
A Method for Legacy Systems Maintenance by Mining Data Extracted from

Source Code

Kai Chen

Dept. of Computation, UMIST

P.O. Box 88, Manchester,

M60 1QD, UK

K.Chen@student.umist.ac.uk

 Christos Tjortjis

Dept. of Computation, UMIST

P.O. Box 88, Manchester,

M60 1QD, UK

christos@co.umist.ac.uk

Paul Layzell

Dept. of Computation, UMIST

P.O. Box 88, Manchester,

M60 1QD, UK

pjl@co.umist.ac.uk

Index terms- Legacy Systems Maintenance, Program Comprehension, Data Mining Tools, Data Preparation.

Abstract

This paper proposes a new method for understanding
and maintaining legacy software systems. The method is
based on the use of data mining for extracting
interrelationships, patterns and groupings of code
elements ranging from variables up to modules.

Data mining techniques have been previously used for
producing high-level system organizations of source code
and legacy systems remodularization. Clustering and
association rules were used to get an overview of legacy
systems, when attempting understanding, maintenance or
re-engineering.

However, all previous approaches have addressed
systems at a high level of files, programs and modules,
failing to get an insight into systems at a lower level. The
work presented here aims at addressing systems both at
high and low level. It was motivated by the model of data
mining in more conventional domains which requires data
preprocessing prior to the application of algorithms.

The method comprises of a systematic data preparation
stage for extracting a number of data models and the
relevant databases before applying data mining. Its

viability is evaluated in COBOL systems by deriving
records about variables, keywords and other
grammatical information which are then subjected to
mining association rules. Detailed examples are given;
conclusions and further work are also presented.

1. Introduction

The significance of legacy system maintenance and

the importance of program comprehension as a part of
it is well known and documented in the literature [3],
[5], [12]. The importance of maintenance has risen
dramatically over the past a few years so have the costs
[10]. Some of the reasons are reported to be the fast and
unplanned modifications, the lack of up-to-date
documentation and the lack of experienced software
maintainers. A recent survey of maintainers’ needs
indicated that automated methods are required to
provide a quick grasp of a software system, to enable
practitioners who are not familiar with a system, to
commence maintenance with a level of confidence as if
they had this familiarity[17].

Data mining is a technology traditionally used for
prediction and understanding patterns and relations in
databases. It has also been introduced to legacy program
comprehension and used for producing high-level system
organizations of source code [11], design recovery [9],
[15], identification of data cohesive subsystems [13],
legacy systems remodularization [2], modularity
assessment, complexity detection and impact of changes
prediction [16], [18].

However most of the proposed methods focus on
systems at a high level of granularity, involving functions,
files and classes even though maintainers also require
understanding at a lower level, that of sentences and
variables. Furthermore data pre-processing has mostly
been ignored by these methods, despite the fact that it is
considered to be an important step in “conventional” data
mining [7].

The method proposed in this paper addresses both
issues by introducing a separate data preparation step
aiming at the extraction of both high and low level
information from source code, followed by a data mining
step. This information includes variables, reserved words
and other grammatical tokens found in source code, at the
level of paragraphs and sentences alike. This information
is stored in a database which is then used as input for data
mining tools in order to derive knowledge about the code.

COBOL systems were used to evaluate this method, as
the majority of legacy systems are still in this language.
The results of this method were assessed using an
association rules tool. A discussion about the method’s
potential for facilitating maintenance concludes the paper.
Further work includes applying the model in large-scale
systems, different programming languages and the use of
other data mining techniques such as clustering, link
analysis and classification.

2. Background

2.1 Program comprehension and data mining

Program comprehension is a process that uses existing

syntactic and semantic knowledge to acquire new
knowledge that ultimately meets the goals of a code
cognition task [12]. A way of reducing the difficulties of
understanding is to chop the whole system into chunks.
Syntactic and semantic knowledge can be described in
models (chunks) that explicitly represent different
dependency relationships between various software
artefacts [6]. There are two different views of dividing of
chunks. At system level, chopping means splitting up the
system to form smaller chunks. At the entity level,

chopping means grouping the entities to form larger
chunks [19].

Data Mining aims at inferring useful relations and
patterns from data that might not have been noticed or
at least could not have been confirmed [8]. Data Mining
achieves prediction and description by using several
techniques such as classification, clustering, and
association rules [7] and has recently been used to
analyse software legacy systems.

Most of the proposed methods use clustering to group
entities or chunks of code based on their
interrelationships or similarity. Clustering algorithms
can be used to extract relationships between chunks,
and combine low-level chunks into high-level chunks
[11], [19]. Thus software systems can be decomposed
into subsystems, which provide maintainers with high-
level structural information that helps them navigate
through the numerous software components, their
interfaces and their interconnections [11]. Another way
of analysing legacy systems down to the relationships
of smaller chunks is through using the calling structure
[4]. Alternatively, data from the source code can be
used to analyze the semantics, representing the
structured record as a contiguous block of storage at
runtime [1]. This approach uses the variables defined to
trace the data flow, and the data flow to find out the
semantics of source code.

2.2 Data preparation

The first step of data mining is pre-processing or data

preparation which aims at preparing the data for mining.
It comprises two activities: one is finding and
assembling the data set the other is manipulating the
data to enhance its utility for mining [14]. It requires
understanding the objective of data mining in advance,
and anticipating their likely results. The difference
among algorithms should be known in advance and
should be reflected on the preparation data in some
degree. This can lead to appropriate data models. The
target of data preparation is to produce a “mineable”
data representation [14]. When dealing with source
code, data preparation should focus on use of semantic
and syntactic knowledge in order to include only the
necessary data and produce a database of appropriate
size.

2.3 Data preparation in COBOL

The objective of data preparation in COBOL is to

extract information from code by taking into account
the grammar and syntax of the language, setting up

different tables for different data mining algorithms,
evaluating their quality and iteratively improving it.
Successful COBOL data preparation should achieve the
following goals:

� Extract the variables of COBOL programs.

� Generate a clear view of variable hierarchy which
facilitates understanding programs and their structures.

� Design a database capturing code structure and
variables.

As mentioned above (2.1), clustering is the most widely
used technique, focusing on high level modules of source
code. Proximity among modules depends on number of
accessing and variables transfer or “ call” among them. In
other words focus is on modules naming and relationships
existing. Data tables mainly store two types of data:
module description and relationships description. Their
contents can be binary showing whether a relationship
between modules exists or not, or integer showing the
number of times a relationship occurred. This number can
represent module distance.

Module relationships can be variable transfer, accessing
the same file and using the same sub-modules. Different
kinds of relationships may be treated as either the same or
having weights according to their kind. For example,
accessing the same file can be more important than
transferring a variable when determining module
relationship, because file access always involves more
than one variable, which have several attributes in
common.

3. Approach

Facilitating, accelerating and increasing the accuracy of

system and program level understanding motivated this
work. Research is required to devise a method and
generate an industrial scale tool to be used for identifying
patterns in code, extracting interrelationships and
predicting the impact of change.

3.1 Results usability

Maintainers analyse source code in order to understand

it. Data preparation is a prerequisite before using data
mining tools to generate results that facilitate program
comprehension. Thus two types of results are anticipated.

Firstly, results representing the syntactic and semantic
content of the source code. Relationships among variables
and blocks of code should be identified. Therefore, it is
useful to represent code by means of models or graphs,
such as a variable relationship model (similar to an

Entity-Relationship model), a variable - block
relationship model (similar to the Object-Oriented
model), or even models that convey a meaning similar
to Data Flow Diagrams and flow chart.

Secondly results representing variable or block
relationships, acquired by mining association rules. For
example, a rule of the form: “ if SALARY exists in a
paragraph P, then NAME exists in paragraph P” with
confidence x% and support y%, (each rule is
characterized by its confidence, i.e. the proportion of
times the rule is correct, and its support, i.e. the
proportion of times the rule applies [8])

3.2 Analysis

3.2.1 Understanding methods. Understanding

COBOL code involves two aspects: a) variable
relationships and b) relationships among different code
elements (elements here mean variables and
grammatical tokens). The relationship can be based on
value and parameters transferring or control transferring.
The understanding of these aspects facilitates
understanding the whole structure and meaning of the
source code. According to the attributes of COBOL, the
way of understanding can be concluded as follows:

• Process understanding
In COBOL, sentences can be grouped together if they

are e related rather than just collocated. Clustering or
association rules can be applied here to produce groups
of code blocks or variable relationships within a block
of code. The importance of sentences is different when
understanding source code; thus there are sentences
which should be ignored. Grouping sentences together
is a good way to avoid analysing unimportant sentences
or the over-detailed analysis.

• Data relationship understanding
Understanding data relationships is a key factor for

Entity-Relationship (ER) and Object Oriented (OO)
models. Applying data mining on variables can produce
information of how closely they are related to each
other, and it can also give insight into relationships of
different parts of the code. Variables in COBOL can be
elementary and structured, which maybe further
decomposed into elementary and structured. However,
structured variables can be huge, and need to be divided
into different data block. This work divides variables
according to their original structure.

• Data and block relationship understanding

This part complements to the first two understandings.
It is used to explore how different data relate to
different parts of a program, how relevant is the

occurrence of data to the occurrence of others, and how
relevant are the different parts of source code to variables.
Both code blocks and data blocks need to be divided for
this part.

3.2.2 Source code partitioning. The proposed three
methods of dividing the source code is along the lines of
source code understanding aiming at preserving its
integrity. There are presents in the following.

• Paragraph division
The PROCEDURE DIVISION in COBOL code is

composed of paragraphs. The advantage of this method is
that it easily preserves the integration of data and their
meaning. Usually, sentences in the same paragraph are
more likely to have closer relationship. However this
method ignores the details inside the paragraph.

• Semantic division
Paragraphs can be divided by grammatical factors.

For example, a block of code can be divided by the
grammatical tokens, such as “ for” , “ while” , “ end” , and
so on. This way to divide code can preserve its integrity.
A possible shortcoming of this method is that it may
involve a complex algorithm.

• Line division
Code is composed by a number of lines. A line is a

grammatical unit that can convey an integrated meaning.
Dividing code in this way can be more straightforward,
convenient and detailed. The algorithm required should
be relatively easy to understand.

Figure 1: Overview of the system’s structure

4. System design

4.1 System structure overview

The system can input either COBOL source code or
files generated by a COBOL parser, developed in-house.
The parser produces a full list of tokens contained
inline with the associated line numbers. When given
raw source code for input it generates two types of
outputs. The first is a full list of variable names and

COBOL source code

Preprocess for source code file

Variable per line
retrieval

Variable per paragraph
retrieval

Grammatical token
retrieval

Database

Parsed COBOL file

reserved words occurring within the same paragraph
and the paragraph number, while the second is a similar
list of variables and reserved words occurring within
the very same line and the relevant line number. Thus
two databases are populated when source code is input.
One consists of one table per program file, containing
one record per paragraph. The other contains one table
per paragraph, having one record per line of code,
excluding blanks and comments.

When a parsed COBOL source code file is input, the
system generates a table containing a record of all
grammatical tokens per line and the relevant line
number. Figure 1 gives an overview of the structure of
the system.

4.2 The main functional modules

The system consists of three main functional modules,
as presented in Figure 1, one for retrieving information
organized in paragraphs of code, one in lines within
paragraphs and another retrieves grammatical
information as produced by a parser. Their outputs are
presented in the following.

Paragraph

name
Name of
variable

1

Name of
variable

2

Name of
variable

3

..

Paragraph
name1

1 0 1

Paragraph
name2

1 1 1

Paragraph
name3

0 0 1

Paragraph
name4

0 1 0

……

Figure 2: The output for high-level data retrieval
from source code

4.2.1 Variable per paragraph retrieval. The output

of this module is a table with rows including a list of
variables in each paragraph, the occurrences of variables
and the relevant paragraph name. An example is given in
Figure 2.

Relationships among variables can be found from such
table, as well relationships among paragraphs by
analyzing variable occurrences within them. A number of
variables occurring in the same group of paragraphs is a
strong indication that these paragraphs are related and

may demonstrate similar functionality.

4.2.2 Variable per line retrieval. Similarly the output
of this module is one table for each paragraph with rows
including a list of variables per line, the occurrences of
variables and the relevant line name. Obviously, the
database produced contains tables as many as the number
of paragraphs in the program.

4.2.3 Grammatical token retrieval. The output of
this module is a single table with rows including a list of
grammatical token per line and the relevant line name.
This table can be used to identify relationships among
lines by analysing the similarity of usage of grammatical
token.

5. System Evaluation

 Data Miner for Source Code1 (DMSC) was used to

evaluate the tables of variables produced from a COBOL
program which reads employee salary information from
a file, and then prints it out in a formal format.

5.1 Evaluate the table of paragraphs’ variables

The following are a few rules found from the

paragraphs’ variable table by using DMSC.

� If “WS_WORK_AREAS___WS_LINE_CTR” in
a paragraph then “OUT_REPORT_REC” also in the
paragraph with 44% support, 100% confidence. (1)

� If “WS_WORK_AREAS___WS_DEPT_HOLD”
in a paragraph then “OUT_REPORT_REC” also in
the paragraph with 44% support, 100% confidence.
(2)

These rules can be used to find out the relationship
among variables.
WS_WORK_AREAS___WS_LINE_CTR is used to
set the blank between different lines in one record while
WS_WORK_AREAS___WS_DEPT_HOLD is used
to set the list separator for dividing records in different
sets, such as employees’ records in different department.
OUT_REPORT_REC is used to print out the records.
For this reason, they have close relationship.

Paragraphs can be grouped by using the clustering
rules. The paragraphs can be grouped together by
applying the same rules, which were discovered by using
association rules in the previous step. For example,
paragraphs 300-HEADING-RTN and 500-DEPT-

1 DMSC is a tool for mining association rules developed by L. Sinos at
UMIST.

BREAK were grouped together because both support the
rule:

If ‘WS_WORK_AREAS___WS_LINE_CTR in a
paragraph then OUT_REPORT_REC also in the
paragraph.

 These two paragraphs have high possibility to have
functions, algorithms, or logic in common. In this case,
300-HEADING-RTN can be PERFORMED FROM
500-DEPT-BREAK.

The objective of paragraphs’ variable table is to help to
understand variable relationships, and paragraph
relationships by using data mining tools. As indicated
this method satisfies the initial objective, by revealing
variable and paragraph relationships.

5.2 Evaluate the table of lines’ variables

The following are rules found at the paragraphs’

variable table. They are similar to the ones used for
evaluating the table of paragraphs’ variables.

� If IN_EMPLOYEE_REC___IN_DEPT in a line
then WS_WORK_AREAS___WS_DEPT_HOLD
also in the paragraph with 9% support, 100%
confidence. (3)

� If IN_EMPLOYEE_REC___IN_TERR in a line
then WS_WORK_AREAS___WS_TERR_HOLD
also in the paragraph with 9% support, 100%
confidence. (4)

Variable relationships are easier to be found in lines
than in paragraphs, as variables in neighbouring lines are
more likely to have closer relationship. For example,
according to the result,
IN_EMPLOYEE_REC___IN_DEPT has direct
relationship with
WS_WORK_AREAS___WS_DEPT_HOLD. When
we look at the source, the
IN_EMPLOYEE_REC___IN_DEPT is used to directly
compare to
WS_WORK_AREAS___WS_DEPT_HOLD. The
IN_EMPLOYEE_REC___IN_DEPT is the record that
reads from the input file, while
WS_WORK_AREAS___WS_DEPT_HOLD is for
output. These two variables are used to judge the break
of department and territory and print it out. While the
IN_EMPLOYEE_REC___IN_DEPT is a break, then
WS_WORK_AREAS___WS_DEPT_HOLD will be
printed out. This is the reason why these two variables
appear associated.

The lines can be clustered together by the similar rules
they contain. The group of lines derived by DMSC is as
follow.

� Lines 2 and 6 are grouped together. Both of
them contain the same rule, that is rule (3). Line 2 is
“MOVE IN-DEPT TO WS-DEPT-HOLD”. Line 6 is
“WHEN IN-DEPT NOT = WS-DEPT-HOLD”.

� Lines 3 and 8 are grouped together. Both of
them contain the same that is rule (4). Line 3 is
“MOVE IN-TERR TO WS-TERR-HOLD”. Line 8 is
“WHEN IN-TERR NOT = WS-TERR-HOLD”.

Lines 2 and 3 here are used to convey the value from
the input record to the output record on some condition.
Lines 6 and 8 are used to find out whether the value has
been conveyed to output record or not.

If the value has been conveyed from IN-DEPT to WS-
DEPT-HOLD and from IN-TERR to WS-TERR-HOLD,
that means the condition of first record has been met,
then the program need to print both the break of
department and territory. In both cases, the clustering
rules of lines implied all the relationships.

The objective of the lines’ variable table is to help to
understand variable relationships, and line relationships
by using data mining tools. As indicated this method
satisfies the initial objective, by revealing variable and
line relationships.

5.3 Evaluate the table of lines’ grammar
tokens

No tools were identified suitable to evaluate the table

for lines’ grammar tokens. However this result can still
be theoretically evaluated. The relationship of different
lines can be estimated by simply calculating the
grammatical tokens in common. The table contains both
COBOL reserved and user-defined words. If there are
more user-defined words in common in different lines
that means there are more variables or paragraph names
used in common in these lines. It also means these
different lines have close relationship. If there are more
reserved words in common in different lines, that means
these different lines have more operation in common.

6. Conclusions and further work

6.1 Conclusions

Data mining can facilitate program comprehension and
maintenance, even though the outcome is strongly
influenced by the data preparation process which
precedes it. However, few systematic data preparation
methods have been proposed in this area. This work

addresses this deficiency by introducing a systematic
method for data preparation, dealing with it as a separate
process from data mining. Compared to other approaches
this method provides more aspects of information at both
a high and a low level and produces results which can be
used by different data mining tools and algorithms,
giving a more complete understanding of source code

Program comprehension is achieved by source code
slicing, that is by extracting useful data from different
slices of source code, and revealing the relationship of
slices. Data preparation as proposed in this paper uses
two approaches to slice the source code, and then extract
both syntactic and semantic data from the slices of code.
Using the results of the method, data mining tools can
easily accomplish the mission of relationship revealing.

6.2 Future work

The proposed method broadens the area of tools

achieving program comprehension. It is fully automated
and can achieve more detail system understanding.
However work can be further done in the following areas:

First, the model needs to be applied and tested in large-
scale systems and even different programming languages.
Then more information from source code can be
extracted. More accurate block slicing can also be
introduced by applying clustering tools to find optimum
code partitions to be used for variable or token extraction.
Finally, more data mining techniques such as clustering,
link analysis and classification algorithms can be applied
in search of more hidden knowledge.

References

[1] M. Andersson, “ Searching for semantics in COBOL
legacy applications” , DS-7, Reverse Engineering, 1997.

[2] N. Anquetil and T. C. Lethbridge, “ Experiments with
Clustering as a Software Remodularization method” ,
Proc. 6th Working Conf. Reverse Engineering (WCRE
99), IEEE Comp. Soc. Press, Oct. 1999, pp. 235-255.

[3] F. Balmas, H. Wertz and J. Singer, “ Understanding
Program Understanding” , Proc. 8th Int’l Workshop
Program Comprehension (IWPC 00), IEEE Comp. Soc.
Press, 2000, pp. 256.

[4] E. Burd and M. Munro, “ Evaluating the Use of
Dominance Trees for C and COBOL” , Proc. Int’l Conf.
Software Maintenance (ICSM 99), IEEE Comp. Soc.
Press, 1998.

[5] K. Erdös and H.M. Sneed, “ Partial Comprehension of
Complex Programs (enough to perform maintenance)” ,
Proc 6th Int’l Workshop Program Comprehension
(IWPC 98), IEEE Comp. Soc. Press, 1998, pp. 98-105.

[6] A.R. Fasolino and G. Visaggio, “ Improving Software
Comprehension Through an Automated Dependency
Tracer” , Proc. 7th Int’l Workshop Program
Understanding (IWPC 99), IEEE Comp. Soc. Press,
1999.

[7] U. Fayyad, G. Piatetsky-Shapiro and P. Smyth, ‘From
Data Mining to Knowledge Discovery: an Overview’ ,
Advances in Knowledge Discovery and Data Mining,
AAAI Press, 1996, pp. 1-34.

[8] J. Han and M. Kamber, Data Mining: Concepts and
Techniques, Morgan Kaufmann, 2000.

[9] T. Kunz and J. P. Black, “ Using Automatic Process
Clustering for Design Recovery and Distributed
Debugging” , IEEE Transactions on Software
Engineering, vol. 21, no. 6, June 1995, pp. 515-527.

[10] K. Lano, Reverse Engineering and Software
Maintenance: a Practical Approach, McGraw-Hill,
1994.

[11] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen and E.
R. Gansner, “ Using Automatic Clustering to Produce
High-Level System Organisations of Source Code” ,
Proc. 6th Int’l Workshop Program Understanding (IWPC
98), IEEE Comp. Soc. Press, 1998, pp. 45-53.

[12] A. Von Mayrhauser and A.M. Vans, “ Program
Comprehension During Software Maintenance and
Evolution” , IEEE Computer, vol. 28, no. 8, Aug. 1995,
pp. 44-55.

[13] C.M. de Oca and D.L Carver, “ Identification of Data
Cohesive Subsystems Using Data Mining Techniques” ,
Proc. Int’l Conf. Software Maintenance (ICSM 98),
IEEE Comp. Soc. Press, 1998, pp. 16-23.

[14] D. Pyle, Data Preparation for Data Mining, Morgan
Kaufmann, 1999.

[15] K. Sartipi, K. Kontogiannis and F. Mavaddat,
“ Architectural Design Recovery Using Data Mining
Techniques” , Proc. 2nd European Working Conf.
Software Maintenance Reengineering (CSMR 2000),
IEEE Comp. Soc. Press, 2000, pp. 129-140.

[16] Tjortjis C. and Layzell P.J., “ Using Data Mining to
Assess Software Reliability” , Suppl. Proc. IEEE 12th
Int’l Symposium Software Reliability Engineering
(ISSRE2001), IEEE Comp. Soc. Press, 2001, pp. 221-
223.

[17] Tjortjis C. and Layzell P.J., “ Expert Maintainers’
Strategies and Needs when Understanding Software: A
Qualitative Empirical Study” , Proc. IEEE 8th Asia-
Pacific Software Engineering Conf. (APSEC 2001),
IEEE Comp. Soc. Press, 2001, pp. 281-287.

[18] V. Tzerpos and R. Holt, “ Software Botryology:
Automatic Clustering of Software Systems” , Proc. 9th
Int’l Workshop Database Expert Systems Applications
(DEXA 98), IEEE Comp. Soc. Press, 1998, pp. 811-818.

[19] T. A. Wiggerts, “ Using Clustering Algorithms in Legacy
Systems Remodularization” , Proc. 4th Working Conf.
Reverse Engineering (WCRE 97), IEEE Comp. Soc.
Press, 1997, pp. 33-43.

