

k-Attractors: A Clustering Algorithm for Software Measurement Data Analysis

Yiannis Kanellopoulos1,2, Panagiotis Antonellis1, Christos Tjortjis2 and Christos Makris1
1. University οf Patras, Department of Computer Engineering and Informatics, Greece

2. The University οf Manchester, School οf Computer Science, U.K.

Yiannis.Kanellopoulos@postgrad.manchester.ac.uk, {adonel, makri}@ceid.upatras.gr,

christos.tjortjis@manchester.ac.uk

Abstract

Clustering is particularly useful in problems where

there is little prior information about the data under

analysis. This is usually the case when attempting to

evaluate a software system’s maintainability, as many

dimensions must be taken into account in order to reach a

conclusion. On the other hand partitional clustering

algorithms suffer from being sensitive to noise and to the

initial partitioning. In this paper we propose a novel

partitional clustering algorithm, k-Attractors. It employs

the maximal frequent itemset discovery and partitioning in

order to define the number of desired clusters and the

initial cluster attractors. Then it utilizes a similarity

measure which is adapted to the way initial attractors are

determined. We apply the k-Attractors algorithm to two

custom industrial systems and we compare it with

WEKA’s implementation of K-Means. We present

preliminary results that show our approach is better in

terms of clustering accuracy and speed.

1. Introduction

Software systems have become very complex and beset
with problems concerning their maintenance and
evolution. They have also become larger, and it is difficult
for a single person to understand a system in its entirety.
According to N.I.S.T. [1], software errors cost the U.S.
economy $60 billion per year. Essentially, a correct and
consistent behavior of a software system is a fundamental
part of users’ expectations. As a result, maintenance
processes can be considered an area of competitive
advantage. There are several studies on evaluating a
system’s maintainability and controlling the effort
required to carry out maintenance activities. According to
ISO/IEC-9126 [2] maintainability is the capability of a
software product to be modified. Evaluating

maintainability is difficult because many contradictory
criteria must be considered in order to reach a decision.
Data mining and its capacity to deal with large volumes of
data and to uncover hidden patterns has been proposed as
a means to support the evaluation and assessment of the
maintainability of industrial scale software systems.
Furthermore, the use of metrics (measurement data)

provides a systematic approach for maintainability
evaluation. It also enables the engineers of a system to
track status, identify potentially problematic areas, and
make decisions related to their tasks.
We propose in this paper a novel partitional clustering

algorithm, k-Attractors, which is tailored for the analysis
of this type of data. The main characteristics of k-
Attractors are:

• It defines the desired number of clusters (i.e. the
number of k), without user intervention.

• It locates the initial attractors of cluster centers with
great precision.

• It measures similarity based on a composite metric
that combines the Hamming distance and the inner
product of transactions and clusters’ attractors.

• It can be used for large data sets.
The remaining of the paper is organized as follows:

section 2 discusses the background on clustering an
related problems, section 3 proposes our approach, section
4 details k-Attractors, section 5 presents experimental
results and section 6 concludes with directions for future
work.

2. Background

This section presents the main clustering problems that

the proposed algorithm addresses and the main concepts
we used for its development.

2.1. Clustering

Clustering is particularly useful in problems where

there is little prior information available about the data,
and the decision maker (a maintenance engineer in our
case) must make as few assumptions about the data as
possible. These restrictions make this methodology
appropriate for the exploration of interrelationships among
the data points to make an assessment concerning their
structure [3].
Cluster creation can be performed in a number of ways.

Hierarchical algorithms organize data into a hierarchical
structure based on a proximity matrix. On the other hand,
partitional algorithms identify the partition that optimizes,
usually locally, a clustering criterion.
K-Means is one of the most popular partitional

clustering algorithms. Each cluster is represented by the
mean value of the objects in the cluster. As a result,
cluster similarity is measured based on the distance
between the object and the mean value of the input data in
a cluster. It is an iterative algorithm in which objects are
moved among clusters until a desired set is reached. Its
main problems are that it is sensitive to noise and to the
initial partitioning. As many possible initial partitions lead
to many different results, the final clustering is influenced
by the initial partition, which is indicated by the user input
[4].

2.2. Frequent Itemsets

A frequent itemset is a set of items that appear together

in more than a minimum fraction of the whole dataset.
More specifically let J be a set of quantitative data. Any
subset I of J is called an itemset. Let (T = <t1,...,tn>) be a
sequence of itemsets called a transaction database. Its
elements t € T will be called itemsets or transactions.
An itemset can be frequent if its support is greater than

a minimum support threshold, denoted as min_sup. The
support of an item X in T denoted as min_sup T(X) is the
number of transactions in T that contain X. The term
frequent item refers to an item that belongs to a frequent
itemset. If now, an item X is frequent and no superset of X
is frequent, then X is a maximally frequent itemset; and
we denote the set of all maximally frequent itemsets by
MFI. From these definitions it is easy to see that the
following relationship holds MFI ≤ FI. Association rule
mining algorithms such as Apriori are used in order to
discover frequent itemsets [5].

2.3. Related Work

Zhuang and Dai [6] present a new approach for the

clustering of web documents, which is called Maximal
Frequent Itemset Approach. Based on maximal frequent
itemset discovery they propose an efficient way to

precisely locate the initial points for the K-Means
algorithm. Fung et al. [7] propose the Frequent Itemset-
based Hierarchical Clustering (FIHC) for document
clustering. The intuition of this algorithm is that there are
some frequent itemsets for each cluster (topic) in the
document set, and different clusters share few frequent
itemsets. A frequent itemset is a set of words that occur
together in some minimum fraction of documents in a
cluster. Therefore, a frequent itemset describes something
common to many documents in a cluster. Hence, frequent
itemsets are used in order to construct clusters and to
organize them into a topic hierarchy. Wang et al. [8]
propose a similarity for a cluster of transactions based on
the notion of large items. An item is large in a cluster of
transactions if it is contained in a user-specified fraction of
transactions in that cluster. According to this measure, a
good clustering is one that there are many large items
within a cluster and there is little overlapping of such
items across clusters. Karypis et al. [9] introduced the
Association Rule Hypergraph Partitioning (ARHP). It
constructs a weighted hypergraph to represent the
relationships among discovered frequent itemsets. A
hypergraph H = (X, E) is an extension of a normal graph
where X = (x1, x2, …,xn) is a finite set and E = (Ei| i € I) is
a family of subsets of X. The elements x1, x2, …,xn are
called vertices and the sets E1, E2,…, Em are called
hyperedges. Frequent itemsets are represented by
hyperedges and the hyperedge weights are defined as the
support of the frequent itemsets. The aim of the proposed
algorithm is to find k partitions such that the vertices in
each partition are highly related. Finally Kosters et al. [10]
propose a method that employs association rules having
high confidence to construct a hierarchical sequence of
clusters. A specific metric is introduced for measuring the
quality of the resulting clusters. Assuming that there is a
space S then for subsets R and T of S it is defined d(R, T)
= |R\T|+|T\R| \ |RUT| + 1 where \ denotes the set-
theoretic difference, (X\Y) consists of those elements from
X that are not in Y and |X| denotes the number of elements
of X. Hence, the numerator is the number of elements in
the symmetric difference of R and T.
A large amount of data is produced in software
development and software organizations collect them in
hope of extracting useful information. Clustering provides
the capability to analyze and extract novel, interesting
patterns from this type of data. Then the extracted
information can be used to evaluate a software system
and/or predict its behavior. A methodology that uses K-
Means clustering for recovering the structure of a software
artifact and assessing its maintainability is presented in
[13]. It does that by creating an input model which
considers as program’s entities’ attributes both metrics
and elements from source code data (e.g. class name,
method name, superclass etc.). On the other hand, [14]
presents a methodology for knowledge acquisition from

k-Attractors Algorithm

/*Input Parameters*/
Support: s
Number of dimensions: n
Hamming distance power: h
Inner product power: i
Attractor similarity ratio: r
Outlier factor: d

Given a set of m data items 1 2, , , mt t tK

/*Initialization Phase*/
(1) Generate frequent itemsets using the APriori Algorithm;
(2) Construct the itemset graph and partition it using the confidence similarity criteria related to the support of these

itemsets;
(3) Use the number of partitions as the final k;
(4) Select the maximal frequent itemset of every cluster in order to form a set of k initial attractors;

/*Main Phase*/
Repeat

(6) Assign each data item to the cluster that has the minimum ()
i j

Score C t→ ;

(7) When all data items have been assigned, recalculate new attractors;

 Until it don’t_move

(8) Search all clusters to find outliers and group them in a new cluster

Figure 1 - k-Attractors overview

source code elements. A combination of clustering and
association rules is applied on data extracted from object
oriented code. K-Means clustering produces system
overviews and deductions, which support further
employment of an improved version of MMS Apriori to
identify hidden relationships between classes, methods
and member data.

3. Our approach

In this research work we propose a partitional algorithm
that utilizes a preprocessing method for its initial
partitioning and incorporates a similarity measure adapted
on the rationale for this method.
More specifically, the k-Attractors algorithm employs

the maximal frequent itemset discovery and partitioning,
similarly to [6], [9] in order to define the number of
desired clusters and the initial attractors of the centers of
these clusters. What differentiates it at first, from the work
presented above, is that it is used in a different (than
document clustering) context. The intuition is that a
frequent itemset in the case of software metrics is a set of
measurements that occur together in a minimum part of a
software system’s classes. Classes with similar
measurements are expected to be on the same cluster. The
term attractor is used instead of centroid, as it is not

determined randomly, but by its frequency in the whole
population of a software system’s classes.
The main contribution of k-Attractors is that it

proposes a similarity measure which is adapted to the way
initial attractors are determined by the preprocessing
method. Hence, it is primarily based on the comparison of
frequent itemsets. More specifically, a composite metric
based on the Hamming distance and the dot (inner)
product between each transaction and the attractors of
each cluster is utilized.
Hamming distance is given by the number of positions

that a pair of strings is different. Put another way, it
measures the number of substitutions required to change
one string to another. In our case a string is a set of data
items and more specifically a vector containing software
measurement data. Furthermore, the dot product of two
vectors is a measure of the angle and the orthogonality of
two vectors. It is used in order to compensate for the
position of both vectors in Euclidean space.

4. Algorithm Description

This section details the basic steps of the k-Attractors
algorithm along with some representative examples.

4.1. Overview

The two basic steps of the k-Attractors algorithm are:

• Initialization phase:
o The first step of this phase is to generate frequent
itemsets using the APriori algorithm. The derived
frequent itemsets are used to construct the itemset
graph, and a graph partitioning algorithm is used to
find the number of the desired clusters and assign
each frequent itemset into the appropriate cluster.

o As soon as the number of the desired clusters (k) is
determined, we select the maximal frequent
itemsets of every cluster, forming a set of k
frequent itemsets as the initial attractors.

• Main Phase:
o As soon as the attractors have been found, we
assign each transaction to the cluster that has the

minimum ()
i j

Score C t→ against its attractor.

o When all transactions have been assigned to
clusters we recalculate the attractors for each
cluster in the same way as during the initialization
phase.

Figure 1 illustrates an overview of the k-Attractors
algorithm. We detail its two phases next.

4.2. Initialization Phase

The goal of the initialization phase is twofold: firstly to

identify the most frequent itemsets of the input data and
secondly to determine the number of clusters.
In order for the most frequent itemsets to be

discovered, we apply the APriori algorithm against the
input data file. The APriori algorithm takes as parameter

the absolute support s of the required itemsets and returns

all the one-dimensional and multi-dimensional itemsets

with support greater than or equal to s .

Once the most frequent itemsets have been discovered,
we form the itemset graph. Given the set of the most

frequent itemsets 1 2{ , , }mFI fi fi fi= K , the itemset graph

is a graph (,)G V E , where { }iV fi FI= ∈ and

{ }ij i jE e fi fi= ∩ ≠∅ . The intuition behind this graph

is that if two itemsets have at least one common item, then
they should possibly belong to the same cluster and thus
we connect them with an edge in the itemset graph. For
more accuracy, we could have weighted each edge with
the number of common items between the two
corresponding itemsets/vertices, but in order to keep the
initialization phase as simple and fast as possible we
decided not to weigh the edges.
Figure 2 demonstrates an example of the itemset

graph’s construction.

Figure 2 - Itemset graph example

The next step is to apply a graph partitioning algorithm

to the itemset graph. In our case, we utilized the kMetis
algorithm in order to partition the itemset graph [9]. The
kMetis algorithm partitions the itemset graph into a
number of distinct partitions and assigns each vertex of
the graph (i.e. each itemset) into a single partition. The
final number of the derived partitions is the number of
clusters that we will use in the main phase of the k-
Attractors algorithm.
The final step of the initialization phase is the

attractors’ discovery. During this step, every previously
determined graph partition is examined. For each partition
we find the maximal frequent itemset belonging to this
partition, and check its dimensions’ cardinality. If the
number of dimensions is equal with the input data items’
number of dimensions, n, then we assign the
corresponding itemset as the attractor of the corresponding
partition. However, in most cases, the cardinality of the
maximal itemset is less than n. In such a case, we search
for the next maximal frequent itemset in the
corresponding partition and merge it with the previous
itemset. Merging occurs only in dimensions that are
absent from the first maximal itemset. We repeat this
procedure until we have formed an itemset with
cardinality equal to d, and assign the formed itemset as
attractor of the corresponding partition.
In order to provide more flexibility, k-Attractors

performs an extra post-processing step against the
previously determined attractors. The algorithm takes as
parameter an attractor similarity ratio, r. This parameter
defines the maximum allowed similarity between two
different attractors. The similarity between two attractors

1 2
,a a is defined as follows:

 1 2
1 2

#()
(,)

a a
sim a a

n

∩
= (1)

In other words, the similarity between two attractors is
the ratio of the number of common items per the number
of total dimensions.
If the similarity of two attractors is more than r, then

we randomly discard one of the two attractors; thus the
number of total partitions is decreased by one.

4.3. Main Phase

The goal of k-Attractor’s main phase is to assign each

input data item to a cluster, using a partitional approach.
At first, we form a set of k empty clusters, where k is

the number of distinct graph partitions discovered during
the initialization phase. Every formed cluster is then
assigned to the corresponding attractor calculated
previously.
Once the clusters have been formed, the main phase of

k-Attractors begins. This phase resembles a partitional
algorithm, where every data item is assigned to a cluster
according to a predefined distance metric and in every
step the centers of every cluster are re-calculated until the
algorithm converges to a stable state where the clusters’
centers do not change.
The k-Attractors algorithm utilizes a hybrid similarity

metric based on vector representation of both the data
items and the cluster’s attractors. The similarity of these
vectors is measured employing the following composite
metric:

 () () ()1 1,i j i j n nScore C t h H a t i a t a t← = + +� � K (2)

In this formula, the first term is the Hamming distance

between the attractor
i
a and the data item

j
t . It is given

by the number of positions that pair of strings is different
and is defined as follows:

 () (), #i j i jH a t n a t= − ∩ (3)

As our algorithm is primarily based on itemsets’
similarity, we want to measure the number of substitutions
required to change one into the other. The second term is
the dot (inner) product between this data item and the

attractor
i
a . It is used in order to compensate for the

position of both vectors in the Euclidean space. Because
of the semantics of software measurement data, the
usually utilized internal metrics (such as lines of code,
coupling between objects, number of comments etc) have
large positive integer values. Thus in order for the inner
product distance to be more accurate, we firstly normalize
all the values in the interval [-1, 1] and then apply the k-
Attractors algorithm.

The multipliers ,h i in equation 2 define the metric’s

sensitivity to Hamming distance and inner product

respectively. For example, the 0i = case indicates the

composite metric is insensitive to the inner product
between the data item and the cluster’s centroid. Both

h and i are taken as input parameters in our algorithm

during its execution. Thus, k-Attractors provides the
flexibility of changing the sensitivity of the composite
distance metric to both Hamming distance and inner
product, in correspondence with the each clustering
scenario’s semantics.

Utilizing this similarity metric, k-Attractors assigns
every data item to a single cluster and recalculates the
attractors of every cluster. Recalculation includes finding
that data item of a cluster that minimizes the total sum of
distances between the other data items belonging to that
cluster. The above procedure is repeated until the
attractors of all clusters do not change any further.
The final step of the k-Attractors’ main phase is the

outlier handling step. During this step, every cluster is
checked for outliers, according to a parameter d.

Specifically, a data item t , belonging to cluster i, is

considered as an outlier if:

 () ()(), ,
i i i j

Score a t d avg Score a t>= ⋅ (4)

where ()(),
i i j

avg Score a t is the average distance

between the data items of cluster i and the attractor
i
a .

Every discovered outlier is grouped into a new cluster,
called outliers cluster, thus the total number of formed
clusters is k+1.

5. Experimental Results

5.1. Datasets used

The evaluation of the proposed clustering algorithm

involved the clustering of two sets of industrial software
measurement data. For our experiments we have
implemented k-Attractors in Java 1.4 and compared it
with the k-Means implementation of Weka 3, the Java
open source data mining tool. All the experiments were
performed in a Pentium M 2.0 GHz machine with 1GByte
RAM. For this work we combined two sets of metrics
proposed by [11] and [12]. The derived set can be applied
to OO programs and can be used as a predictor and
evaluator of a system’s maintenance effort. The following
metrics were included and calculated for the systems’
classes and were used as their clustering attributes:

• Lines of Code (LOC), which measures a class’s
number of lines of code including empty lines and
comments.

• Weighted Methods per Class (WMC), which is simply
the sum of the complexities of its methods [11].

• Coupling between Objects – Efferent Coupling (CBO),
which represents the number of classes a given class, is

coupled to [11].

• Lack of Cohesion in Methods (LCOM), which
measures if a class has all its methods working
together in order to achieve a single, well-defined
purpose [11].

• Number of Children (NOC), which measures the
number of immediate descendants of the class [11].

• Depth of Inheritance Tree (DIT), which provides for
each class a measure of the inheritance levels from the

object hierarchy top [11].

• Data Access Metric (DAM), which reflects how well

the property of encapsulation is applied to a class [12].

• Measure of Aggregation (MOA), which measures the
extent of the part-whole relationship realized by using
attributes [12].

• Number of Polymorphic Methods (NOP) that is a
measure of the overridden (or virtual) methods of an
object oriented software system [12].

• Number of Messages (NOM), which is a measure of
the services that a class provides [12].

Both datasets were derived by parsing a commercial
software system and an analysis framework by calculating
the above mentioned metrics for each system’s class. The
c4t tool was employed for this purpose [15]. The first data
set was derived from parsing System2, a large logistics
system implemented in Java (6782 classes). Thus the first
dataset consists of 6782 10-dimensional data items. We
used this first dataset in order to evaluate our algorithm’s
performance and compare it with k-Means. The second
data set was derived from parsing a small fragment, only
50 classes, of the analysis framework. The resulted data
items were at first grouped manually by a domain expert
of the corresponding system, and then we applied k-
Attractors against them. We used the domain expert’s
grouping in order to evaluate the quality of our algorithm
by calculating some external clustering quality metrics
such as precision and recall.

5.2. Performance evaluation

In order to evaluate the performance of k-Attractors

and compare it with the performance of k-Means, we used
a large dataset of software measurement data. This dataset
consisted of 6782 10-dimensional data items. Each data
item corresponded to a system’s class and stored 10
software quality metrics for that class.
We applied both k-Attractors and k-Means against this

dataset and measured the iterations performed by the two
algorithms until they converged. Because every iteration

in k-Attractors and k-Means has a complexity of ()nΟ ,

we can compare the performance of the two algorithms by
comparing the number of iterations performed.
The values of input arguments to k-Attractors are

presented in Table 1. The support factor s for the frequent
itemsets discovery was chosen to be 0.1 (10%) because
the value of each class metric has a large range, thus it is
more difficult to find frequent itemsets with a greater
support. The number of dimensions n is 10, because every
data item contains 10 software metrics. Regarding the

attractors similarity ratio r, we have decided not to merge
any attractors so we have chosen r to be 1. Additionally
we have chosen to give more weight to the inner product
distance, in relation to the Hamming distance, because of
the very different values of every class metric which result
in a high Hamming distance for the most data items.
Finally, we chose the outlier factor d to be 3, because in
such a case the corresponding data item would have very
irregural class metrics and thus it should be considered as
an outlier.
The number of clusters in k-Attractors was derived by

applying the graph partitioning algorithm (kMetis). In our
case, kMetis partitioned the graph into 7 parts, thus the
initial number of clusters was 7.

Table 1 - k-Attractors input arguments (performance
evaluation)

Argument Value

Support: s 0.1

Number of dimensions: n 10

Attractors similarity ratio: r 1

Hamming distance power: h 1

Inner product power: i 3

Outlier factor: d 3

Table 2 - Performance evaluation results

 k-Attractors k-Means

Number of Iterations 3 18

However, as mentioned in Section 4.3, k-Attractors

forms an extra cluster to group the outliers, thus the final
number of formed clusters was 8. In order for the results
to be comparable, we also applied k-Means for 8 clusters.
Because of the random initialization of k-Means, we ran
k-Means 10 times in order to get statistically significant
results.
The number of iterations performed by the two

clustering algorithms is presented in Table 2. The number
of k-Means’ iterations is the average number of iterations
performed in the 10 executions of the algorithm. It is
obvious that k-Attractors outperforms k-Means in terms of
convergence speed as it requires only 16.6% of the
iterations that k-Means requires until it converges. This is
due to the initialization phase of the proposed algorithm,
where the initial attractors of the clusters are chosen in
such a way that they approximate the final attractors of the
formed clusters. On the other hand, k-Means chooses
randomly the initial cluster means, thus it requires more
time until it converges to a steady state.

5.3. Quality evaluation

In order to evaluate the quality of k-Attractors and

compare it with the quality of k-Means, we used a small

dataset consisting of the calculated metrics for 50 classes
of an analysis application. Every data item contained only
4 metrics of the corresponding class (LOC, CBO, DIT,
WMC/LOC), thus the dataset consisted of 50 4-
dimensional data items. The main reason for reducing the
size of the example is that it is was easier for human
experts to cluster manually a small subset of classes with
low dimensions. Domain experts of the corresponding
software system grouped manually the data items into 4
clusters. The utilized 4 metrics mentioned above were
chosen by the domain expert as the most representative of
the quality of each class. We then applied k-Attractors and
k-Means against the data items and calculated the
precision and recall of the formed clusters in both cases.
The values of input arguments to k-Attractors are

presented in Table 3. The only differences between those
input arguments and the input arguments of the previous
experiment (performance evaluation) are related to the
number of dimensions and the outlier factor. In this
experiment we chose to relax the outlier factor and set it
equal to 2, because of the small dataset and the small set
of chosen metrics. The number of dimensions was set to 4
because we used only 4 metrics for every parsed system
class.

Table 3 - k-Attractors input arguments (quality

evaluation)
Argument Value

Support: s 0.1

Number of dimensions: n 4

Attractors similarity ratio: r 1

Hamming distance power: h 1

Inner product power: i 3

Outlier factor: d 2

For every formed cluster by k-Attractors and k-Means,

we calculated its precision and recall regarding the
corresponding cluster formed by the domain expert.

The recall of a cluster
j

c regarding the corresponding

domain expert’s group
i
t is defined as:

()
()#

Recall ,
#

j i

j i

i

c t
c t

t

∩
= (5)

Similarly, the precision is defined as:

()
()#

Precision ,
#

j i

j i

j

c t
c t

c

∩
= (6)

 The calculated precision and recall for every formed
cluster by k-Attractors is presented in Table 4. The
calculated precision and recall for every formed cluster by
k-Means is presented in Table 5.

Table 4 - k-Attractors recall and precision
Cluster Population Precision Recall

1 35 0.88 0.97

2 9 0.88 0.8

3 4 0.66 0.66

4 2 0.5 0.25

Table 5 - k-Means recall and precision

Cluster Population Precision Recall

1 27 0.8 0.65

2 13 0.15 0.5

3 7 1.0 0.7

4 3 0.0 0.0

It is obvious from the above tables, that k-Attractors’

clusters are closer to the domain expert’s clusters.
Especially, regarding the two largest clusters (cluster 1
and cluster 2), the corresponding calculated recall and
precision are very high and better than the two
corresponding k-Means clusters. Additionally, consider
the smallest cluster in k-Attractors (cluster 4) and k-
Means (cluster 4): those clusters correspond to the domain
expert’s outlier cluster. It is obvious that k-Attractors
approximates the domain expert’s cluster because of the
application of the outlier handling phase. k-Means lacks
such a phase, thus the recall and the precision of the
corresponding cluster are both 0.
Hence, the experimental results show that k-Attractors

forms more quality clusters than k-Means, approximating
the domain expert’s manually created clusters. This is due
to the fact that k-Attractors is designed for the semantics
of software measurement data, thus it outperforms k-
Means both in performance and quality.

6. Conclusions and Future Work

The aim of this work was the development of a new

partitional clustering algorithm, k-Attractors, which could
be tailored for the analysis of software measurement data
and overcome the weaknesses of other partitional
algorithms.
The first step of the proposed algorithm is the

application of a preprocessing step which calculates the
initial partitions for the k-Attractors partitional algorithm.
During this step, we discover the maximal frequent
itemsets of the input software measurement data using the
Apriori algorithm. After the frequent itemsets’ discovery,
we form the itemset graph and apply a graph partitioning
algorithm, kMetis. The number of the resulted partitions
defines the number of k-Attractors clusters. Thus defining
the number of clusters, the common problem for all
clustering algorithms, is resolved. Additionally, instead of
randomly choosing the clusters’ centers, for every formed
partition, we merge its maximal frequent itemsets,

constructing that way the attractor of the corresponding
cluster. As a result, the constructed initial attractors
approximate the real clusters’ attractors, improving that
way the convergence speed of the proposed algorithm
The next step is the application of the k-Attractors

main phase. During this phase, all the input software
measurement data are clustered into appropriate clusters.
As a distance metric we employ a composite metric
consisting of the Hamming distance and the inner product.
Thus, the employed metric is adapted to the way initial
attractors are determined by the preprocessing step.
The last step deals with outliers. Handling outliers

includes outlier discovery and grouping into a separate
cluster. The discovery of outliers is based on the
composite distance between a data item and its cluster’s
attractors. The corresponding distance is compared with
the average distance inside this cluster and if it is greater
than a factor, then the corresponding data item is
considered as an outlier and is grouped into a designated
cluster.
Preliminary results showed that the proposed clustering

algorithm is about 600% faster than k-Means, the state-of-
the-art partitional algorithm. Additionally, regarding
software measurement data, k-Attractors appears to form
better, in terms of quality, and more concrete clusters.
We intend to investigate ways to further evaluate and

improve the k-Attractors algorithm. At first we are
interested in conducting more experiments in order to see
its effectiveness and clustering quality with other types of
datasets. Another interesting topic is to improve the way
the initial attractors are derived by employing more
innovative versions of APriori.

Acknowledgements

This research work has been partially supported by the

Greek General Secretariat for Research and Technology
(GSRT) and Dynacomp S.A. within the program “P.E.P.
of Western Greece Act 3.4”. We would also like to thank
Rob van der Leek and Patrick Duin from the Software
Improvement Group for their valuable comments and
feedback concerning our clustering results.

References

1. National Institute of Standards and Technology (NIST),

“The Economic Impacts of Inadequate Infrastructure for
Software Testing”, Washington D.C. 2002.

2. ISO/IEC 9126, Software Engineering – Product Quality
International Standard Quality Model, Geneva 2003.

3. A.K. Jain, M.N. Murty, and P.J. Flynn, “Data Clustering: A
Review”, ACM Computing Surveys, ACM, Vol. 31, No 3,
September 1999, pp. 264-323.

4. J. Han and M. Kamber, Data Mining: Concepts and
Techniques, (Academic Press 2001).

5. R. Agarwal, and R. Srikant, Fast Algorithms for Mining
Association Rules in Large Databases, in: Proc. 20th Int’l
Conf. VLDB (1994) 487-499

6. L. Zhuang, H. Dai, “A Maximal Frequent Itemset
Approach for Web Document Clustering”, Proc. of the 4th
IEEE Int’l Conf. on Computer and Information Technology
(IEEE CIT’04), 2004

7. B.C.M. Fung, K. Wang, Martin Ester, “Hierarchical
Document Clustering Using Frequent Itemsets”, Proc. of
the 3rd SIAM Int’l Conf. on Data Mining, 2003

8. K. Wang, C. Xu, B. Liu, “Clustering Transactions Using
Large Items”, Proc. of the 8th ACM Int’l Conf. on
Information and Knowledge Management, pp.483-490,
1999

9. E.H. Han, G. Karypis, V. Kumar, B. Mobasher, “Clustering
Based on Association Rule Hypergraphs”, In Research
Issues on Data Mining and Knowledge Discovery, 1997

10. W.A. Kosters, E. Marchiori and A.A.J. Oerlemans,
Advances in Intelligent Data Analysis, pp: 39-50, Lecture
Notes in Computer Science 1642, Springer, 1999

11. S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design. IEEE Transactions on Software
Engineering, 20(6):pp. 476–493, 1994

12. J. Bansiya, C.G Davis, “A Hierarchical Model for Object-
Oriented Design Quality Assessment”, IEEE Transactions
on Software Engineering, 28: pp. 4—19, 2002.

13. Y. Kanellopoulos, T. Dimopoulos, C. Tjortjis and C.
Makris, “Mining Source Code Elements for
Comprehending Object-Oriented Systems and Evaluating
Their Maintainability” ACM SIGKDD Explorations Vol.8
Issue 1, Special Issue on Successful Real-World Data
Mining Applications, pp 33-40 June 2006.

14. Y. Kanellopoulos, C. Makris and C. Tjortjis, “An
Improved Methodology on Information Distillation by
Mining Program Source Code”, Elsevier’s Data &
Knowledge Engineering, May 2007, Volume 61, Issue 2,
pp. 359 - 383.

15. www.code4thought.org

