
ARMICA-Improved: A New Approach
for Association Rule Mining

Shahpar Yakhchi1(&), Seyed Mohssen Ghafari1, Christos Tjortjis2,
and Mahdi Fazeli3

1 Computer Science Department, Azad University, Borujerd, Iran
computermsc.y@gmail.com, mohssenghafari@gmail.com

2 School of Science and Technology Department,
International Hellenic University, Thermi, Greece

c.tjortjis@ihu.edu.gr
3 Computing Department, Iran University of Science and Technology,

Tehran, Iran
m_fazeli@iust.ac.ir

Abstract. With increasing in amount of available data, researchers try to
propose new approaches for extracting useful knowledge. Association Rule
Mining (ARM) is one of the main approaches that became popular in this field.
It can extract frequent rules and patterns from a database. Many approaches
were proposed for mining frequent patterns; however, heuristic algorithms are
one of the promising methods and many of ARM algorithms are based on these
kinds of algorithms. In this paper, we improve our previous approach,
ARMICA, and try to consider more parameters, like the number of database
scans, the number of generated rules, and the quality of generated rules. We
compare the proposed method with the Apriori, ARMICA, and FP-growth and
the experimental results indicate that ARMICA-Improved is faster, produces
less number of rules, generates rules with more quality, has less number of
database scans, it is accurate, and finally, it is an automatic approach and does
not need predefined minimum support and confidence values.

Keywords: Association rules mining � Data mining � Imperialist Competitive
Algorithm (ICA)

1 Introduction

Association Rules Mining (ARM) is a data mining technique to extract frequent rules
and patterns from a database. Many challenges are still remained in ARM techniques.
Being a single dimension solution and focusing only on one aspect of ARM problems
is the main drawback of these methods. For instance, many of them tend to be a fast
approach and do not consider other parameters like the number of generated rules or
accuracy; or only focus on accuracy of generated rules and do not investigate other
factors like being a fast approach or having the least number of database scans. In
conclusion, an efficient ARM approach should consider all these parameters at the
same time.

© Springer International Publishing AG 2017
G. Li et al. (Eds.): KSEM 2017, LNAI 10412, pp. 296–306, 2017.
DOI: 10.1007/978-3-319-63558-3_25

One of the main parameters that have been frequently considered in many ARM
approaches is having low execution time. Generating frequent and interesting rules in a
short period of time is one of the primary goals of many ARM approaches. To be a fast
approach, many researchers have worked on other parameters that may affect the
execution time, like the number of database scans or the number for generated rules. In
contrast, in many cases generating accurate rules or even rules with more quality, in
this paper we assume that rules with more confidence are more qualify, is in higher
priority compared to having low execution time. Finally, an automatic ARM method
could be independent from user knowledge and can be applied on any databases. For
this reason, some researchers have worked on making their approaches automatic.

In this paper, we focused on different aspects of ARM at the same time. We
proposed a new ARM approach, named ARMICA-Improved, which extracts frequent
rules accurately and in a short period of time. This approach is based on a heuristic
algorithm called Imperialist Competitive Algorithm (ICA) [1]. ARMICA-Improved
scans the database only once and generates less number of rules compared to the
well-known ARM approaches. It does not consider infrequent items and only selects
the most frequent items. In addition, it eliminates the transactions that do not contain
any of these frequent items. Finally, our approach is an automatic approach and set the
minimum support automatically and does not need minimum confidence to extract
frequent rules. The experimental results indicate that ARMICA-Improved has lower
execution time, less number of database scans, less number of generated rules, set the
minimum support automatically and does not need minimum confidence value; also its
generated rules are accurate, and generating more qualify rules compared to the Apriori
[2, 3] and FP-growth [4].

The rest of this paper is organized as follows. Section 2 reviews the literature.
Description of our proposed method and an example could be found in Sects. 3 and 4,
respectively. Our experimental results would be in Sect. 5. Section 6 discusses the
experimental results and there would be a conclusion statement in Sect. 7.

2 Literature Review

Apriori [2, 3] is the most famous ARM. Many algorithms tried to improve Apriori
whilst others follow different approaches compared to Apriori. Apriori’s mechanism is
as: T = {t1, t2,…, tn} and I = {i1, i2,…, in} are the set of transactions and set of items
that this dataset has, respectively. The algorithm tries to find all {X,Y} that both X and
Y may contain at least one item. The extracted rule may be like: X ! Y

This rule means that if we find X in a transaction, then with a probability (Con-
fidence) we also find Y in that transaction. The important thing is X and Y should not
have any item in common: X \ Y = U

Most of ARM algorithms have two steps: first, finding the frequent itemsets.
Frequent itemsets are sets of items that frequently occur together in the database.
Secondly, generate frequent rules from the frequent itemsets. In Apriori, there is a
parameter, named minimum support that items and itemsets with frequency of more
than minimum support are frequent. Support of each item is the number of occurrence
of that item in the database. In each level, Apriori generates candidate list of frequent

ARMICA-Improved: A New Approach for Association Rule Mining 297

items and itemsets. Then, it removes the items and itemsets with support of lower than
minimum support. In this step, the algorithm employs a technique, named pruning to
check that is there any itemsets, which has an item that was not on the candidate list in
the previous levels; if it find one, so it removes this itemset. After pruning, it joins all
the items and itemsets in the candidate list with each other and produces new candidate
list. This process will continue and Apriori generates 2-length, 3-length, 4-length,…
itemsets. It is worth to mention that, in this algorithm user should set the minimum
support in advance and manually.

Finally, the last candidate list is the frequent list. At that point, Apriori extracts all
non-empty subset of each item generates rules. In this step, Apriori needs another user
defined parameter, named Minimum Confidence. Based on that, the algorithm removes
the weak rules. Confidence of each rule could be calculated by:

Support ðX [YÞ=Support Xð Þ ð1Þ

In the literature, many heuristic approaches have been proposed. One of heuristic
approaches in ARM is [5]. Authors have proposed two new ARM algorithm based on
GA, named IARMGA and Memetic algorithm, named IARMMA. They claim that
most of bio-inspired-based algorithms have two main drawbacks: Generating false
rules and considering some rules with low support and confidence as high qualify rules.
They considered two parameters to evaluate their approaches and compared them with
each other: Execution time and Accuracy of generated rules. Accuracy in this
approached has been considered as value of their fitness function. For this reason, they
propose a new method, named “delete and decomposition strategy” to have better
accuracy. Finally, their experimental results indicate that IARMMA has higher exe-
cution time compared to IARMGA especially in a big dataset. However, IARMMA has
better solution quality. In the end, they claimed that their approaches solved the
problems of generating false and inaccurate rules. The main drawback of this work may
be lack of comparison with other famous methods like Apriori.

Yan et al. have proposed a novel approach based on Genetic algorithms for ARM
[6]. In their method, they did not use any fixed minimum support threshold. Instead,
they employ relative minimum confidence term as fitness function to select only the
best rules. At the beginning, they propose an algorithm, named ARMGA, which is
designed to deal with Boolean association rule mining. However, since they also want
to deal with quantitative association rule discovery, they propose another Genetic
algorithm based method, named EARMGA which is an expansion of ARMGA. They
also designed a FP-tree approach based on FP-growth for implementing EARMGA.
Experimental results illustrate that their algorithms reduces computation costs and
generates interesting association rules only.

In our previous work [7], we proposed an ARM approach, named ARMICA. Our
main focus was on proposing a fast algorithm that extract frequent rules with small time
consumption value. Hence, we employed Imperialist Competitive Algorithm (ICA) to
extract frequent rules automatically. This approach did not required any predefined
minimum support and confidence. Our experimental results illustrated that ARMICA is
faster than Apriori. Moreover, ARMICA generates the same rules as Apriori, which can
be the proof of its accuracy. However, what was the drawbacks of ARMICA? First, it

298 S. Yakhchi et al.

requires a predefined parameter, named Number of Imperialists. Although defending a
value for this parameter is not a complex task compared to the defining minimum
support and confidence, it still relies on user to have this value. Secondly, ARMICA
should be compared with other ARM approaches not only the Apriori. Finally, we
should consider more parameters to improve the ARMICA, like number of database
scans or number of generated rules.

3 Proposed Method

We propose new ARM approach based on ICA algorithm called ARMICA-Improved,
which is a heuristic approach. This approach is an improved version of our previous
method ARMICA [7]. ARMICA-Improved has some significant improvements com-
pared to the ARMICA. One of the parameter that has a great impact on execution time
is the number of database scans. Having higher number of database scans may increase
the execution time. For this reason, ARMICA-Improved scans the database only once
and at the same time calculate the frequency of each item in the database.

In this algorithm, we consider the frequency of each item as cost of that item in ICA
and each item is a country. In addition, we assume that a country with more cost has
more power. In the other worlds, a country (item) with high cost (frequency) is
powerful. In the first step, the algorithm sends the countries’ names and their cost
(which were calculated in the database scan stage) to the ICA. ICA selects some of the
most powerful countries as imperialists and divides other countries between them based
on the power of each imperialist. More powerful imperialist can have more colonies. In
this stage, the empires are built. At that point, ICA establishes competition between the
empires. The more powerful empires try to steal the colonies of weaker empires. In the
original ICA algorithm, the stolen colony become one the new colonies of the powerful
empire, but like ARMICA, in ARMICA-Improved, this colony would be removed and
added to a list, named Reserve List. Moreover, the stolen colony should be the weakest
colony of the weaker empire. This process continues until there is only one colony left
for the weaker empire. In this occasion, the colony and imperialist of the weaker empire
become colonies of the powerful empire. This completion continues until there is only
one empire left. At that point, the algorithm checks if there is any colony in the reserve
list, which has more power than any colony in the final empire and exchange them.
Finally, the members of the final empire are our frequent itemset. It is noticeable that
since ICA selects the most powerful countries as imperialists and because we working
on offline databases and the items have fix frequency, there is no chance for a colony to
become more powerful than its imperialist; as a result, there is no need for Revolution
process.

Next, the algorithm sorts the frequent rules based on their costs and calculates the
median cost of them as the universal minimum support. Hence, ARMICA-Improved
determines the minimum support automatically and it does not require any user
knowledge to set this parameter in advance. One of the differences between ARMICA
and ARMICA-Improved is that at this stage ARMICA-Improved removes each items
that has frequency less than minimum support. Hence, when it extracts each combi-
nation of the remained frequent items, it is rarely to have infrequent itemsets (itemset,

ARMICA-Improved: A New Approach for Association Rule Mining 299

which their support value is less than minimum support). This could reduce the number
of generated itemsets, significantly. At that point, the algorithm removes each trans-
action of the database that does not contain any of the frequent items. It also removes
the columns of infrequent items. This process could dramatically decrease the size of
the database.

Just like Apriori, FP-growth and ARMICA, ARMICA-Improved tries generate all
the possible k-length frequent itemset that k is 1, 2, …, n. However, in contrast to
ARMICA, it in each stage, it stores all the generated frequent item sets along with their
frequency to avoid any recalculation in the future. This could make the algorithm more
efficient compared to the ARMICA. In the other worlds, one of the biggest difference
between ARMICA and ARMICA-Improved is that in ARMICA-Improved we calcu-
late the cost of frequent itemsets few times. We store all the costs of all itemsets in
previous steps. This save us lots of time compared to ARMICA, which requires cal-
culating costs of all frequent items and itemsets repeatedly.

4 Example

To familiarize the readers with ARMICA-Improved, here we made an example.
Assume that we have transactional database like Table 1. This database has 17 items
and 7 transactions. ARMICA-Improved scans this dataset and calculate the frequency
of each items at the same time. At this stage, it sends the items and their frequency to
the ICA. ICA selects some of them as imperialist. As it was mentioned before, the
number of imperialists is a free parameter in the original ICA. As a result, since here we
only have 17 countries, we cannot consider 10 percent of them as imperialist and we
assume that we have 4 imperialist and distribute the rest of them between these
imperialists based on their power. At this time, we the empires are built. Then the
algorithm calculates the power of each empire based on power of their colonies and
imperialists. The most powerful empire is empire 1 and the weakest one is empire 4. At
this stage. Empire 1 tries to steal the I12 from the empire 4. The algorithm removes this
colony from empire 4 and adds it to the reserve list. This process continues until there is
only one empire left (Level n). The members of the last empire are the frequent items.
ARMICA-Improved stores their names and costs in a list, named Save List for the
future references.

Next, the algorithm tries to extract 2-lenth frequent itemsets. It generates them and
calculate their costs, and stores them in the Save list. This process continues until all the
possible frequent itemsets be produced. Then, ARMICA-Improved extract the frequent
rules from these itemsets. Since the algorithms stores all the possible items and temsets
and their costs in the Save list, in contrast to the ARMICA, there is no need to calculate
the support of different parts of rules again. This would increase the execution time of
the algorithm. Finally, ARMICA-Improved generate the frequent rules like other ARM
approaches (Table 1).

300 S. Yakhchi et al.

5 Evaluation

We evaluated ARMICA-Improved using Java 1.7 in Netbeans IDE 7.2 and ran it on an
Intel (R) Core (TM) i5 CPU at 2.40 GHz and 2 GB RAM. We also used the imple-
mentation of Apriori and FP-growth from Weka 3.6 [8] along with the Supermarket,
Mushroom, Spect_Train, and Vote datasets from the UCI Machine Learning Reposi-
tory [9] to benchmark our method. Moreover, to further study on ARMICA_Improved,
we also employed LUCS-KDD ARM data generator [10] to generate different data-
bases with different data density. In the other word, we wanted to investigate our
approach under the different circumstances and see what is its characteristics in dif-
ferent databases with different data density. In addition, we considered four factors for
this evaluation: the quality of generated rules (formula 2), the number of database
scans, the number of generated rules, and execution time. Figure 1 indicates that in the
Supermarket dataset ARMICA-Improved has the least number of generated rules with
347 rules. After that, FP-growth generates 350 and Apriori and ARMICA generate 372
rules.

Table 1. Example database

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15 I16 I17
T1 t t t t t t t t
T2 t t t t t t t t t t
T3 t t t t t t
T4 t t t t t t t t
T5 t t t t t t t
T6 t t t t t t t
T7 t t t t t t T
Frequency 6 4 3 3 1 4 6 3 4 3 2 1 2 1 3 4 3

Empire 1 Empire 2 Empire 3 Empire 4

Level 1
Imperialist1: I1 Imperialist2: I7 Imperialist3: I2 Imperialist4: I6

I3 I9 I5 I10 I8 I15 I11 I4 I16 I13 I17 I14 I12

Power: 17 Power: 15 Power:13 Power:9

Level 2

Imperialist1: I1 Imperialist2: I7 Imperialist3: I2 Imperialist4: I6 Reserve List

I3 I9 I8 I15 I4 I16 I17 I14

I10 I5 I11 I13 I12

Power: 17 Power: 15 Power:13 Power:8

Reserve List

I12 I13 I14 I4 I15 I11

Level
n

Imperialist1: I1

I3 I1 I9 I5 I8 I17 I7 I I16 I2

Final
Level

Imperialist1: I1 Reserve List

I3 I9 I6 I15 I10 I2 I8 I17 I7 I16 I14 I12 I13 I4 I5 I11

Frequent
Items

I3 I9 I1 I6

I10 I15 I8 I2

I16 I7 I17

ARMICA-Improved: A New Approach for Association Rule Mining 301

The quality of generated rules ¼ AVG Generated Rules0 Confidenceð Þ ð2Þ

Figure 2 illustrates that, in the supermarket database the execution time of
ARMICA-Improved is the lowest time compared to the other approaches. Its execution
time is around 17 times less than Apriori. After ARMICA_Improved, FP-growth,
ARMICA have the lowest execution times, respectively. The results in Fig. 3 indicate

Table 2. The characteristics of databases

Data set Items Transac-
tions

Input Distribu-
tion (Density)

%

Algorithm Predefined
Min. Support

Predefined Min.
Confidence

Supermarket 217 4627 -

Apriori 28.3 39
ARMICA ― ―

FP-growth 28.3 39

ARMICA-Improved ― ―

Mushroom 119 8124 -

Apriori 36.18 47
ARMICA ― ―
FP-growth 36.18 47

ARMICA-Improved ― ―

DataGenerator 1 110 1200 50
Apriori 1132.3 91

ARMICA ― ―
FP-growth 1132.3 91

ARMICA-Improved ― ―

DataGenerator 2 110 1200 70
Apriori 94 95

ARMICA ― ―
FP-growth 94 95

ARMICA-Improved ― ―

DataGenerator 3 110 1200 40
Apriori 75.8 78

ARMICA ― ―
FP-growth 75.8 78

ARMICA-Improved ― ―

DataGenerator 4 140 2400 55
Apriori 91.43 92

ARMICA ― ―
FP-growth 91.43 92

ARMICA-Improved ― ―

Spect_Train 46 267 -
Apriori 23.14 82

ARMICA ― ―
FP-growth 23.14 82

ARMICA-Improved ― ―

Vote dataset 32 435 -
Apriori 52 86

ARMICA ― ―
FP-growth 52 86

ARMICA-Improved ― ―

347 415 665

82 1
293

1 2

372
1145

2239

340

2
296

1 2

372
1145

2239

340
2

296

1 2
350

1145

2120

340
2

296
1 2

0
500

1000
1500
2000
2500

ARMICA-Improved ARMICA Apriori FP-growth

Fig. 1. The number of generated rules

302 S. Yakhchi et al.

that, in the Supermarket database the average quality of generated rules, which we
considered it as average confidence value of all generated rules, in ARMICA, Apriori
and FP-growth is the same and is equal to 61.09. According to this figure,
ARMICA-Improved with 62.2 has the highest average quality of rules compared to the
other methods. It is worth to mention that Apriori needs many database scans to
generate the frequent rules. After that ARMICA do few scans on the database for
mining frequent rules. However, compared to many ARM approaches, FP-growth has
one of the lowest number of database scans with 2 scans. This may have effect the
execution time of this algorithm. Scanning the database is an I/O operation and having
less I/O operation could make the approach faster. ARMICA-Improved with one
database scan, scans the database even less than FP-growth.

1 0.63 0.11 0.24 0.23 0.21 0.22 0.423
5 0.98 0.45

0.4
0.35 0.4 0.45

0.47

17.3

1.38 0.61
0.44

0.4 0.41 0.6
0.5

1.25
0.74 0.35

0.38
0.31

0.37 0.35 0.45

0

5

10

15

20

ARMICA-Improved ARMICA Apriori FP-growth

Fig. 2. Execution time

62.2

80.49

96.18 97.55 79.83
96.31 91.37

88.5261.09
79.16

95.7
97.46 79.83

96.48

91.37
88.52

61.09

79.16
95.7

97.46

79.83

96.48
91.37 88.52

61.09

79.16
95.74 97.46 79.83 96.48

91.37 88.52

0

20

40

60

80

100

120

ARMICA-Improved ARMICA Apriori FP-growth

Fig. 3. Average quality of generated rules

ARMICA-Improved: A New Approach for Association Rule Mining 303

6 Discussion

We believe that an ARM approach should optimize more than on parameter at the same
time. This makes the approach more productive. At our previous research, ARMICA,
we only focused on execution time and automatic procedure. However, in this paper,
we considered other parameters like the number of generated rules, the number of
database scans, execution time, and the quality of generated rules. Finally, like
ARMICA, ARMICA-Improved also is an automatic approach.

Many researches have been done to propose fast ARM approaches. Extracting
frequent rules from the database was also one of our primary goal in this paper.
Consequently, ARMICA was improved in this paper. ARMICA-Improved tried to
decrease the number of database scans, which may have some impact on execution
time. It only scans the database once which is even less than number of database scans
in FP-growth. Scanning the database is an I/O operation and having less number of I/O
operation may decrease the execution time. In addition, ARMICA needs to calculate
the frequency of each items and itemsets several times, which could result in increasing
the execution time. However, ARMICA-Improved calculates the frequency of items at
the same time that it scans the database. Moreover, it has mechanism to decrease the
database size. After ICA algorithm finds the frequent items, ARMICA-Improved
removes each items (columns) of database that is not frequent. It also removes each
transactions, which does not include at least one of the frequent items. This approach
will decrease the size of database, significantly. Hence, it is easier to calculate the
frequency of each generated itemset in the next steps of the algorithm. In addition, in
contrast to ARMICA, ARMICA-Improved stores all the generated itemsets and their
frequency in the Save list. This helps the algorithm to prevent any recalculation
especially when it tries to calculate the confidence of generated rules; the algorithm
easily finds the support of each part of the rules in the save list and find the confidence
of those rules.

Although extracting frequent rules in a short period of time is important, the
generated rules also should be accurate and have the high quality. In the other words,
generating false rules or rules with low quality in a short period of time, may not be
suitable for users. As a result, we also considered the accuracy and the quality of
extracted rules. Although ARMICA-Improved in the supermarket database produces
the least number of rules compared to the Apriori, ARMICA, and FP-growth, it has
generated rules with more quality. The experimental results indicate that
ARMICA-Improved generates rules with average confidence of 62.2%, which is more
than the quality of generated rules by Apriori, ARMICA, and FP-growth with average
confidence of 61.09. Moreover, experimental results did not show any false rules
generation. Apriori and FP-growth generated all the rules that ARMICA-Improved
generated. This could illustrate that the ARMICA-Improved is also an accurate
approach.

Finally, like ARMICA, ARMICA-Improved is an automatic approach. Many
current ARM approaches require fixed and user defined minimum support and mini-
mum confidence values. Setting these parameters before running the algorithm, espe-
cially in the bigger databases, is a hard task. In many case it needs a try and error

304 S. Yakhchi et al.

approach to set these parameters. As a result, ARMICA-Improved tries to be inde-
pendent from user knowledge about the database and set the minimum support auto-
matically. This algorithm also does not need any minimum confidence. This feature
makes ARMICA-Improved a database independent approach, which could be applied
in any databases. However, it requires a predefine parameter like the number of
imperialists. Although setting this parameter is not comparable with setting minimum
support and confidence, like ARMICA we consider 10 percent of all countries as
imperialist, it should be addressed in the future references; we should find a proper
mechanism for setting this parameter.

After all, ARMICA-Improved showed some significant improvement in extracting
frequent rules from the database. It is a fast approach, scans the database only once,
generates less number of rules, generates rules with higher quality, does not generate
false rules, removes unnecessary items and transactions from the database, decreases
the database’s size, and finally, it is an automatic approach and does not need any
predefined minimum support and confidence values.

7 Conclusion

With the dramatic increase in amount of available data, applying data mining tech-
niques to extracting useful knowledge from databases became more popular. One of
these techniques is ARM. ARM approaches try to extract frequent patterns and rule
form the databases. There have been proposed many ARM algorithms; however, many
of them only focused on one aspect of the problem. This paper proposed a new ARM
approach called ARMICA-Improved, which is an improved version of our previous
research, ARMICA. The experimental results indicate that it is faster than Apriori,
ARMICA, FP-growth. It scans the database only once; it decreases the size of database;
it generates less number of rules and rules with higher quality compared to the other
three mentioned approaches. Finally, it is an automatic approach and it does not need
any predefined minimum support and confidence. For the future research, we should
consider other parameters like interestingness and amount of memory usage. We also
should try to test ARMICA-Improved on big data. Finally, ARMICA-Improved needs
a proper mechanism to set the number of imperialists, which should be addressed in the
future researches.

References

1. Atashpaz-Gargari, E., Lucas, C.: Imperialist competitive algorithm: An algorithm for
optimization inspired by imperialistic competition. In: IEEE Congress on Evolutionary
Computation, pp. 4661–4667 (2007)

2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In:
VLDB Proceedings of the 20th International Conference on Very Large Data Bases,
pp. 487–499 (1994)

ARMICA-Improved: A New Approach for Association Rule Mining 305

3. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in
large databases. In: ACM SIGMOD Conference on Management of Data. ACM, New York
(1993)

4. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: a
frequent-pattern tree approach. Data Min. Knowl. Disc. 8, 53–87 (2004)

5. Drias, H.: Genetic algorithm versus memetic algorithm for association rules mining. In:
Sixth World Congress on Nature and Biologically Inspired Computing (NaBIC). IEEE,
Porto (2014)

6. Yan, X., Zhang, C., Zhang, S.: Genetic algorithm-based strategy for identifying association
rules without specifying actual minimum support. Expert Syst. Appl. 36(2), 3066–3076
(2009)

7. Ghafari, S.M., Tjortjis, C.: Association rules mining using the imperialism competitive
algorithm (ARMICA). In: 12th IFIP International Conference on Artificial Intelligence
Applications and Innovations (AIAI), Thessaloniki (2016)

8. Witten, I.H., Eibe, F., Hall, M.A.: Data Mining: Practical Machine Learning Tools and
Techniques, 3rd edn. Morgan Kaufmann, Burlington (2011)

9. Bache, K., Lichman, M.: UCI machine learning repository (2013)
10. Coenen, F.: LUCS-KDD ARM data generator (2007)

306 S. Yakhchi et al.

	ARMICA-Improved: A New Approach for Association Rule Mining
	Abstract
	1 Introduction
	2 Literature Review
	3 Proposed Method
	4 Example
	5 Evaluation
	6 Discussion
	7 Conclusion
	References

