
A Metric of Confidence in Requirements Gathered from Legacy Systems:
Two Industrial Case Studies

James Marchant, Christos Tjortjis , Michael Turega
School of Informatics, The University of Manchester

P.O. Box 88, Manchester, M60 1QD, UK.
james@marchant.com, {c.tjortjis, m.turega}@manchester.ac.uk

Abstract

It is known that well over 50% of replacement
projects fail. Requirements gathering go someway to
contributing to this statistic; if the requirements we
gather for the new system do not match those of the
system to be replaced then the project is bound to fail,
at least in part.

This paper proposes an empirical metric that
assists measuring the confidence in the requirements
extracted from a legacy system. This metric capitalises
on five techniques for gathering requirements from
legacy systems and caters for a number of different
types of project. The metric can be used to estimate the
likelihood of a project’s success or failure and is
evaluated by two industrial case studies; conclusions
are drawn from these and directions for further work
are presented.

1. Introduction

It is well known that the majority of replacement

projects fail [1]. The successful implementation of
such a project is not the outcome of any single phase of
the software maintenance lifecycle, but the
collaboration of them all. As a result a replacement
project can fail for any number of reasons, for instance,
poor management, lack of resources or lack of
knowledge.

Lack of knowledge is a major obstacle to
overcome early on; if the system to be replaced is not
fully understood, then how can one expect to
implement a successful project that will replace that
system [2].

Gathering the knowledge, or requirements, is one
of the first milestones that must be attained in order to
start a replacement project successfully [3]. Getting the
requirements wrong has a ‘snowball’ effect on the rest
of the project; time is wasted designing, implementing

and testing the unwanted features, then re-defining, re-
designing, re-implementing and re-testing the
application. This severely impacts on the likelihood of
success for the project.

Success is a term that is subjective and relative to
the project which it is being applied to. Success factors
for one project are likely to be different from these of
another. A measure of success may be whether the
deadline of the project is met, the functionality of the
application is complete or the cost of the project falls
within the budget.

The importance of getting the requirements right
and the authors’ experience in commercial software
replacement projects has motivated the work presented
here. Establishing the risks as early in a project as
possible has prompted this investigation into how a
metric can be applied to the requirement gathering
phase in order to determine the success likelihood of
the project. This metric should be based solely on the
requirements gathering phase [4].

Our approach to this problem is to analyse the
common techniques for requirements gathering and
calculate the contribution they make to defining all the
requirements for the project. Values representing the
confidence in these techniques will be proposed that
together with the contribution factor for the technique
will be used to calculate a confidence metric for all the
requirements. This value can then be used to make
subjective predictions as to whether the project is
likely to succeed or fail, purely based on the
requirements gathering technique employed.

This paper explores the requirements gathering
techniques and proposes an empirical confidence
metric which relates these techniques to a number of
project types. Requirements gathering techniques
contribute towards the confidence metric which in turn
can be used to calculate a risk factor for the project,
which can in turn be used to determine a likelihood of
failure for a project. The proposed metric was used in
two industrial case studies as a guide to reason about
the success or failure of the project.

The remaining of the paper is organised as
follows: Section 2 reviews a number of requirement
gathering techniques and their suitability in
contributing to the proposed confidence metric. Section
3 proposes the confidence metric and justifies the
selected criteria. Section 4 presents the two case
studies and section 5 discusses how the metric can be
applied in such cases. The paper concludes and
directions for further work are given in section 6.

2. Background

Gathering the correct requirements is essentially
the fulcrum point in a software replacement project,
this point determines whether the project tips towards
success, or failure. It is estimated that 85% of defects
in developed software originate in the requirements
[5]. For a software project to be successful, 100% of
the core requirements for the application need to be
discovered, it is this discovery that we will explore.

In terms of legacy systems replacement software
engineers are given the opportunity to use a number of
requirement gathering techniques [5]. An objective for
the replacement of a legacy system may solely be to
reproduce the existing process or application in a more
modern programming language. This type of software
project is not that common [6], [7], it would be more
common to replace the system, adding new
functionality and redesigning the user interface [6], [7].
It is at this point where the requirements of the system
creep away from the original and the task of replacing
legacy systems becomes more complex.

Five techniques have been proposed that aid with
the discovery of requirements from legacy systems.
These techniques include the morphological, source
code, functional, and use case view as well as
documentation analysis; these are reviewed in the
following sections.

2.1. Morphological View

This is the systematic exploration of the
applications features [8]. It involves uncovering the
applications operations by using the application as the
end user would. A common method for this approach
is to work through the menu structure or commands list
entering each item into a table, recording the
functionality of that feature. This approach is suitable
for recording user known operations and the
composition of the user interface. The morphological
view is strong at discovering the legacy systems initial
requirements for the application. The morphological
view is poor at uncovering hidden procedures and
operations the user is not familiar with, for instance,
processing data.

2.2. Source Code View

The source code view provides a detailed view of

how the original system was developed. It uncovers the
methodology behind the internal data processing and
how operations are performed. The source code view
aims to find functions and methods that define the
operation of the program. The source code view is
strong at gathering requirements for algorithm re-
engineering. The downside of this technique is the
reliance on the skills of the original developer and their
programming approach. Comments and structure of the
original code are paramount to the performance of this
technique.

2.3. Functional View

The functional view is a description of what the
features do [8]. Essentially this involves the discovery
of all the operations provided by the application. The
functions are then categorised, linked and any
relationship determined. It is the discovery of these
operations that will be used to define the requirements.
Discovering the operations is the hardest task. In the
absence of any documentation or program
specifications these operations are uncovered by
traversing the morphological views, the source code
views and observing the operations that the application
performs. The functional view is very strong at
providing low level core requirements. These generally
form the basis of the application, and are some of the
first requirements that should be defined. The
functional view is weak in discovering requirements
that are not user orientated, as it still relies on the
operations being discovered by dynamically running or
statically examining the application.

2.4. Use Case View

In the replacement of legacy systems, one source
of information to determine the requirements of the
legacy system is to inspect or question the user or
consumer of the legacy system. The user of the legacy
system may be a person, or another application. In
either case, the primary concern is to find out the input
and the output of the application. Essentially, one
wants to produce a simple box, where data are poured,
the application processes the data and the output is
what the consumer expects [9].

This simplification provides substantial Use Case
views that simply define the requirements of the legacy
system. Use Case views are exceptionally strong at
defining high level requirements for an application;
they provide the requirements as long as the user

knows what they want. Use Cases provide an
abstraction above any code details or physical
operations. They are an exceptionally powerful tool
when structured correctly [9].

Use Cases may be dangerous if wild assumptions
are made about the functionality of an operation [10].
The level of abstraction they encompass may be too
abstract to give any real meaning to the requirement
set. Use Cases are often more complicated than first
imagined, each level of abstraction requires different
sets of use cases [7].

2.5. Documentation Analysis

Documentation analysis involves the study of all
available documentation for a given project. The
relevance of this documentation is at the discretion of

the analyst. If suitable requirements specification
documentation exists, the software maintainer should
seek to establish how up to date is the latest version of
the document, and whether the documentation release
corresponds to the application release. Project release
notes may exist that identify all the operations of the
application. Help files may exist that detail the entire
user side features and operations. Design
documentation may exist that detail the data structures,
databases and design considerations for the original
application. Documentation analysis is strong at
sourcing the original requirements of the application
which the application was intended to address. It is let
down by the reliance of the documentation to be kept
up to date, and the partial completeness of that
documentation [11].

Table 1 – Review of requirements gathering techniques

Requirement
gathering
technique Advantages Disadvantages
Morphological View

Good at gathering user known operations
Discover the initial application requirements
Record the user interface requirements

Uncovering hidden requirements
Internal processes

Source Code View

How the original system was developed
Methodology behind internal data processing
Algorithm reengineering

Reliance on how the code was originally
written
Need for structure and comments

Functional View

Providing low level requirements
Gathering core requirements

Discovering non-user oriented requirements
Internal processes
Dynamically and statically examining the
program

Use Case View

High level requirements
Provide user known requirements
Abstraction above code or implementation
Can be structured

Dangerous if wild assumptions made
May be too abstract
More complicated than first imagined

Documentation
Analysis

Source original application requirements
If documentation complete, then accurate source
of requirements

Documents must be kept up to date
Need to be consistently maintained

Table 2 –The Confidence Metric Table

 Morpho-
logical

Source
Code Functional Use

Case Documentation Confidence
Metric

Contribution Factor 0.15 0.2 0.15 0.25 0.25
Projects

A - Internal Process
(Replacement 1 for 1) 50 75 5 80 60 58.25
B - Internal Process +
New Functionality 50 75 5 60 60 53.25
C - Replacement Desktop
Application (Replacement 1 for 1) 80 30 80 70 50 60
D - Replacement Desktop
Application + New Features 80 30 80 50 50 55
E - Replacement Desktop
Application (No source code or
documentation) 80 0 80 90 0 49.5

2.6. Summary of Background

The five techniques we have discussed are
commonly used in software replacement projects,
however, each of the methodologies are not equally
weighted in terms of their usefulness for any given
project. In the replacement of a legacy system, one
technique, for instance source code analysis, may be
favoured over defining use cases. This is the preference
of the project team and the type of project undertaken.
We have seen that each of the techniques has its
advantages and disadvantages. These are outlined in
Table 1.

3. Proposed Solution

Knowing the requirements gathering techniques is
important to the success of any project, but their effect
on different types of projects needs also to be known.
A data driven process project will perform differently
to a Windows based application; gathering
requirements for one is much harder than the other,
some projects have explicitly defined boundaries while
others do not.

It is being proposed that each of the five
requirements gathering techniques be given a
contribution factor. This is a measure of how good that
particular technique is at gathering reliable
requirements in any type of project. The sum of these
factors should add to up to one.

Each type of project is analysed against the types
of requirement gathering techniques discussed, they are
then rated out of 100. This figure represents the
success of gathering the desired requirements via the
technique used. This shall be known as the Technique
Confidence. Typically, one would not make an
assumption that any given technique will uncover
100% of the requirements. Combinations of techniques
are more likely to gather all the requirements. The
confidence metric is calculated by summing the
products of the contribution factor and the Technique
Confidence, as depicted in Table 2.

The values entered into this table for the
contribution factors have been sourced from the
analysis of previous projects. The authors experience
with projects and the relative usefulness of the
requirement gathering technique as discussed in
Section 2 is how the figures were determined. We
propose that Use Case view and Documentation
analysis are assigned a contribution factor of 0.25,
Source Code view 0.2 and Morphological and
Functional views a contribution factor of 0.15.

The Morphological view has been assigned the
value of 0.15. This figure, along with the functional

view is the lowest assigned to the view collection. The
figure itself cannot be reasoned about in isolation, it
must be considered in respect to the other views. When
the other views are considered, it is noted that the
morphological and functional view are slightly less
useful at sourcing requirements than any of the other
views. This is partly due to the fact that they cannot
discover hidden processes and procedures, these may
be essential requirements.

The source code view has been deemed the
intermediate technique. Theoretically, source code
analysis can be used to uncover the same requirements
that Morphological and Functional analysis can, but
with the advantage of discovering internal processes
and algorithms. It has not been rated as highly as the
final two techniques as it can only get requirements
that are defined in the code. The code may not make
the requirements clear.

The two techniques which have been determined
the most reliable for requirements gathering are Use
Case and Documentation views. These views have
their downside; however, providing the documentation
is complete and use cases are created correctly then
they are both essential sources for reliable
requirements. For instance, if the documentation is up
to date and contains every function of the application,
then this is an invaluable resource.

Table 3 –Project Risk Relationship Table

Failure
Risk:

Red
HIGH

Amber
MEDIUM

HIGH

Yellow
MEDIUM

LOW

Green
LOW

Confidence
Metric 0-25 26-50 51-75 76-100

Reasoning about the sample projects in Table 2,

one can notice that there is higher certainty in the
requirements for projects A and C, which are
straightforward replacement projects introducing new
features, decreases certainty. For project E, where little
documentation and source code exists, project risk is
considered Medium to High risk. More care should be
taken to ensure the completeness of its requirements.
Table 3 depicts an empirical assessment of the
estimated risk of a replacement project given the
confidence metric and is used in conjunction with
Table 2.

4. Case Studies

Two software replacement case studies are
proposed in the introduction to this paper, these two
case studies have had the requirements confidence

metric applied to them so we can reason about the
likelihood of success for each of the two projects given
the requirements gathering techniques used and the
confidence in those techniques. The figures displayed

in Table 4 are subjective, empirical views of how
successful the authors felt these requirements gathering
techniques were at generating useful requirements.

Table 4 –The Confidence Metric Applied to Case Studies

 Morpho-
logical

Source
Code Functional Use

Case Documentation Confidence
Metric

Contribution Factor 0.15 0.2 0.15 0.25 0.25
Projects

Case Study 1 – Replacement
Desktop Application, with new
functionality, Transaction
Redevelopment, Database
Maintenance. 40 30 40 50 30 38

Case Study 2 – Desktop
application replacement with new
features. 70 20 70 60 80 60

4.1. Case Study 1

This case study was the investigation into the large

replacement project for a financial organisation. The
project was to replace the existing call centre agent’s
expert system. The existing system was used by call
centre staff to handle telephone banking requests; these
were anything from creating new accounts to setting up
standing orders and direct debits. The system is a
Microsoft Windows based desktop application; it relies
on running transactions based on a central server to
perform the financial transactions. The migration to
replace the system was from a language based on
PASCAL, to a new C++ orientated language.

The system contained approximately 500 windows
style forms, each of the forms had approximately five
supporting logic scripts that would perform the
procedures on the information. The size of these logics
ranged from 10 lines to no more than 1000 lines. The
system contained approximately 1,250,000 lines of
code. This related to approximately 2,500 procedures.

A major problem encountered during the
requirements analysis phase was the compilation of all
the requirement sources, i.e. gathering documentation
and source code analysis. The haphazard approach to
reengineering of the system over several years lead to
inconsistent documentation, locations of the documents
and the detail of the documents. The same applied to
source code written in different styles by several
different developers. The project, although considered
essential to future productivity, was postponed during
the requirements analysis phase due to the lack of
understanding of requirement sources.

4.2. Case Study 2

This case study was the investigation into the

smaller replacement project for the legacy network
monitoring application. The previous application was
written in C. Its primary function was simply to listen
for SNMP traps and alerts arriving on a designated
COM port. The alerts would be logged and displayed
to the user in nothing more complicated than a list. The
replacement project must essentially do the same task,
but with the addition of a new modern user interface to
allow more effective management of the network. The
new development platform was C# in .Net.

The system to be replaced contained
approximately 100 files, each with around 250 to 1000
lines of code. The approximate total for the number of
lines of code would be around 60,000. This
approximated to 150 functions.

In terms of use, the system was as critical to the
productivity of the team who used it as the large
project was to the call centre staff, but the major
difference was the shear scale of the application. The
purpose of the application was well known by a
number of service engineers and documentation
existed which would support requirements gathering.
The analysts were not overwhelmed by requirements
gathering and confidence was high that the project
would by complete successfully within the time
estimated.

5. Discussion

The results in the confidence metric Table 2 are
derived as follows, the figures in bold indicate the
usefulness of that approach in a given project. Further
projects can be added to the table, providing they can

be reasoned about. Other requirement gathering
techniques can be added to the table, providing the
contribution factor is adjusted accordingly.

Essentially, the contribution factor is the key
figure in the equation, the accuracy of this figure is
vital to the end confidence metric for that project. The
figures for the contribution factor in our table have
been uncovered by analysis of past project experience,
and the resultant requirements generated from each of
those methodologies. These figures would be adjusted
according to others relative success with the
appropriate gathering techniques.

The Confidence Metric is a subjective, empirical
measure of how likely all the requirements will be
gathered by using only the techniques described and
the resources available, given the contribution factor.
Confidence metrics approaching 100 will be high
confidence, those around 50 will be medium
confidence, and those below 25 have very low
confidence. As software should be engineered [12],
[13] there should ideally be high confidence in any set
of requirements; medium confidence suggests
uncertainty and possible lack of direction for the
project, whilst low, indicates that the confidence in the
requirements is dangerously uncertain.

In projects where the failure risk falls into the
medium band, it is expected that the projects
experience a significant requirements creep, the
introduction of requirements to meet the projects goals
[14].

Two case studies were introduced in Table 4. The
figures entered for these two case studies were sourced
from the authors’ involvement and opinion of how
successful each of the techniques were in sourcing
requirements.

Case study one was expected to have a low
confidence metric, the lack of consistent
documentation and the different tasks to be completed
all added to the shear complexity of the project. The
confidence metric was higher than the authors
expected, falling into the Medium – High failure risk
category, with so much uncertainty in the project, we
believed that the risk would have fallen nearer to the
High category.

This is partly due to the application of use cases in
the requirements gathering techniques. This technique
was heavily relied upon, mainly because the project
was business driven and the majority of the
requirements were defined by the business side of the
financial organisation. This meant that the business
knew exactly what they wanted it to do, but were not
sure how they wanted it doing. Use cases are
commonly used to define abstract requirements. As
Table 1 indicates though, use cases can be dangerous if
used to define abstract requirements, they can be

wildly used to generate endless requirements sets that
need to be broken down and some form of structure
applied to them.

The second case study fell more or less where the
authors had expected it to, in the Medium – Low risk
category. This was not a surprise, as the authors’
experience with replacement projects were what led to
the contribution factors and the requirement
completeness figures in the first instance.

The figure that stands out from case study 2 in
Table 4, is the lack of requirements gained from the
source code. Considering that the new implementation
language C#, was an evolution of the original
implementation language C, it was initially hoped that
the source code would have been more help. After
considerable analysis of the source code, it was found
to be of little help due to the style and lack of
comments used. Poor choices for variable names made
the code hard to follow and to understand its
functionality. If anything, this technique of gathering
had a negative impact on the project due to the time
wasted not gathering useful information. It may be
proposed that negative values could be entered into the
table for counter productive techniques of gathering
requirements.

The case studies highlight where requirements
gathering techniques do have an impact on the
likelihood of success of a project. The two case studies
reflect their retrospective outcomes, where case study
one failed and case study two was considered a
success.

6. Conclusions and further work

Without suitable requirements, no project can be
expected to reach its objective; even a well defined list
of requirements is no guarantee that the requirements
for the success of the project have been fulfilled. The
requirements gathered are only as good as the source
they have been gathered from [5].

In this work we have introduced the use of metrics
which can be used to highlight the potential flaws in
requirements gathering, we aimed to quantify the
quality of the requirement gathering techniques for a
project. A confidence metric was established which
represented the sum of the products of the metrics, in
order to determine a single metric which could be used
to determine the risk factor for the project.

In order for this hypothesis to be applied to other
replacement projects, some degree of understanding of
requirements gathering within the designated project
needs to be understood, i.e. the manner by which
requirements are gathered and the skills of the team
responsible for gathering the requirements. It could be
argued that any project could be made successful given

enough time and resources, eventually all the
requirements would be uncovered, but this was not the
intended application of the metric. We set out to
produce an empirical confidence metric that would
assist in measuring the confidence of the requirements
extracted from the legacy system in everyday projects
with finite resources, skills and time.

The technique confidence is the value which needs
to be calculated for a given project, ‘X’. Depending on
the type of project X, would depend on the values
assigned. In safety critical systems, one would hope
that the technique confidence values were high,
approaching 100. For less critical software, such as a
simple web application, the values may be acceptably
lower.

In summary, in applying the confidence metric to
any project, the likely hood of gathering requirements
from the techniques outlined in Table 1 need to be
established. Past project experience with the given
resources should be used to come to the figure used for
the confidence metric. The same project carried out by
different teams with different mentalities would
undoubtedly have different outcomes.

Future work leads to the validation and analysis of
as many types of software project as possible,
gathering data to generate contribution factors from
multiple development projects. The model could then
be applied to different projects with varying
complexity.

References

[1] H.M. Sneed, ‘An Incremental Approach to System

Replacement and Integration’, Proc. 9th European
Conf. Software Maintenance Reengineering (CSMR
05), IEEE, Comp. Soc. Press, 2005, pp. 196-206.

[2] C. Tjortjis and P.J. Layzell, 'Expert Maintainers’
Strategies and Needs when Understanding Software: A
Qualitative Empirical Study”, Proc. IEEE 8th Asia-
Pacific Software Engineering Conf. (APSEC 2001),
IEEE Comp. Soc. Press, 2001, pp. 281-287.

[3] C.A. Dekkers, ‘Creating Requirements Based Estimates
before Requirements are Complete’, Cross Talk – The
Journal of Defence Software Engineering, April 2005,
pp13-15.

[4] H. Hofmann and F. Lehner, ‘Requirements Engineering
as a Success Factor in Software Projects’, IEEE
Software, July/Aug. 2001: 58-66.

[5] R.R. Young, ‘Effective Requirement Practices’,
Addison-Wesley, 2001.

[6] R.C. Seacord, ‘Modernising Legacy Systems’, Vol. 5,
No. 4, Fourth Quarter, The Cots Spot, Carnegie Mellon,
Software Engineering Institute, 2002.

[7] M.L. Brodie and M. Stonebraker, ‘Migrating Legacy
Systems: Gateways, Interfaces and the Incremental
Approach’, Morgan Kaufmann, 1995.

[8] I. Hsi and C. Potts, ‘Studying the Evolution and
Enhancements of Software Features’, Int’l Conf.
Software Maintenance (ICSM 98), IEEE Comp. Soc.
Press, 2000, pp.143-151.

[9] G. Schneider, J. Winters and I. Jacobson, ‘Applying Use
Cases: A Practical Guide’, Addison-Wesley, 1998.

[10] I.F. Hooks, and K.A. Farry, ‘Customer-Centred
Products: Creating Successful Products through Smart
Requirements Management’ AMACOM, 2001.

[11] A. Florence, ‘Reducing Risks Through Proper
Specification of Software Requirements’, Cross Talk –
The Journal of Defence Software Engineering, April
2002, pp 13-15.

[12] I. Sommerville, ‘Software Engineering’, Addison-
Wesley, 1998.

[13] I. Sommerville, and P. Sawyer, ‘Requirements
Engineering: A Good Practice Guide’, John Wiley &
Sons, 1997.

[14] K. Wiegers, ‘Karl Wiegers Describes 10 Requirements
Traps to Avoid’, Software Testing & Quality
Engineering, vol. 2, no. 1 January/February 2000.

