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Abstract 
 

Clustering is particularly useful in problems where 

there is little prior information about the data under 

analysis. This is usually the case when attempting to 

evaluate a software system’s maintainability, as many 

dimensions must be taken into account in order to reach a 

conclusion. On the other hand partitional clustering 

algorithms suffer from being sensitive to noise and to the 

initial partitioning. In this paper we propose a novel 

partitional clustering algorithm, k-Attractors. It employs 

the maximal frequent itemset discovery and partitioning in 

order to define the number of desired clusters and the 

initial cluster attractors. Then it utilizes a similarity 

measure which is adapted to the way initial attractors are 

determined. We apply the k-Attractors algorithm to two 

custom industrial systems and we compare it with 

WEKA’s implementation of K-Means. We present 

preliminary results that show our approach is better in 

terms of clustering accuracy and speed. 

 
 

1. Introduction 
 
Software systems have become very complex and beset 
with problems concerning their maintenance and 
evolution. They have also become larger, and it is difficult 
for a single person to understand a system in its entirety. 
According to N.I.S.T. [1], software errors cost the U.S. 
economy $60 billion per year. Essentially, a correct and 
consistent behavior of a software system is a fundamental 
part of users’ expectations. As a result, maintenance 
processes can be considered an area of competitive 
advantage. There are several studies on evaluating a 
system’s maintainability and controlling the effort 
required to carry out maintenance activities. According to 
ISO/IEC-9126 [2] maintainability is the capability of a 
software product to be modified. Evaluating 

maintainability is difficult because many contradictory 
criteria must be considered in order to reach a decision. 
Data mining and its capacity to deal with large volumes of 
data and to uncover hidden patterns has been proposed as 
a means to support the evaluation and assessment of the 
maintainability of industrial scale software systems. 
Furthermore, the use of metrics (measurement data) 

provides a systematic approach for maintainability 
evaluation. It also enables the engineers of a system to 
track status, identify potentially problematic areas, and 
make decisions related to their tasks. 
We propose in this paper a novel partitional clustering 

algorithm, k-Attractors, which is tailored for the analysis 
of this type of data. The main characteristics of k-
Attractors are: 

•  It defines the desired number of clusters (i.e. the 
number of k), without user intervention. 

•  It locates the initial attractors of cluster centers with 
great precision. 

•  It measures similarity based on a composite metric 
that combines the Hamming distance and the inner 
product of transactions and clusters’ attractors. 

•  It can be used for large data sets. 
The remaining of the paper is organized as follows: 

section 2 discusses the background on clustering an 
related problems, section 3 proposes our approach, section 
4 details k-Attractors, section 5 presents experimental 
results and section 6 concludes with directions for future 
work. 
 

2. Background 
 
This section presents the main clustering problems that 

the proposed algorithm addresses and the main concepts 
we used for its development. 

 

 

 



2.1. Clustering 
 
Clustering is particularly useful in problems where 

there is little prior information available about the data, 
and the decision maker (a maintenance engineer in our 
case) must make as few assumptions about the data as 
possible. These restrictions make this methodology 
appropriate for the exploration of interrelationships among 
the data points to make an assessment concerning their 
structure [3]. 
Cluster creation can be performed in a number of ways. 

Hierarchical algorithms organize data into a hierarchical 
structure based on a proximity matrix. On the other hand, 
partitional algorithms identify the partition that optimizes, 
usually locally, a clustering criterion. 
K-Means is one of the most popular partitional 

clustering algorithms. Each cluster is represented by the 
mean value of the objects in the cluster. As a result, 
cluster similarity is measured based on the distance 
between the object and the mean value of the input data in 
a cluster. It is an iterative algorithm in which objects are 
moved among clusters until a desired set is reached. Its 
main problems are that it is sensitive to noise and to the 
initial partitioning. As many possible initial partitions lead 
to many different results, the final clustering is influenced 
by the initial partition, which is indicated by the user input 
[4]. 

 

2.2. Frequent Itemsets 
 
A frequent itemset is a set of items that appear together 

in more than a minimum fraction of the whole dataset. 
More specifically let J be a set of quantitative data. Any 
subset I of J is called an itemset. Let (T = <t1,...,tn>) be a 
sequence of itemsets called a transaction database. Its 
elements t € T will be called itemsets or transactions. 
An itemset can be frequent if its support is greater than 

a minimum support threshold, denoted as min_sup. The 
support of an item X in T denoted as min_sup T(X) is the 
number of transactions in T that contain X. The term 
frequent item refers to an item that belongs to a frequent 
itemset. If now, an item X is frequent and no superset of X 
is frequent, then X is a maximally frequent itemset; and 
we denote the set of all maximally frequent itemsets by 
MFI. From these definitions it is easy to see that the 
following relationship holds MFI ≤ FI. Association rule 
mining algorithms such as Apriori are used in order to 
discover frequent itemsets [5]. 
 

2.3. Related Work 
 
Zhuang and Dai [6] present a new approach for the 

clustering of web documents, which is called Maximal 
Frequent Itemset Approach. Based on maximal frequent 
itemset discovery they propose an efficient way to 

precisely locate the initial points for the K-Means 
algorithm. Fung et al. [7] propose the Frequent Itemset-
based Hierarchical Clustering (FIHC) for document 
clustering. The intuition of this algorithm is that there are 
some frequent itemsets for each cluster (topic) in the 
document set, and different clusters share few frequent 
itemsets. A frequent itemset is a set of words that occur 
together in some minimum fraction of documents in a 
cluster. Therefore, a frequent itemset describes something 
common to many documents in a cluster. Hence, frequent 
itemsets are used in order to construct clusters and to 
organize them into a topic hierarchy. Wang et al. [8] 
propose a similarity for a cluster of transactions based on 
the notion of large items. An item is large in a cluster of 
transactions if it is contained in a user-specified fraction of 
transactions in that cluster. According to this measure, a 
good clustering is one that there are many large items 
within a cluster and there is little overlapping of such 
items across clusters. Karypis et al. [9] introduced the 
Association Rule Hypergraph Partitioning (ARHP). It 
constructs a weighted hypergraph to represent the 
relationships among discovered frequent itemsets. A 
hypergraph H = (X, E) is an extension of a normal graph 
where X = (x1, x2, …,xn) is a finite set and E = (Ei| i € I) is 
a family of subsets of X. The elements x1, x2, …,xn are 
called vertices and the sets E1, E2,…, Em are called 
hyperedges. Frequent itemsets are represented by 
hyperedges and the hyperedge weights are defined as the 
support of the frequent itemsets. The aim of the proposed 
algorithm is to find k partitions such that the vertices in 
each partition are highly related. Finally Kosters et al. [10] 
propose a method that employs association rules having 
high confidence to construct a hierarchical sequence of 
clusters. A specific metric is introduced for measuring the 
quality of the resulting clusters. Assuming that there is a 
space S then for subsets R and T of S it is defined d(R, T) 
= |R\T|+|T\R| \ |RUT| + 1 where \ denotes the set-
theoretic difference, (X\Y) consists of those elements from 
X that are not in Y and |X| denotes the number of elements 
of X. Hence, the numerator is the number of elements in 
the symmetric difference of R and T. 
A large amount of data is produced in software 
development and software organizations collect them in 
hope of extracting useful information. Clustering provides 
the capability to analyze and extract novel, interesting 
patterns from this type of data. Then the extracted 
information can be used to evaluate a software system 
and/or predict its behavior. A methodology that uses K-
Means clustering for recovering the structure of a software 
artifact and assessing its maintainability is presented in 
[13]. It does that by creating an input model which 
considers as program’s entities’ attributes both metrics 
and elements from source code data (e.g. class name, 
method name, superclass etc.). On the other hand, [14] 
presents a methodology for knowledge acquisition from  



k-Attractors Algorithm 

 
/*Input Parameters*/ 
Support: s 
Number of dimensions: n 
Hamming distance power: h 
Inner product power: i 
Attractor similarity ratio: r 
Outlier factor: d 

Given a set of m  data items 1 2, , , mt t tK  

 
/*Initialization Phase*/ 
(1) Generate frequent itemsets using the APriori Algorithm; 
(2) Construct the itemset graph and partition it using the confidence similarity criteria related to the support of these            

itemsets; 
(3) Use the number of partitions as the final k; 
(4) Select the maximal frequent itemset of every cluster in order to form a set of k initial attractors; 
 
/*Main Phase*/ 
Repeat 

(6) Assign each data item to the cluster that has the minimum ( )
i j

Score C t→ ; 

(7) When all data items have been assigned, recalculate new attractors; 

               Until it  don’t_move 

(8) Search all clusters to find outliers and group them in a new cluster 
 

Figure 1 - k-Attractors overview 

 
source code elements. A combination of clustering and 
association rules is applied on data extracted from object 
oriented code. K-Means clustering produces system 
overviews and deductions, which support further 
employment of an improved version of MMS Apriori to 
identify hidden relationships between classes, methods 
and member data. 
 

3. Our approach 
 

In this research work we propose a partitional algorithm 
that utilizes a preprocessing method for its initial 
partitioning and incorporates a similarity measure adapted 
on the rationale for this method. 
More specifically, the k-Attractors algorithm employs 

the maximal frequent itemset discovery and partitioning, 
similarly to [6], [9] in order to define the number of 
desired clusters and the initial attractors of the centers of 
these clusters. What differentiates it at first, from the work 
presented above, is that it is used in a different (than 
document clustering) context. The intuition is that a 
frequent itemset in the case of software metrics is a set of 
measurements that occur together in a minimum part of a 
software system’s classes. Classes with similar 
measurements are expected to be on the same cluster. The 
term attractor is used instead of centroid, as it is not 

determined randomly, but by its frequency in the whole 
population of a software system’s classes. 
The main contribution of k-Attractors is that it 

proposes a similarity measure which is adapted to the way 
initial attractors are determined by the preprocessing 
method. Hence, it is primarily based on the comparison of 
frequent itemsets. More specifically, a composite metric 
based on the Hamming distance and the dot (inner) 
product between each transaction and the attractors of 
each cluster is utilized. 
Hamming distance is given by the number of positions 

that a pair of strings is different. Put another way, it 
measures the number of substitutions required to change 
one string to another. In our case a string is a set of data 
items and more specifically a vector containing software 
measurement data. Furthermore, the dot product of two 
vectors is a measure of the angle and the orthogonality of 
two vectors. It is used in order to compensate for the 
position of both vectors in Euclidean space. 
 

4. Algorithm Description 
 
This section details the basic steps of the k-Attractors 
algorithm along with some representative examples. 
 
 



4.1. Overview 
 
The two basic steps of the k-Attractors algorithm are: 

• Initialization phase: 
o The first step of this phase is to generate frequent 
itemsets using the APriori algorithm. The derived 
frequent itemsets are used to construct the itemset 
graph, and a graph partitioning algorithm is used to 
find the number of the desired clusters and assign 
each frequent itemset into the appropriate cluster. 

o As soon as the number of the desired clusters (k) is 
determined, we select the maximal frequent 
itemsets of every cluster, forming a set of k 
frequent itemsets as the initial attractors. 

• Main Phase: 
o As soon as the attractors have been found, we 
assign each transaction to the cluster that has the 

minimum ( )
i j

Score C t→  against its attractor. 

o When all transactions have been assigned to 
clusters we recalculate the attractors for each 
cluster in the same way as during the initialization 
phase. 

Figure 1 illustrates an overview of the k-Attractors 
algorithm. We detail its two phases next. 

 
4.2. Initialization Phase 

 
The goal of the initialization phase is twofold: firstly to 

identify the most frequent itemsets of the input data and 
secondly to determine the number of clusters. 
In order for the most frequent itemsets to be 

discovered, we apply the APriori algorithm against the 
input data file. The APriori algorithm takes as parameter 

the absolute support s of the required itemsets and returns 

all the one-dimensional and multi-dimensional itemsets 

with support greater than or equal to s . 

Once the most frequent itemsets have been discovered, 
we form the itemset graph. Given the set of the most 

frequent itemsets 1 2{ , , }mFI fi fi fi= K , the itemset graph 

is a graph ( , )G V E , where { }iV fi FI= ∈  and 

{ }ij i jE e fi fi= ∩ ≠∅ . The intuition behind this graph 

is that if two itemsets have at least one common item, then 
they should possibly belong to the same cluster and thus 
we connect them with an edge in the itemset graph. For 
more accuracy, we could have weighted each edge with 
the number of common items between the two 
corresponding itemsets/vertices, but in order to keep the 
initialization phase as simple and fast as possible we 
decided not to weigh the edges. 
Figure 2 demonstrates an example of the itemset 

graph’s construction.  
 

 
Figure 2  - Itemset graph example 

 
The next step is to apply a graph partitioning algorithm 

to the itemset graph. In our case, we utilized the kMetis 
algorithm in order to partition the itemset graph [9]. The 
kMetis algorithm partitions the itemset graph into a 
number of distinct partitions and assigns each vertex of 
the graph (i.e. each itemset) into a single partition. The 
final number of the derived partitions is the number of 
clusters that we will use in the main phase of the k-
Attractors algorithm. 
The final step of the initialization phase is the 

attractors’ discovery. During this step, every previously 
determined graph partition is examined. For each partition 
we find the maximal frequent itemset belonging to this 
partition, and check its dimensions’ cardinality. If the 
number of dimensions is equal with the input data items’ 
number of dimensions, n, then we assign the 
corresponding itemset as the attractor of the corresponding 
partition. However, in most cases, the cardinality of the 
maximal itemset is less than n. In such a case, we search 
for the next maximal frequent itemset in the 
corresponding partition and merge it with the previous 
itemset. Merging occurs only in dimensions that are 
absent from the first maximal itemset. We repeat this 
procedure until we have formed an itemset with 
cardinality equal to d, and assign the formed itemset as 
attractor of the corresponding partition. 
In order to provide more flexibility, k-Attractors 

performs an extra post-processing step against the 
previously determined attractors. The algorithm takes as 
parameter an attractor similarity ratio, r. This parameter 
defines the maximum allowed similarity between two 
different attractors. The similarity between two attractors 

1 2
,a a  is defined as follows: 

 1 2
1 2

#( )
( , )

a a
sim a a

n

∩
=    (1) 

In other words, the similarity between two attractors is 
the ratio of the number of common items per the number 
of total dimensions.  
If the similarity of two attractors is more than r, then 

we randomly discard one of the two attractors; thus the 
number of total partitions is decreased by one. 
 
 
 



4.3. Main Phase 
 
The goal of k-Attractor’s main phase is to assign each 

input data item to a cluster, using a partitional approach.  
At first, we form a set of k empty clusters, where k is 

the number of distinct graph partitions discovered during 
the initialization phase. Every formed cluster is then 
assigned to the corresponding attractor calculated 
previously. 
Once the clusters have been formed, the main phase of 

k-Attractors begins. This phase resembles a partitional 
algorithm, where every data item is assigned to a cluster 
according to a predefined distance metric and in every 
step the centers of every cluster are re-calculated until the 
algorithm converges to a stable state where the clusters’ 
centers do not change.  
The k-Attractors algorithm utilizes a hybrid similarity 

metric based on vector representation of both the data 
items and the cluster’s attractors. The similarity of these 
vectors is measured employing the following composite 
metric: 

 ( ) ( ) ( )1 1,i j i j n nScore C t h H a t i a t a t← = + +� � K  (2) 

 
In this formula, the first term is the Hamming distance 

between the attractor 
i
a and the data item 

j
t . It is given 

by the number of positions that pair of strings is different 
and is defined as follows: 

              ( ) ( ), #i j i jH a t n a t= − ∩                            (3) 

As our algorithm is primarily based on itemsets’ 
similarity, we want to measure the number of substitutions 
required to change one into the other. The second term is 
the dot (inner) product between this data item and the 

attractor 
i
a . It is used in order to compensate for the 

position of both vectors in the Euclidean space. Because 
of the semantics of software measurement data, the 
usually utilized internal metrics (such as lines of code, 
coupling between objects, number of comments etc) have 
large positive integer values. Thus in order for the inner 
product distance to be more accurate, we firstly normalize 
all the values in the interval [-1, 1] and then apply the k-
Attractors algorithm. 

The multipliers ,h i  in equation 2 define the metric’s 

sensitivity to Hamming distance and inner product 

respectively. For example, the 0i =  case indicates the 

composite metric is insensitive to the inner product 
between the data item and the cluster’s centroid. Both 

h and i are taken as input parameters in our algorithm 

during its execution. Thus, k-Attractors provides the 
flexibility of changing the sensitivity of the composite 
distance metric to both Hamming distance and inner 
product, in correspondence with the each clustering 
scenario’s semantics. 

Utilizing this similarity metric, k-Attractors assigns 
every data item to a single cluster and recalculates the 
attractors of every cluster. Recalculation includes finding 
that data item of a cluster that minimizes the total sum of 
distances between the other data items belonging to that 
cluster. The above procedure is repeated until the 
attractors of all clusters do not change any further. 
The final step of the k-Attractors’ main phase is the 

outlier handling step. During this step, every cluster is 
checked for outliers, according to a parameter d. 

Specifically, a data item t , belonging to cluster i, is 

considered as an outlier if: 

 ( ) ( )( ), ,
i i i j

Score a t d avg Score a t>= ⋅  (4) 

where ( )( ),
i i j

avg Score a t  is the average distance 

between the data items of cluster i and the attractor 
i
a . 

Every discovered outlier is grouped into a new cluster, 
called outliers cluster, thus the total number of formed 
clusters is k+1. 

 

5. Experimental Results 
 

5.1. Datasets used 
 
The evaluation of the proposed clustering algorithm 

involved the clustering of two sets of industrial software 
measurement data. For our experiments we have 
implemented k-Attractors in Java 1.4 and compared it 
with the k-Means implementation of Weka 3, the Java 
open source data mining tool. All the experiments were 
performed in a Pentium M 2.0 GHz machine with 1GByte 
RAM. For this work we combined two sets of metrics 
proposed by [11] and [12]. The derived set can be applied 
to OO programs and can be used as a predictor and 
evaluator of a system’s maintenance effort. The following 
metrics were included and calculated for the systems’ 
classes and were used as their clustering attributes: 

•  Lines of Code (LOC), which measures a class’s 
number of lines of code including empty lines and 
comments. 

•  Weighted Methods per Class (WMC), which is simply 
the sum of the complexities of its methods [11]. 

•  Coupling between Objects – Efferent Coupling (CBO), 
which represents the number of classes a given class, is 

coupled to [11]. 

•  Lack of Cohesion in Methods (LCOM), which 
measures if a class has all its methods working 
together in order to achieve a single, well-defined 
purpose [11]. 

•  Number of Children (NOC), which measures the 
number of immediate descendants of the class [11]. 



•  Depth of Inheritance Tree (DIT), which provides for 
each class a measure of the inheritance levels from the 

object hierarchy top [11]. 

•  Data Access Metric (DAM), which reflects how well 

the property of encapsulation is applied to a class [12]. 

•  Measure of Aggregation (MOA), which measures the 
extent of the part-whole relationship realized by using 
attributes [12]. 

•  Number of Polymorphic Methods (NOP) that is a 
measure of the overridden (or virtual) methods of an 
object oriented software system [12]. 

•  Number of Messages (NOM), which is a measure of 
the services that a class provides [12]. 

Both datasets were derived by parsing a commercial 
software system and an analysis framework by calculating 
the above mentioned metrics for each system’s class. The 
c4t tool was employed for this purpose [15]. The first data 
set was derived from parsing System2, a large logistics 
system implemented in Java (6782 classes). Thus the first 
dataset consists of 6782 10-dimensional data items. We 
used this first dataset in order to evaluate our algorithm’s 
performance and compare it with k-Means. The second 
data set was derived from parsing a small fragment, only 
50 classes, of the analysis framework. The resulted data 
items were at first grouped manually by a domain expert 
of the corresponding system, and then we applied k-
Attractors against them. We used the domain expert’s 
grouping in order to evaluate the quality of our algorithm 
by calculating some external clustering quality metrics 
such as precision and recall. 
 

5.2. Performance evaluation 
 
In order to evaluate the performance of k-Attractors 

and compare it with the performance of k-Means, we used 
a large dataset of software measurement data. This dataset 
consisted of 6782 10-dimensional data items. Each data 
item corresponded to a system’s class and stored 10 
software quality metrics for that class. 
We applied both k-Attractors and k-Means against this 

dataset and measured the iterations performed by the two 
algorithms until they converged. Because every iteration 

in k-Attractors and k-Means has a complexity of ( )nΟ , 

we can compare the performance of the two algorithms by 
comparing the number of iterations performed. 
The values of input arguments to k-Attractors are 

presented in Table 1. The support factor s for the frequent 
itemsets discovery was chosen to be 0.1 (10%) because 
the value of each class metric has a large range, thus it is 
more difficult to find frequent itemsets with a greater 
support. The number of dimensions n is 10, because every 
data item contains 10 software metrics. Regarding the 

attractors similarity ratio r, we have decided not to merge 
any attractors so we have chosen r to be 1. Additionally 
we have chosen to give more weight to the inner product 
distance, in relation to the Hamming distance, because of 
the very different values of every class metric which result 
in a high Hamming distance for the most data items. 
Finally, we chose the outlier factor d to be 3, because in 
such a case the corresponding data item would have very 
irregural class metrics and thus it should be considered as 
an outlier. 
The number of clusters in k-Attractors was derived by 

applying the graph partitioning algorithm (kMetis). In our 
case, kMetis partitioned the graph into 7 parts, thus the 
initial number of clusters was 7. 
 

Table 1 - k-Attractors input arguments (performance 
evaluation) 

Argument Value 

Support: s 0.1 

Number of dimensions: n 10 

Attractors similarity ratio: r 1 

Hamming distance power: h 1 

Inner product power: i 3 

Outlier factor: d 3 

 

Table 2 - Performance evaluation results 

 k-Attractors k-Means 

Number of Iterations 3 18 

 
However, as mentioned in Section 4.3, k-Attractors 

forms an extra cluster to group the outliers, thus the final 
number of formed clusters was 8. In order for the results 
to be comparable, we also applied k-Means for 8 clusters. 
Because of the random initialization of k-Means, we ran 
k-Means 10 times in order to get statistically significant 
results. 
The number of iterations performed by the two 

clustering algorithms is presented in Table 2. The number 
of k-Means’ iterations is the average number of iterations 
performed in the 10 executions of the algorithm. It is 
obvious that k-Attractors outperforms k-Means in terms of 
convergence speed as it requires only 16.6% of the 
iterations that k-Means requires until it converges. This is 
due to the initialization phase of the proposed algorithm, 
where the initial attractors of the clusters are chosen in 
such a way that they approximate the final attractors of the 
formed clusters. On the other hand, k-Means chooses 
randomly the initial cluster means, thus it requires more 
time until it converges to a steady state. 
 

5.3. Quality evaluation 
 
In order to evaluate the quality of k-Attractors and 

compare it with the quality of k-Means, we used a small 



dataset consisting of the calculated metrics for 50 classes 
of an analysis application. Every data item contained only 
4 metrics of the corresponding class (LOC, CBO, DIT, 
WMC/LOC), thus the dataset consisted of 50 4-
dimensional data items. The main reason for reducing the 
size of the example is that it is was easier for human 
experts to cluster manually a small subset of classes with 
low dimensions. Domain experts of the corresponding 
software system grouped manually the data items into 4 
clusters. The utilized 4 metrics mentioned above were 
chosen by the domain expert as the most representative of 
the quality of each class. We then applied k-Attractors and 
k-Means against the data items and calculated the 
precision and recall of the formed clusters in both cases. 
The values of input arguments to k-Attractors are 

presented in Table 3. The only differences between those 
input arguments and the input arguments of the previous 
experiment (performance evaluation) are related to the 
number of dimensions and the outlier factor. In this 
experiment we chose to relax the outlier factor and set it 
equal to 2, because of the small dataset and the small set 
of chosen metrics. The number of dimensions was set to 4 
because we used only 4 metrics for every parsed system 
class. 

 
Table 3 - k-Attractors input arguments (quality 

evaluation) 
Argument Value 

Support: s 0.1 

Number of dimensions: n 4 

Attractors similarity ratio: r 1 

Hamming distance power: h 1 

Inner product power: i 3 

Outlier factor: d 2 

 
For every formed cluster by k-Attractors and k-Means, 

we calculated its precision and recall regarding the 
corresponding cluster formed by the domain expert.  

The recall of a cluster 
j

c  regarding the corresponding 

domain expert’s group 
i
t  is defined as: 

( )
( )#

Recall ,
#

j i

j i

i

c t
c t

t

∩
=  (5) 

Similarly, the precision is defined as: 

( )
( )#

Precision ,
#

j i

j i

j

c t
c t

c

∩
= (6) 

 The calculated precision and recall for every formed 
cluster by k-Attractors is presented in Table 4. The 
calculated precision and recall for every formed cluster by 
k-Means is presented in Table 5. 
 
 

Table 4 - k-Attractors recall and precision 
Cluster Population Precision Recall 

1 35 0.88 0.97 

2 9 0.88 0.8 

3 4 0.66 0.66 

4 2 0.5 0.25 

 

Table 5 - k-Means recall and precision 

Cluster Population Precision Recall 

1 27 0.8 0.65 

2 13 0.15 0.5 

3 7 1.0 0.7 

4 3 0.0 0.0 

 
It is obvious from the above tables, that k-Attractors’ 

clusters are closer to the domain expert’s clusters. 
Especially, regarding the two largest clusters (cluster 1 
and cluster 2), the corresponding calculated recall and 
precision are very high and better than the two 
corresponding k-Means clusters. Additionally, consider 
the smallest cluster in k-Attractors (cluster 4) and k-
Means (cluster 4): those clusters correspond to the domain 
expert’s outlier cluster. It is obvious that k-Attractors 
approximates the domain expert’s cluster because of the 
application of the outlier handling phase. k-Means lacks 
such a phase, thus the recall and the precision of the 
corresponding cluster are both 0. 
Hence, the experimental results show that k-Attractors 

forms more quality clusters than k-Means, approximating 
the domain expert’s manually created clusters. This is due 
to the fact that k-Attractors is designed for the semantics 
of software measurement data, thus it outperforms k-
Means both in performance and quality.  
 

6. Conclusions and Future Work 
 
The aim of this work was the development of a new 

partitional clustering algorithm, k-Attractors, which could 
be tailored for the analysis of software measurement data 
and overcome the weaknesses of other partitional 
algorithms. 
The first step of the proposed algorithm is the 

application of a preprocessing step which calculates the 
initial partitions for the k-Attractors partitional algorithm. 
During this step, we discover the maximal frequent 
itemsets of the input software measurement data using the 
Apriori algorithm. After the frequent itemsets’ discovery, 
we form the itemset graph and apply a graph partitioning 
algorithm, kMetis. The number of the resulted partitions 
defines the number of k-Attractors clusters. Thus defining 
the number of clusters, the common problem for all 
clustering algorithms, is resolved. Additionally, instead of 
randomly choosing the clusters’ centers, for every formed 
partition, we merge its maximal frequent itemsets, 



constructing that way the attractor of the corresponding 
cluster. As a result, the constructed initial attractors 
approximate the real clusters’ attractors, improving that 
way the convergence speed of the proposed algorithm 
The next step is the application of the k-Attractors 

main phase. During this phase, all the input software 
measurement data are clustered into appropriate clusters. 
As a distance metric we employ a composite metric 
consisting of the Hamming distance and the inner product. 
Thus, the employed metric is adapted to the way initial 
attractors are determined by the preprocessing step. 
The last step deals with outliers. Handling outliers 

includes outlier discovery and grouping into a separate 
cluster. The discovery of outliers is based on the 
composite distance between a data item and its cluster’s 
attractors. The corresponding distance is compared with 
the average distance inside this cluster and if it is greater 
than a factor, then the corresponding data item is 
considered as an outlier and is grouped into a designated 
cluster. 
Preliminary results showed that the proposed clustering 

algorithm is about 600% faster than k-Means, the state-of-
the-art partitional algorithm. Additionally, regarding 
software measurement data, k-Attractors appears to form 
better, in terms of quality, and more concrete clusters. 
We intend to investigate ways to further evaluate and 

improve the k-Attractors algorithm. At first we are 
interested in conducting more experiments in order to see 
its effectiveness and clustering quality with other types of 
datasets. Another interesting topic is to improve the way 
the initial attractors are derived by employing more 
innovative versions of APriori. 
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