

⋅=

>
=




β

Equation 2

where f(i) denotes the actual frequency of an item in the dataset, LS is a user defined

lowest minimum item support allowed, and β is a parameter that controls how the

Minimum Item Support (MIS) values should be related to their frequencies. The

algorithm follows similar phases to the Apriori algorithm, with the difference that the

minimum support for itemsets I1, l2,…, lm is computed to be equal to min[MIS(I1),

MIS(I2),…MIS(Im)].

On the other hand, Brin et al. in [5] presented the algorithm DIC, which made use of

a single minimum support and reduced the number of passes made over the data in

comparison to the classic Apriori algorithm. The basic idea behind DIC is that one does

not have to wait until a pass is complete before counting higher order itemsets; for

example we can begin counting 2-itemsets even before we have finished counting all

1-itemsets.

MMS Apriori combines effectively the two approaches [11]. Hence, first it identifies

all large and locally frequent 1-itemsets and assigns an MIS value to them. Then every

itemset is marked with a different state in six different possible ways, which are:

• Dashed Circle (DC) – suspected small itemset – an itemset we are still counting

and its count is below its MIS value – also the initial state of all itemsets.

• Solid Circle (SC) – confirmed small itemset – an itemset we have finished

counting having its count is below its own MIS value, and found not to be locally

frequent at any partition.

• Dashed Square (DS) – suspected large itemset – an itemset we are still

counting, but its count already exceeds its MIS value.

11

• Solid Square (SS) – confirmed large itemset – an itemset we have finished

counting through all the transactions and that exceeds its MIS value.

• Dashed Triangle (DT) – an itemset found locally frequent that we are still

counting to see if its final count is above its MIS value.

• Solid Triangle (ST) – an itemset that we finished counting through all the

transactions and that was found locally frequent at some partition, but its final

count is below its MIS value.

Every 1-itemset begins to be counted with its state DC, except from the empty

itemset, which is marked immediately with its state solid box. During traversals and at

suitably defined periodic time intervals the counter of every counted itemset is checked

against its MIS value. If its counter is larger or equal to its MIS value then its state is

changed into DS. When an itemset has been counted through all the transactions we

check again its counter against its MIS value. If its state was DC, and its counter is

finally equal or larger than its MIS value we change its state to SS. If its state was DS,

we simply change it to SS.

As a general rule, if any immediate superset of a k-itemset, stated DS has all of its

subsets as solid or dashed squares, we make its state DC and begin counting it; this

holds with the exception of some special cases handled by our algorithms. As we can

easily understand only 1-itemsets can be stated DD or SD, since we keep an MIS

ordering only for those itemsets. All the other higher order itemsets can be of state DC,

DS, SS and SC. Upon termination of the algorithm we check and output all the Solid

Square sets. We detail how the MIS values are defined and customised for this work in

§3.3.3.

3. Proposed Methodology

A well documented problem faced by maintainers when comprehending a software

system is the lack of familiarity with it, combined with the lack of accurate

12

documentation [18]. Facilitating and accelerating the time consuming activity of

program comprehension motivated this research work.

Its main scope is to devise a methodology that can provide practical insights

overviews to guide the maintenance engineer through the specifics of systems,

assuming little familiarity with these. More specifically this work aims at helping the

maintenance engineers to:

• Identify patterns in the source code

• Extract interrelationships between code elements

• Identify niches and potentially problematic classes

3.1 Systems Analysis Domain Models

We analyse software systems based on the following two domains:

• The behavioural domain, which concerns methods of the system’s classes

and their respective parameters [10].

• The structural domain, which concerns member data of classes.

We use classes, methods and member data as entities for clustering; as depicted in

Fig. 1. These entities are characterised by contains relationships. Both types of

relationships can be inverted to, contained by or used by to double the number of

relationships [22]. These relationships are:

• Classes contain method definitions.

• Classes contain member data definitions.

• Methods contain parameters.

The behavioural domain includes the analysis of the correlations between the

methods of the system’s classes while the structural one is concerned with the

interrelations among their member data.

13

3.2 Data Extraction Process

As soon as the input model is formed, the next essential step is to design and

implement a methodology for extracting data from source code. For this purpose a

parsing engine which operates on source code at the lexical level was built.

The basic requirements for this parsing engine were:

• To operate without a need to pre-process or compile files; given that the aim of

the methodology is to facilitate maintenance engineers, this step should be

automated.

• To handle a wide variety of tasks; the parsing engine should identify patterns in

the source code and then store these patterns in a database.

• To execute swiftly and handle arbitrary amounts of data; as the size of the

applications to be analysed is not known in advance, the parsing engine should

be able to handle a large variety of systems types with a wide range of sizes.

Figure 1-Entity Hierarchy and Analysis Domains

14

Based on these requirements we employed regular expressions in order to

implement the parsing engine, as these can efficiently search for patterns in large code

files or across many files [24]. Their use can also save time and yield results that might

elude manual browsing.

3.3. A Framework for Using Data Mining Techniques

We propose here a framework for using data mining techniques in order to facilitate

comprehension of systems under maintenance, as depicted in Fig. 2. First, we employ

K-means clustering on data extracted from C# source code, as the maintenance

engineer initially needs a quick and rough grasp of a software system in order to

maintain it with a level of confidence as if he/she had this familiarity. Clustering is more

suitable for this purpose because it produces overviews of systems by creating

mutually exclusive groups of classes, member data or methods, according to their

similarities, thus reducing the time required to understand the overall system.

Clustering has also the potential to discover programming patterns and “unusual” or

outlier cases which may require further attention.

Figure 2-Data Mining Techniques for Program Comprehension

As soon as the maintenance engineer forms an overview of the software system

and gains the required familiarity, identification of hidden relationships between

classes, member data and methods is needed; this is achieved by using Association

Rules mining. Based on the previous step of clustering, the maintainer can set the

minimum support (minsup) and minimum confidence (minconf) thresholds in order to

15

gain the most accurate results from mining association rules. This can also assist

impact analysis and measuring cohesion and coupling of system modules, such as

files, classes, variables and methods [6]. Results from this analysis can then be

interpreted by the maintenance engineer.

In order to further explain the proposed framework we provide a small example that

illustrates how the proposed algorithms are used. This example is based on the

analysis of the Member Methods Parameters entity. Table 1 presents data as extracted

from C# source code, and are used as input for K-Means clustering.

Table 1
C# Source Code Data – Input for Clustering

Parameter ID Method ID Name Type Call Type

1 1 Sender Object ByValue
2 1 E System_EventArgs ByValue
3 2 Width Int ByValue
4 2 Height Int ByValue
5 3 callback System_AsyncCallback ByValue
6 3 asyncState Object ByValue
7 4 Ps PAINTSTRUCT ByReference
8 4 hWnd IntPtr ByReference
9 5 Pt POINT ByReference
8 5 hWnd IntPtr ByReference

Table 2:
Output data from clustering an input data for association rules mining

Parameter ID
Method

ID
Parameter

Name MIS Cluster
Record
Score Relevance

1 1 Sender 0.439120 2 0.951942 1.32534
2 1 e 0.464559 3 0.933708 1.21887
3 2 Width 0.811380 5 0.366234 0.866234
4 3 Height 0.811380 5 0.366234 0.866234
6 4 asyncState 0.802737 2 0.495631 0.750107
5 4 Callback 1.010638 8 0.244737 0.744737
7 5 Ps 1.924554 8 0.019354 0.500247
8 5 HWnd 1.372371 8 0.125161 0.603505
8 6 HWnd 1.372371 8 0.125161 0.603505
9 6 Pt 1.924554 8 0.019354 0.500247

Table 3:
Derived Association Rules

Condition Consequence Confidence Occurrence

Sender E 0.989 930
Callback asyncState 1.000 93
Width Height 1.000 6
Pt hWnd 1.000 2
Ps hWnd 1.000 2

16

As soon as clustering is completed, the following type of information is created as its

output, which is in turn used as input for mining association rules:

• Parameter ID and Method Id are used as input data

• The Minimum Item Support (MIS) is used as an input parameter, as it is the

support for each data-item. We further describe how the MIS values are

defined in §3.3.3.

Table 2 presents the data produced as output from clustering, which in turn are

used as input for association rules mining. Table 3 presents the derived association

rules concerning the associations between the data-items of the Member Method

Parameters entity.

3.3.1 K-Means Clustering Parameters

As described in §2.2.1, K-Means clustering algorithm was employed in this research

work. Some of its key features include the need for the user to define the number of

derived clusters and its sensitivity to noise.

To determine the number of clusters, we used a series of experiments and feedback

from maintenance engineers. As detailed in the description of the case study of the

Books Publication System presented in §4.3, the maintainers were asking for a number

of clusters that would give them a system overview whilst providing opportunities to

discover niches. After several trials we concluded that an appropriate number of

derived clusters would be nine (9).

As far as noise sensitivity is concerned, this could have been addressed by

eliminating outlier data either in advance or in a post-processing step. However, in this

research work, we wanted to discover niches thus we did not remove outlier data. The

input parameters we used for K-Means clustering are presented in Table 4, while the

output parameters are shown in Table 5.

17

Table 4:
Input parameters for K-means clustering

Name Description

Input Dataset [D] The given dataset
Maximum
Passes [P]

The maximum number of passes the algorithm goes through the
source code data to perform clustering.

Maximum
Number of
Clusters [C]

The maximum number of clusters the algorithm generates. Limiting
this number we avoid producing many small clusters and we save
run time, while increasing it, improves the likelihood of finding niches.

Similarity
threshold [S]

It limits the values accepted as best fit for the cluster.

Accuracy
Improvement [A]

The minimum percentage of improvement on clustering quality after
each pass through the data.

Table 5:
Output parameters for K-means clustering

Name Description

Cluster ID [ID] The identifier of the best fitting cluster for the
corresponding input record.

Record Score Field Name,
[RS]

Its values are the fitting quality of the corresponding
input record to the best fitting cluster.

Relevance Field Name
[REL]

Expresses the relevance of a record’s assignment to a
cluster.

3.3.2 MMS Apriori Association Rules Parameters

Association rules mining can be performed either inside each cluster (intra-cluster

mining) or for all the clusters of each entity (inter-cluster mining). For this reason we

employ the MMS Apriori algorithm [11], an improved version of the Apriori [13]. A

database in which an association rule can be found is viewed as a set of records,

where each of them contains a set of items. Market basket analysis is the most

frequent application of association rules, where each item represents an item

purchased, while each record is the list of items purchased at one time. In our case

though, for analysing C# source code, we employ a different data model more suitable

to our needs. More specifically, instead of transactions we use classes and member

methods as “baskets”, and member data, parameters and methods as “items” for the

respective baskets; this is depicted in Table 6. For each type of “basket” and “item” we

use a corresponding unique ID.

18

Table 6:
Code analysis analogy to market basket analysis

Basket Itemset

Class Member Data
Class Member Methods
Member Method Parameters

Table 7:
Parameters used for the MMS Apriori

Name Description

Basket [B] The given dataset (basket)
Output File [O] The file containing the frequent Itemsets and the

derived association rules
Minimum Item Support [MIS] File The file containing the MIS applied for each item

of the given Basket (B).
Minimum Confidence [MinConf] The confidence threshold (value between [0…1]).

3.3.3 Defining MIS for the MMS Apriori

As mentioned above, before running the MMS Apriori mining algorithm, the

Minimum Item Support (MIS) has to be defined. The output parameters, Record Score

Field Name (RS) and Relevance Field Name (REL), of the previous step (K-Means

Clustering) of our methodology will be used for this purpose. The value of the RS

parameter is the fitting quality of the corresponding input record to the best fitting

cluster, while the value of REL represents the relevance of the record’s assignment to

this cluster.

Based on those two parameters, and whether we perform intra or inter cluster

association rules the following formulas in equations 3 and 4 are employed

respectively, in order to assign values to the MIS parameter:

MIS(i) = f(i) * (1/(RS(i)+REL(i))) Equation 3

where f(i) is the percentage of the actual frequency of an item in the cluster, and

RS(i), REL(i) are the item’s Record Score and Relevance respectively. This formula is

19

used for intra-cluster association rules mining, because we want to examine the

relationships concerning the items inside each cluster.

MIS(i) = f(i) * (1/(Avg(RS(i))+Avg(REL(i)))) Equation 4

where f(i) is the percentage of the actual frequency of an item in the dataset, and

Avg(RS(i)), Avg(REL(i)) are the average item’s Record Score and Relevance

respectively. This formula is used for inter-cluster Association Rules mining as we are

interested in discovering relationships between the clusters of the system.

Figure 3 Process definition for MIS

The intuition behind the proposed formulae is that in order to favor items that are

significant we should lower their minimum support, and hence increase the chances

that the respective singleton itemsets, or itemsets containing important items, are

selected during the itemset generation phase. As the factors RS(i) (record score) and

REL(i) (record relevance) reflect the significance of item i, the respective minimum

20

support, used in the intra-cluster association rules mining, should be inversely

proportional to them. On the other hand, when estimating the minimum support in inter-

cluster association rules mining it is a natural choice to select the average significant

factor of all the items in the same cluster as representing the significance of each item

in the cluster. Fig. 3 depicts how the MIS parameter for each item in the given dataset is

defined.

4. Result Evaluation

The proposed framework was evaluated in terms of accuracy and ability to capture

knowledge relevant to software maintenance activities, using one industrial application.

The actual structure of this application was compared, with the help of domain experts,

to the outcome of the analysis of its respective input model. The output should be valid,

novel and useful to the maintenance engineers. The following sub-sections discuss

separately the outcomes of our empirical experimentation with this application.

4.1 Experimental Setup

Before describing the experimental application of our methodology to a real

industrial software system it is necessary to describe how this experiment was set up.

As presented in §3.3 clustering and association rules mining are employed in order to

distil information from a software artefact’s entities. The core idea is to perform

clustering for each entity first. Based on clustering results we can:

• Define the Minimum Item Support (MIS) and Minimum Confidence (MinConf)

parameters, for either intra-cluster either inter-cluster rule mining.

• Mine association rules from all the produced clusters of an entity (inter-

cluster mining). This can help us discover the most important rules

concerning the system overall.

21

• Mine association rules from separately for each produced cluster of an

entity (intra-cluster mining). This can focus on specific rules concerning each

cluster separately.

The analysis of entities was top – down. It started from classes, and then it analysed

entities at the behavioural (member methods) and structural (member data) domains.

4.2 Case Study: Books Publication System

The Books Publication System was developed in order to cover the needs of a

Greek Books Publishing Organisation. It is a Windows application developed with C#

and is designed based on the 3-tier architecture. It consists of:

• 693 source code files

• 1242 classes

• 6919 member data

• 5976 member methods

• 5150 method parameters

4.2.1 Class Analysis

The Class entity is on the top of the described model at §3.1. As such, we can only

apply clustering to it. Mining association rules at this top level would be meaningless.

Table 8:
Parameters used for the clustering Classes

Name Description

Input Dataset
[D]

A flat file containing records describing the Classes Entity.

Maximum
Passes [P]

The chosen value is 5, as we wanted to increase the accuracy of
clustering. Specifying more passes through the data improves the
quality of the generated clusters.

Maximum
Number of
Clusters [C]

The chosen value is 9, as the maintenance engineers were
interested in grouping the Classes Entity in a number of clusters
that will give an overview of the system while on the same time
providing the opportunity of finding niches.

Similarity
threshold [S]

The chosen value is 0.6, as we wanted only records with 60%
identical fields to be assigned on the same cluster

Accuracy
Improvement [A]

The chosen value is 2, as we wanted clustering to be as accurate
as possible and to limit the number of the processing time

22

4.2.1.1 Cluster Analysis

We applied K-Means to the Class entity using the parameters described in Table 8.

The derived clusters were formulated based on the BaseClass1 field, which describes

the parent class from which each class inherits. The main base classes that are of

importance in formulating clusters of the system are presented in Table 9.

Table 9:
The main base classes
S/N Class Name

1 SQLHelper
2 DataComponent
3 ClientForm
4 ProppertyPage
5 ArrayList
6 CollectionWithEvents
7 FTPTestCase
8 ComponentNode
9 System.Windows.Forms.Form

4.2.1.2 Class Analysis Results

After analysing the Class entity we examined the derived results. First we verified

that good design practices were followed in system models as all the base classes

presented in the previous paragraph are abstract.

Table 10:
“God” classes
S/N Class Name Number of

Methods

1 Reporting Service 269
2 HostPanel 127
3 DragProvider 93
4 CostCompForBooksWithoutYA 75

Moreover we identified potential problematic areas by discovering the existence of

“god classes”. That means there are classes that their number of methods is much

above the general mean which is 5 methods per class. These classes in practice may

be difficult to maintain and reuse. More specifically, we discovered a cluster that its

elements (classes) have more than 70 methods. Those classes are shown in Table 10.

23

4.2.2 Member Methods Analysis

The Member Methods entity belongs to the behavioural domain as described at

§3.1. As such we can apply both clustering and association rules mining.

4.2.2.1 Cluster Analysis

Table 11 shows the values assigned to the input parameters in order to perform

clustering.

Table 11:
Parameters used for the clustering member methods

Name Description

Input Dataset [D] A flat file containing records describing the Member Methods
Entity.

Maximum
Passes [P]

The chosen value is 3, as we wanted to increase the accuracy
of clustering. Specifying more passes through the data improves
the quality of the generated clusters.

Maximum
Number of
Clusters [C]

The chosen value is 9, as the maintenance engineers were
interested in grouping the Classes Entity in a number of clusters
that will give an overview of the system while on the same time
providing the opportunity of finding niches.

Similarity
threshold [S]

The chosen value is 0.8, as we wanted only records with 80%
identical fields to be assigned on the same cluster

Accuracy
Improvement [A]

The chosen value is 4, as we wanted clustering to be as
accurate as possible and to limit the number of the processing
time.

The fields Category, Modifier and ReturnType, are the most important for forming

the clusters of this entity. The main characteristics of the derived clusters are presented

in Table 12

 As derived from cluster analysis, almost half of the member methods return void.

Most of them also are Windows events that either draw objects or handle parameters

like the ones of clusters 7 and 8. Clusters 0, 6 and 5 reflect the niches of the Books

Publishing System. They are considered niches as:

• Cluster 0 is the only cluster that consists of static member methods which

return System.IAsyncResult types.

24

• Cluster 5 consists of member methods that are responsible for the format

and rounding of numbers. It is the only cluster of private methods and their

Return Type is ArrayList.

• Cluster 6 is the only cluster with public external methods which have bool

return type.

Table 12:
Member methods clusters’ main characteristics

Name
(Number)

Size
%

Characteristics

7 26.42 The methods belonging to this cluster are public, override and
return nothing (void). The predominant names are
AssignParameters, GetParameters and Dispose.

8 20.00 The methods belonging to this cluster are private, extern and
return nothing (void). The predominant name is
InitializeComponent.

2 13.91 The methods belonging to this cluster are public, override or
static and return nothing (void). The predominant names are
OnSelected, Unload, MenuCommand and Refresh.

4 13.10 The methods belonging to this cluster are public, virtual or
delegate and return nothing (void). The predominant names are
Remove, Insert and AddRange.

1 10.66 The methods belonging to this cluster are protected, override
and return bool or object. The predominant names are Execute,
OnCancel and OnOK.

3 10.04 The methods belonging to this cluster are public, override and
return string. The predominant names are Add, GetInfo and
Remove.

6 2.89 The methods belonging to this cluster are public, virtual or
extern and return Boolean. The predominant names are
Contains, and OnClose.

0 2.61 The methods belonging to this cluster are public, static and
return int or System.IAsyncResult. The predominant names are
IndexOf, LoadBitmap and LoadBitmapStrip.

5 0.37 The methods belonging to this cluster are private, have no
modifier and return an ArrayList, double and string. The
predominant names are MoneyFormat, roundingTypographics
and roundingTypographicsforMont.

4.2.2.2 Inter-Cluster Association Rules Mining

In order to find the associations between different clusters we performed the

association rules mining for all the clusters. The result was to generate rules and to

discover frequent itemsets concerning all the clusters in total. Table 13 shows the

values assigned to the input parameters in order to perform the rules mining task.

25

Table 13:
Parameters used for Methods Inter – Cluster Association Rules

Name Description

Basket [B] Member Methods Basket
Output File [O] Output.txt
Minimum Item Support [MIS] File Weights.txt
Minimum Confidence [MinConf] 0.60

Table 14 presents the most important rules derived by the application of the MMS

Apriori.

Table 14:
Member methods Inter – Cluster Association Rules

Condition Conse-
Quence

Confi-
dence

Occur
rence

Description

Add Remove 1 8 Those two functions are used in the
FormTemplates library that supports
the forms the user interacts with.

Assign
Parameters

Get
Parameters

1 237 Those methods are used mostly in
the SQLStubs library which is
responsible for the communication
with the database.

OnOK OnCancel 1 125 These methods are typical Windows
events.

Initialize
Component

Dispose 1 170 Those two methods are used in the
FormTemplates library that supports
the forms the user interacts with.

4.2.2.3 Intra-Cluster Association Rules Mining

Intra-Cluster Association Rules Mining aims at discovering associations between

items that reside within the same cluster. It can help the maintenance engineer to

discover interesting rules focused on the member methods of each cluster separately.

Table 15 shows the values assigned to the input parameters in order to perform this

type of mining task.

Table 15:
Parameters used for Methods Intra – Cluster Association Rules

Name Description

Basket [B] Member Methods Basket
Output File [O] Output.txt
Minimum Item Support [MIS] File Weights.txt
Minimum Confidence [MinConf] 0.10

26

The most interesting rules generated for the Member Methods intra-cluster

Association Rules Mining are shown in Table 16.

Table 16:
Member methods Intra – Cluster Association Rules

Condition Conse-
quence

Confi-
dence

Occur
rence

Cluster Description

updateList
View

InitializeCo
mponent

1 13 8 Those two methods are used
in the FormTemplates library
that supports the forms the
user interacts with.

groupingFi
eldCb_Sele
ctedIndexC
hanged

InitializeCo
mponent

1 17 8 Those two methods are used
in the FormTemplates library
that supports the forms the
user interacts with.

groupComb
oSelectedI
ndexChang
ed

InitializeCo
mponent

1 20 8 Those two methods are used
in the FormTemplates library
that supports the forms the
user interacts with.

OnSelected Unload 0.846 11 2 These methods are typical
Windows events

Refresh Unload 0.875 7 2 These methods are typical
Windows events

Insert Remove 1 19 4 Those two methods are used
in the FormTemplates library.
Insert inserts a value from a
Windows component in a
specific position.

Clear Remove 1 8 4 Those two methods are used
in the FormTemplates library.
Clear is responsible for the
initialisation of the
components of the form.

GetEnumer
ator

Add 1 8 3 Those two methods are used
in the
RemoteComponentInterface
library, which is the only
common library between the
server and the client.

Remove Add 1 8 3 Those two methods are used
in the SQLStubs library, which
contains the prototypes of the
stored procedures of the
database

FetchFrom CreateFor 1 3 3 Those two methods are used
in the SQLStubs library.
FetchFrom retrieves a code
statement and CreateFor
creates a code statement.

Receive Send 1 2 0 Those two methods are found
in the
AuxBooksSystemRuntime,
which is a utility responsible
for updating automatically the
clients with the new versions
reside on the server.

27

4.2.2.4 Member Methods Analysis Results

We performed Member Methods entity analysis by using clustering and association

rules mining; we discuss here the derived results.

At first maintenance engineers of the Books Publishing System were given an

overview of the most important groups of types of Member Methods. This is useful

when the maintenance engineer starts reading the code at an initial level in order to

find the piece of code that requires enhancement or fixing. By clustering the Member

Methods in particular the maintenance engineer has the opportunity to understand

easier the behavioural domain of the system.

On the other hand we identified associations between the Member Methods of the

system. This can facilitate the maintenance engineers to identify areas that it is very

likely to be affected in a potential refactoring. For example if an engineer wants to

remove the Receive method from a class, then he has to examine what will happen

with Send method which coexists with it in every class it appears. Another example

also is for the maintenance engineer to examine if he can create a single method by

combining the two methods together.

4.2.3 Method Parameters Analysis

The Method Parameters entity belongs to the behavioural domain like its parent

entity (Member Methods) as described at §3.1. As such we can apply both the

Clustering and Association Rules data mining tasks.

4.2.3.1 Cluster Analysis

Table 17:
Parameters used for the Clustering of member methods parameters

Name Description

Input Dataset [D] A flat file containing records describing the Methods Parameters
Entity.

Maximum
Passes [P]

The chosen value is 3, as we wanted to increase the accuracy of
clustering. Specifying more passes through the data improves the
quality of the generated clusters.

Maximum
Number of
Clusters [C]

The chosen value is 9, as the maintenance engineers were
interested in grouping the Classes Entity in a number of clusters
that will give an overview of the system while on the same time
providing the opportunity of finding niches.

Similarity
threshold [S]

The chosen value is 0.8, as we wanted only records with 80%
identical fields to be assigned on the same cluster

Accuracy
Improvement [A]

The chosen value is 3, as we wanted clustering to be as accurate
as possible and to limit the number of the processing time.

28

Table 17 shows the values assigned to the input parameters in order to perform the

Clustering mining task.

The fields ParamName, ParamType and ParamUse are the most important for forming

the clusters of this entity. Table 18 presents the main characteristics of the derived

clusters.

Table 18:
Member method parameters clusters’ main characteristics

Name
(Number)

Size
%

Characteristics

3 21.92 The parameters belonging to this cluster are objects passed by
value. The predominant names are Sender, asyncState and
Value.

4 20.54 The parameters belonging to this cluster are EventArgs passed
by value. The predominant name is e.

9 18.14 The parameters belonging to this cluster are the types of
System.AsyncCallbacks, IntPtr and Content and are passed by
value. The predominant names are callback, hWnd and Value.

1 9.38 The parameters belonging to this cluster are strings passed by
value. The predominant names are Report, remoteFile and
Description.

5 9.30 The parameters belonging to this cluster are ISQLManagers
passed by value. The predominant name is Conn.

2 7.46 The parameters belonging to this cluster are bools and Points
passed by value. The predominant names are disposing,
screenPos, show and xmlOut.

6 7.28 The parameters belonging to this cluster are Int and Graphics
passed either by value or by reference. The predominant names
are Index, g, Parameters and xmlln.

8 4.47 The parameters belonging to this cluster are
System.IAsyncResult, Rectangle, DataRow and Control passed
either by value or by reference. The predominant names are
AsyncResult, row, control and itemRow.

7 1.51 The parameters belonging to this cluster are decimal, uInt,
FileObject and RemFileObject passed either by value or by
reference. The predominant names are obj, contributor, flags,
BookId and OpId.

As derived from the clustering analysis most of the parameters are passed by Value

and the majority of them belong to Windows built-in methods. The parameters also with

the highest frequency, like the ones of clusters 3 and 4 don’t have explanatory names

(i.e. System.EventArgs e). On the other hand clusters 1, 5 and 7 include parameters

that have more comprehensible names, a fact that makes the task of a maintenance

engineer easier.

29

4.2.3.2 Inter Cluster Association Rules Mining

In order to find the associations between different clusters we performed the

Association Rules Mining for all the clusters. The result was to generate rules and to

discover frequent itemsets concerning all the clusters in total. Table 19 shows the

values assigned to the input parameters in order to perform the Association Rules

mining task.

Table 19:
Parameters used for Member Method Parameters Inter – Cluster Association Rules

Name Description

Basket [B] Method Parameters Basket
Output File [O] Output.txt
Minimum Item Support [MIS] File Weights.txt
Minimum Confidence [MinConf] 0.60

The most important rules concerning the methods’ parameters, derived by the

application of the MMS Apriori are presented in Table 20.

Table 20:
Member method parameters Inter – Cluster Association Rules

Condition Conse-
quence

Confi-
dence

Occur
rence

Description

Sender E 0.989 930 Those parameters are used from Windows
events like btnAdd_Click.

Callback asyncState 1 93 Those parameters are used from methods
of the Printing_DTCMP library that
incorporates functionality regarding the
reporting services of the system.

Index Value 0.620 49 Those parameters are used from methods
that draw Windows forms like
InsertWindowValue.

Width Height 1 6 Those parameters are used from methods
that draw or move Windows forms like
MoveWindow.

Operator Row 1 18 Those parameters are used from methods
of the PublicationDep_DTCMP library that
incorporates functionality regarding the
tasks of this department.

HistoryID Report 1 7 Those parameters are used from methods
of the Printing_DTCMP library that
incorporates functionality regarding the
reporting services of the system.

Rank hsClasses 0.75 3 Those parameters are used from method
AddClasses wich belongs to the
PublicationDep_DTCMP library.

Username Password 0.667 2 These parameters are used from methods
like Login of the AuxBooksSystemRuntime
or LogonUser of the Printing_DTCMP
library.

30

4.2.3.3 Intra Cluster Association Rules Mining

Intra-Cluster Association Rules Mining aims at discovering associations between

items that reside within the same cluster. It can help the maintenance engineer to

discover interesting rules focused on the member methods of each cluster separately.

Table 21 shows the values assigned to the input parameters in order to perform this

type of mining task.

Table 21:
Parameters used for Member Method Parameters Intra – Cluster Association Rules

Name Description

Basket [B] Method Parameters Basket
Output File [O] Output.txt
Minimum Item Support [MIS] File Weights.txt
Minimum Confidence [MinConf] 0.10

The most interesting rules generated for the Method Parameters intra-cluster

Association Rules Mining are presented in Table 22.

Table 22:
Member Method parameters Intra – Cluster Association Rules

Condition Conse-
quence

Confi-
dence

Occur
rence

Cluster Description

Pt hWnd 1 2 8 Those parameters are used
from methods that are
responsible for the position or
drawing of Windows forms, like
MoveWindow.

Ps hWnd 1 2 8 Those parameters are used
from methods that are
responsible for the drawing of
Windows forms, like BeginPaint.

Height Width 1 6 5 Those parameters are used
from methods that are
responsible for the drawing or
positioning of Windows forms,
like SetWindowPos,
DrawShadowVertical.

4.2.3.4 Member Method Parameters Analysis Results

We performed Member Method Parameters entity analysis by using clustering and

association rules mining; we discuss here the derived results.

At first the maintenance engineers of the Books Publishing System were given an

overview of the most important groups of types of Member Method Parameters. This

31

can also help the maintenance engineer to start inspecting the code for potential

changes.

On the other hand we identified associations between the Member Method

Parameters of the system. By studying those associations that further describe the

signatures of the Member Methods of the system; a maintenance engineer can easier

understand their scope and functionality. This can also help him to assess how easy it

is to refactor a method. For example a method that its signature consists of Callback

and asyncState which appear always together is difficult to change by either removing

one of them or by creating two separate methods with one parameter each.

4.2.4 Member Data Analysis

The Member Data entity belongs to the structural domain as described at §3.1. As

such we can apply both the Clustering and Association Rules data mining tasks.

4.2.4.1 Cluster Analysis

Table 23 shows the values assigned to the input parameters in order to perform the

Clustering mining task.

Table 23:
Parameters used for the Clustering of Member Data

Name Description

Input Dataset [D] A flat file containing records describing the
Methods Parameters Entity.

Maximum Passes [P] The chosen value is 5, as we wanted to increase
the accuracy of clustering. Specifying more
passes through the data improves the quality of
the generated clusters.

Maximum Number of Clusters [C] The chosen value is 9, as the maintenance
engineers were interested in grouping the
Classes Entity in a number of clusters that will
give an overview of the system while on the
same time providing the opportunity of finding
niches.

Similarity threshold [S] The chosen value is 0.8, as we wanted only
records with 80% identical fields to be assigned
on the same cluster

Accuracy Improvement [A] The chosen value is 2, as we wanted clustering
to be as accurate as possible and to limit the
number of the processing time.

32

The fields DataCategory, DataType and DataName, are the most important for

forming the clusters of this entity. The main characteristics of the derived clusters are

presented in Table 24.

Table 24:
Member Data parameters clusters’ main characteristics
Name

(Number)
Size
%

Characteristics

8 16.49 The data belonging to this cluster are private, and their type is
System.Int32. The predominant names are _RETURN_VALUE,
_book_id, _published_book_id and _contract_id.

4 15.33 The data belonging to this cluster are private, and their types are
FormTemplates_CustomButton, FormTemplates_CustomGroup,
FormTemplates_CustomList, and System_Decimal. The
predominant names are customGroup1, customGroup2,
customGroup3, contractorInfoGb and booklist.

2 12.98 The data belonging to this cluster are private, and their type is
System.Windows.Forms.Label. The predominant names are
label1, label2, nameLbl, cityLbl and addressLbl.

9 12.85 The data belonging to this cluster are private, and their types are
System.Windows.Forms.ColumnHeader and System.String. The
predominant names are columnHeader1, columnHeader12,
_title, _paperSize, and _Phones.

7 11.63 The data belonging to this cluster are private, and their types are
System.Windows.Forms.TextBox,System.Windows.Forms.Comb
oBox, System.Windows.Forms.Button and System.Byte. The
predominant names are groupCombo, nameTxt, cityTxt, button1,
and _type.

1 11.42 The data belonging to this cluster are private, and their types are
System.Double,System.ComponentModel.IContainer,
System.ComponentModel.Container,System.Windows.Forms.Ch
eckBox and System.Windows.Forms.RadioButton. The
predominant names are components, _typographics, _xrFive,
_xrFour, and _xrThree.

3 9.91 The data belonging to this cluster are protected, and their types
are int, bool, color, string and Rectangle. The predominant
names are _style, _manager, _style, _direction, and _redocker.

5 9.38 The data belonging to this cluster are public, and their types are
int, string, bool, uInt and System.DateTime. The predominant
names are Name, IParam, Login, Pwd, and OpId and SessionId.

As derived from the clustering analysis the Member Data of this system have

explanatory names, a fact that makes them more comprehensible to the maintenance

engineers. The most important entity of the system is Book as the most frequent Ids

are book_id and published_book_id in cluster 8. An interesting observation is that in

cluster 5 there are public Ids (i.e. OpId, _uid, TaskID, SubscriprtionID, SessionId),

which makes more possible the creation of couplings among the classes of the system.

33

4.2.4.2 Inter-Cluster Association Rules Mining

In order to find the associations between different clusters we performed the

Association Rules Mining for all the clusters. The result was to generate rules and to

discover frequent itemsets concerning all the clusters in total. Table 25 shows the

values assigned to the input parameters in order to perform the Association Rules

mining task.

Table 25:

Parameters used for Member Data Inter – Cluster Association Rules
Name Description

Basket [B] Member Data Basket
Output File [O] Output.txt
Minimum Item Support [MIS] File Weights.txt
Minimum Confidence [MinConf] 0.50

The most important rules derived by the application of the MMS Apriori are

presented in Table 26.

Table 26:
Member Data Inter – Cluster Association Rules

Condition Consequence Confid
ence

Occur
rence

Description

_RETURN_VALUE _book_id 0.778 105 Those member data
are used mostly in
classes of the
SQLStubs library.

_RETURN_VALUE _published_book_id 0.7 63 Those member data
are mostly used in
classes of the
SQLStubs library.

4.2.4.3 Intra-Cluster Association Rules Mining

Intra-Cluster Association Rules Mining aims at discovering associations between

items that reside within the same cluster. It can help the maintenance engineer to

discover interesting rules focused on the member data for each cluster separately.

Table 27 shows the values assigned to the input parameters in order to perform this

type of mining task.

34

Table 27:
Parameters used for Member Data Intra – Cluster Association Rules

Name Description

Basket [B] Member Data Basket
Output File [O] Output.txt
Minimum Item Support [MIS]
File

Weights.txt

Minimum Confidence [MinConf] 0.50

The most interesting rules generated for the Member Data intra-cluster Association

Rules Mining are shown in Table 28.

Table 28:
Member Data Intra – Cluster Association Rules

Condition Consequence Confi-
dence

Occur
rence

Cluster Description

_yp_aps_i
d

_school_year,
_published_boo
k_id

1 1 8 Those member data are
mostly used in classes of
the SQLStubs library.
Those classes represent
the stored procedures that
reside on the database.

_atelie_id _book_id 0.75 6 8 Those member data are
mostly used in classes of
the SQLStubs library.
Those classes represent
the stored procedures that
reside on the database.

_school_y
ear

RETURN_VAL
UE

1 14 8 Those member data are
mostly used in classes of
the SQLStubs library.
Those classes represent
the stored procedures that
reside on the database.

contract
id

_published_boo
k_id

0.66 6 8 Those member data are
mostly used in classes of
the SQLStubs library.
Those classes represent
the stored procedures that
reside on the database.

_pages _typeCover 1 3 6 Those member data are
mostly used in classes of
the SQLStubs library.
Those classes represent
the stored procedures that
reside on the database.

Dsbooks rbAll, rbPrimary,
rbHighSchool,
rbCollege,
rbTEE

1 4 5 Those member data are
used from classes that
reside on the client part of
the application.

Periodic_c
heck_id

txbParatasi 1 3 5 Those member data are
components used from the
classes of the
TE_TECHNOLOGY_H
library which incorporates
processes concerning the

35

Condition Consequence Confi-
dence

Occur
rence

Cluster Description

technology department of
the organisation.

_name _value 0.83 5 3 Those member data are
mostly used in classes of
the SQLStubs library.
Those classes represent
the stored procedures that
reside on the database.

_aclass _cclass 1 4 3 Those member data are
mostly used in classes of
the SQLStubs library.
Those classes represent
the stored procedures that
reside on the database.

supervisor
NameTxt

addressTxt 0.916 11 0 Those member data are
components used from the
classes of the
TE_GRAPHICS_H library
which incorporates
processes concerning the
graphics department of the
organisation.

vatTxt cityTxt 1 12 0 Those member data are
components used from the
classes of the
TE_CONTRACTS_H library
which incorporates
processes concerning the
contracts department of the
organisation.

photoCB montazCB 1 2 0 Those member data are
components used from the
classes of the
TE_GRAPHICS_H library
which incorporates
processes concerning the
graphics department of the
organisation.

4.2.4.4 Member Data Analysis Results

We performed Member Data entity analysis by using clustering and association

rules mining; we discuss here the derived results.

At first the maintenance engineers of the Books Publishing System were given an

overview of the most important groups of the types of Member Data entity. This is

useful when the maintenance engineer starts reading the code at an initial level in

order to identify pieces of code that require either to evolve or to get corrected. By

clustering the Member Data in particular the maintenance engineer has the opportunity

to understand easier the behavioural domain of the system.

36

We also identified a potential problematic area, as a cluster with public IDs was

found. In general the use of public member data is not considered as a good

programming technique as it violates the principle of encapsulation. It also makes more

possible the creation of couplings among the classes of the system.

On the other hand we identified associations between the Member Method

Parameters of the system. Those associations can help the maintenance engineer to

better understand how the classes of the system are structured; and what are the input

and output data that affect their behaviour.

5. Conclusions and future work

This section presents conclusions drawn by evaluating the proposed methodology.

Directions for future work are also discussed here.

5.1 Conclusions on the Proposed Methodology

The main goal of this research work was to provide the maintenance engineer an

overview of the main aspects of the software system in order to facilitate its

comprehension. For this reason a framework which employs Clustering and

Association Rules Mining techniques, and the respective input model that supports

them, was developed. It was designed for object oriented languages and more

specifically for C# and was tested in an industrial application of a substantial size (i.e.

693 source code files, 1242 classes, 5976 member methods, 5150 parameters and

6919 member data). That differentiates it from [14], [17], [27], [28] that are designed for

procedural programming languages like C and COBOL.

The proposed solution is semi automated, unlike [14], [26], [27] and [28], as the

parsing engine extracts the data from the source code and stores them on a database.

It is also more complete than [19], [20] because as soon as the data extraction finishes,

the maintenance engineer has the ability to use both Clustering and Association Rules

in order to comprehend the system under maintenance. More specifically by using this

methodology he/she has the ability to get a quick and rough grasp of a software system

37

at first, and then to try to identify hidden relationships between classes, member data,

methods and method parameters.

On the other hand our methodology analyses only the static dependencies of

system’s entities unlike [31] which uses clustering in order to study the dynamic

dependencies of a system under maintenance. We also use the K-Means clustering

algorithm which has the drawback that the user has to define the number of the derived

clusters. On the contrary the work in [19] employs the Hierarchical Agglomerative

Clustering (HAC) algorithm which automatically defines the number of the derived

clusters.

5.1.1 Conclusions from Clustering Analysis

The scope of using the K-Means clustering technique was to provide the

maintenance engineers with an overview of the most important groups of the types of

system’s entities as described in §3.1. This methodology is useful especially when the

maintenance engineer starts inspecting the code at an initial level in order to identify

pieces of code that require changes either for evolving or getting corrected, an activity

which is time consuming. Having seen at first an overview with the main aspects of the

system the maintenance engineer gains a familiarity with it and then it is easier for him

to start inspecting the system.

A good example of this was the discovery of the existence of “god classes” as there

were classes that their number of methods is much above the average which is 5

methods per class.

We also discovered patterns that reflected the niches of the Books Publishing

System. For example the 5th cluster of the Member Methods consists of methods that

are responsible for the format and rounding of numbers.

The most important entity of the system seems to be Book as the most frequent Ids

are book_id and published_book_id in the 8thcluster of member data. Another

interesting observation is that in cluster 5 there are public Ids (i.e. OpId, _uid, TaskID,

38

SubscriprtionID, SessionId), which makes more possible the creation of couplings

among the classes of the system.

By using also the clustering technique we provided the maintenance engineers the

ability to verify if good design techniques are followed along the development of the

system. For example we checked and we found that all the base classes found were

abstract, which is a sign of a good design technique.

5.1.2 Conclusions from Association Rules Mining

The aim of using the Association Rules mining was trying to discover the

relationships between the elements of a software system. For this reason we employed

an innovative algorithm, MMS Apriori which was based on algorithm Apriori and could

find rules among items with different supports. We used both inter and intra cluster

association rules techniques in order to discover the most important rules concerning

the system in total at first and then each cluster separately.

At first we showed that the application of the Association Rules technique can

facilitate the maintenance engineer to identify areas that it is very likely to be affected in

a potential refactoring. That was presented in §4.2.2.4 and §4.2.3.4.

At §4.2.2.2-3, §4.2.3.2-3, §4.2.4.2-3 rules characterising system’s member data,

methods and their parameters were presented. Some of them like supervisorNameTxt-

>addressTxt, contract_id->_published_book_id, Assign Parameters->Get Parameters

were characterised by system’s developers interesting as they provided them a clearer

picture with the interrelationships between system’s entities.

5.2 Future Work

We consider the following various alternatives in order to enhance the proposed

methodology:

39

Systems’ components clustering, based on their dynamic dependencies

This research work presented the analysis of static dependencies between the

components of the system. It would be of great interest to attempt to evaluate the

usefulness of analysing the dynamic dependencies of a software system’s artefacts

[31].

Integration of more data mining algorithms

The proposed methodology integrates the K-Means and MMS Apriori algorithms.

However it may be useful if more custom data mining algorithms were integrated in this

framework. This would result in a complete system for automated program and system

comprehension. A good example is the application of Spectral Clustering in order to

investigate the dependencies based on the objects that are invocated in each file, and

on Hierarchical Agglomerative Clustering (HAC) algorithm which has the advantage

that automatically defines the number of the derived clusters.

Enriching the input model

Based on our methodology we extracted information that described the behavioural

and structural domains of a software system. This input model can be enriched by

investigating also the logical domain of a software system, which includes the analysis

of the dependencies between the files of the system under examination. This can be

done by analysing either the using (C#) or the include (Java, C++) statements of the

beginning of each file that defines a class. In other words this domain is consisted of

the analysis of the correlations between the files of the system’s sections. Fig. 4

suggests such a more detailed model.

Another way to further develop the input model is to take into consideration and

further investigate the object and method invocation, the instance-class relations, the

definitions of the constants and the enum structures etc. This enrichment of the input

model could help us understand in more depth the domains of a software system.

40

Using Metrics for OO Programs as indicators for evaluating a system’s

maintainability

The main goal of this research work is to provide the maintenance engineer with an

overview of the main aspects of the software system in order to facilitate its

comprehension. The proposed methodology extracts information from the source code

that describes the main entities of an OO program. It seems also promising to employ

object oriented metrics that can be used as indicators for either evaluating, either

predicting a system’s maintainability [25]. Such metrics are the Maintainability Index

and the Chidamber and Kemerer Metrics (Weighted Methods per Class (WMC), the

Figure 4-Enriched Input Model

41

Depth of Inheritance Tree (DIT), Number of Children (NOC), Coupling Between Object

Classes (CBO), Response for a Class (RFC), and the Lack of Cohesion in Methods

(LCOM).

Tune the methodology for other OO languages

The proposed methodology processes information derived only from C# source

code files (cs). It is of great interest to extract information from other OO languages like

C++, Java and Borland Delphi.

Employ more advanced extraction techniques

This research work employed the regular expressions technology in order to parse

the source code and extract the required data. A more advanced technique like using a

lexical parser and store its output either in a database or in XML files is under

consideration.

Acknowledgements

The authors would like to express their gratitude to the anonymous reviewers for the

constructive feedback on the original manuscript. We would also like to thank I. N.

Kouris for providing an executable version of MMS Apriori and CTI for providing the

code for the case study as well as valuable feedback on our findings.

42

References

[1] R. Agrawal and R. Srikant, Fast Algorithms for Mining Association Rules in Large

Databases, in: Proc. 20th Int’l Conf. Very Large Data Bases, (1994) 487-499.

[2] N. Anquetil and T. C. Lethbridge, Experiments with Clustering as a Software

Remodularization method, in: Proc. 6th Working Conf. Reverse Engineering

(WCRE 99), IEEE Comp. Soc. Press, (1999) 235-255.

[3] F. Balmas, H. Wertz and J. Singer, Understanding Program Understanding, in:

Proc. 8th Int'l Workshop Program Comprehension (IWPC 00), IEEE Comp. Soc.

Press, (2000) 256.

[4] W. B. Boehm, Software Engineering Economics, (Prentice Hall PTR1981).

[5] S. Brin, R. Motwani, J.D. Ullman and S. Tsur,Dynamic Itemset Counting and

Implication Rules for Market Basket Data, in: Proc. ACM SIGMOD, (1997) 265-

276.

[6] M. H. Dunham, Data Mining, Introductory and advanced topics, (Prentice Hall

2002).

[7] U. Fayyad, G. Piatetsky-Shapiro, and R. Uthurusamy, From Data Mining to

Knowledge Discovery: An Overview, Advances in Knowledge Discovery and Data

Mining, (AAAI Press/The MIT Press 1996).

[8] J. Han and M. Kamber, Data Mining: Concepts and Techniques, (Academic Press

2001).

[9] http://www.swat.uwaterloo.ca/~swagkit .

[10] Y. Kanellopoulos and C. Tjortjis, Data Mining Source Code to Facilitate Program

Comprehension: Experiments on Clustering Data Retrieved from C++ Programs,

in: Proc IEEE 12th Int’l Workshop Program Comprehension (IWPC 2004), IEEE

Comp. Soc. Press, (2004) 214-223.

[11] I. N. Kouris, C. Makris, and A. Tsakalidis, An Improved Algorithm for Mining

Association Rules Using Multiple Support Values, in: Proc 16th Int’l FLAIRS

Conf., (2003) 309-314.

[12] T. Kunz and J. P. Black, Using Automatic Process Clustering for Design

Recovery and Distributed Debugging, IEEE Transactions on Software

Engineering, 21(6), (1995) 515-527.

[13] B. Liu, W. Hsu, and Y. Ma, Mining Association Rules with Multiple Minimum

Supports, in: Proc. ACM SIGKDD Conf. on Knowledge Discovery & Data Mining,

(1999) 337-341.

[14] S. Mancoridis, B.S. Mitchell, Y. Chen and E.R. Gansner, Bunch: A Clustering

Tool for the Recovery and Maintenance of Software System Structures, in: Proc.

43

Int'l Conf. Software Maintenance (ICSM 99), IEEE Comp. Soc. Press, (1998) 50-

59.

[15] O. Maqbool, H.A. Babri, A. Karim, and M. Sarwar, Metarule-guided association

rule mining for program understanding, Software, IEE Proceedings, 152(6) (2005)

281- 296.

[16] J. Moad Maintaining the Competitive Edge, Datamation, 36(4) (1990) 61-66.

[17] C. M. de Oca and D. L. Carver, Identification of Data Cohesive Subsystems Using

Data Mining Techniques, in: Proc. Int'l Conf. Software Maintenance (ICSM 98),

IEEE Comp. Soc. Press, (1998) 16-23.

[18] T. M. Pigoski, Practical Software Maintenance: Best Practices for Managing your

Software Investment, (Wiley Computer Publishing 1996).

[19] D. Rousidis and C. Tjortjis, Clustering Data Retrieved from Java Source Code to

Support Software Maintenance: A Case Study, in: Proc IEEE 9th European Conf.

Software Maintenance and Reengineering (CSMR 05), IEEE Comp. Soc. Press,

(2005) 276-279.

[20] K. Sartipi, K. Kontogiannis and F. Mavaddat, Architectural Design Recovery

Using Data Mining Techniques, in: Proc. 2nd European Working Conf. Software

Maintenance Reengineering (CSMR 00), IEEE Comp. Soc. Press, (2000) 129-

140.

[21] J. Singer, Practices of Software Maintenance, in: Proc. Int’l Conf. Software

Maintenance (ICSM 98), Comp. Soc. Press, (1998) 139-145.

[22] H. Sneed and T. Dombovari, Comprehending a Complex, Distributed, Object-

Oriented Software System a Report from the Field, in: Proc. 7th Int'l Workshop

Program Comprehension (IWPC 99), IEEE Comp. Soc. Press, (1999) 218-225.

[23] I. Sommerville, Software Engineering, 6th edition, (Addison-Wesley 2001).

[24] D. Spinellis, Code Reading: The Open Source Perspective, (Addison Wesley

2003).

[25] D. Spinellis, Code Quality: The Open Source Perspective, (Addison-Wesley

2006).

[26] C. Tjortjis and P.J. Layzell, Expert Maintainers’ Strategies and Needs when

Understanding Software: A Qualitative Empirical Study, in: Proc. IEEE 8th Asia-

Pacific Software Engineering Conf. (APSEC 2001), IEEE Comp. Soc. Press,

(2001) 281-287.

[27] C. Tjortjis C., L. Sinos and Layzell P.J., Facilitating Program Comprehension by

Mining Association Rules from Source Code, in: Proc. IEEE 11th Int’l Workshop

Program Comprehension (IWPC 03), IEEE Comp. Soc. Press, (2003) 125-132.

44

[28] C. Tjortjis, N. Gold, P.J. Layzell and K. Bennett, From System Comprehension to

Program Comprehension, in: Proc. IEEE 26th Int’l Computer Software

Applications Conf. (COMPSAC 02), IEEE Comp. Soc. Press, (2002) 427-432.

[29] A. Turtschi, S. Nandu, dotthatcom.com, G. Hack, J. Werry, J. Albahari, and W.M.

Lee, C# .NET, Web Developer’s Guide, (Syngress Publishing 2002).

[30] V. Tzerpos and R. Holt, Software Botryology: Automatic Clustering of Software

Systems, in: Proc. 9th Int'l Workshop Database Expert Systems Applications

(DEXA 98), IEEE Comp. Soc. Press, (1998) 811-818.

[31] C. Xiao and V. Tzerpos, Software Clustering on Dynamic Dependencies, in: Proc.

IEEE 9th European Conf. Software Maintenance and Reengineering (CSMR 05),

IEEE Comp. Soc. Press, (2005) 124-133.

