
From System Comprehension to Program Comprehension

Christos Tjortjis, Nicolas Gold, Paul Layzell
Department of Computation, UMIST

Email: {christos, Nicolas.Gold
pjl}@co.umist.ac.uk

Keith Bennett
Department of Computer Science

University of Durham
Email: keith.bennett@durham.ac.uk

Abstract
Program and system comprehension are vital parts of

the software maintenance process. We discuss the need
for both perspectives and describe two methods that may
be integrated to provide a smooth transition in
understanding from the system level to the program level.

Results from a qualitative survey of expert industrial
software maintainers, their information needs and
requirements when comprehending software are initially
presented. We then review existing software tools which
facilitate system level and program comprehension.

 Two successful methods from the fields of data
mining and concept assignment are discussed, each
addressing some of these requirements. We also describe
how these methods can be coupled to produce a broader
software comprehension method which partly satisfies all
the requirements. Future directions including the closer
integration of the techniques are also identified.

1. Introduction

Software maintenance accounts for the largest cost in

the software lifecycle [22]. Within the process of
software maintenance, program and system
comprehension play a crucial and costly role [19].
Maintainers must understand not only the localised part of
a program that they need to change, but also the context
within which the change takes place – system
understanding. Many support methods and tools in the
field of program comprehension (the term is often applied
to both program and system level comprehension) are
focussed at one or the other. In this paper, we show how
such methods may be coupled together to produce a more
complete support environment for the software
maintainer. This allows for switching between system and
program views and partly satisfies all the requirements of
industrial scale software comprehension.

The remaining of the paper is organised as follows:
Section 2 presents the requirements of industrial software
maintainers identified by a survey conducted in the U.K.
Section 3 reviews existing software comprehension tools.
Sections 4 and 5 present two methods for system and

program level comprehension respectively. Section 6
discusses the extent to which these methods meet these
requirements. Section 7 proposes ways for combining the
methods so as to satisfy the complete set of requirements.
Section 8 presents directions for further work.

2. Software maintenance requirements

Domain knowledge and expertise are crucial for

software maintenance, the type of required knowledge
changing over the lifetime of software. However it is
recognised that there are no explicit guidelines given a
program understanding task, nor are there good criteria to
decide how to represent knowledge derived by and used
for it [1]. A fundamental research challenge therefore was
to understand the key industrial needs, objectives and
assumptions in the program comprehension process and
to provide the most appropriate support for the task at
hand the time it is needed.

To determine the needs of software maintainers,
understand their broad strategies, particularly the initial
steps in program comprehension, and thereby provide
better tool support, a qualitative survey of expert software
maintainers was undertaken [26]. The survey confirmed
that there is no high-quality substitute for experience
when it comes to understanding a system, as existing
methods and tools are not effective enough and
documentation tends to be unreliable.

The main Software Maintenance practices and
requirements identified by this survey were the following:
1. High level overviews, abstractions, localised system

diagrams, module interrelationships and also means to
estimate the impact of changes are required to be
derived in an automated manner in order to accelerate
and enhance program comprehension.

2. It was reported that program mental models, i.e. high
level abstractions of subsystems with related
functionality and interrelationships, are implicit in
maintainers’ work, but are hardly ever recorded for
future use. The need for visualising, recording and
cross-referencing these models in order to share
experiences, improve communication and resolve
misunderstandings was clearly identified.

3. Identification of a starting point for subsequent
tracing through programs significantly accelerates the
comprehension process. This normally occurs through
consultation with experts and by use of maintainer’s
own experience but alternative means are essential.

4. Information exchange among team members is
sparse, informal and is hardly ever recorded. There is a
clear requirement for a means to provide standardised,
reliable and communicable information regarding a
system as an equivalent to knowledge available only to
developers or experienced maintainers.

5. Maintenance is mainly documented in source code
comments, except from extensive changes which are
also reflected on user manuals. The implication is that
comments in mature systems get accumulated over time
and tend to reflect subsequent changes rather than the
original implementation ideas. Capturing knowledge
regarding past modifications by extracting information
from comments and relating this to known functionality
of code emerges to be of great importance.

6. The types of maintenance influence the approach
taken. Corrections involve attempting first to locate the
point where the fix needs to be applied. Enhancements
require a ‘detail-first’ strategy, where a high-level
understanding of the system’s functionality and
modules interrelationships is pursued before the change
is made. Preventative maintenance was deemed rarely
to occur and was considered to be an integral part of
software development. The above highlight that
maintainers are often required to switch between
System Level and Program Comprehension.

7. Partial comprehension is pursued and achieved in
most cases, which has to be balanced against the risk of
failure in completing a maintenance task. It was
reported that the time available for comprehension was
limited because of commercial pressures and deadlines.

It was generally agreed that the most useful pieces of
information to facilitate code comprehension are:
a. An easy to navigate, multi-layered subsystem

abstraction and modules interrelationships providing an
overview of the system and possible impact of changes.

b. Knowledge derived from past maintenance which can
mainly be retrieved from comments.

3. Comprehension support

There are many types of tools available to help with
software comprehension, emphasising different aspects of
systems and modules, and usually creating new
representations for them [10]. Biggerstaff et al.
differentiate between naïve and intelligent agents (tools)
for providing such representations [3]. Naïve agents
generally perform deductive or algorithmic analysis of
program properties or structure, e.g. program slicers [23]

or dominance tree analysers [5]. Intelligent agents assign
descriptions of computational intent to source code.

Biggerstaff et al. [3] claim that research on intelligent
agents can be divided into 3 distinct approaches:
1) Highly domain specific, model driven, rule-based

question answering systems that depend on a manually
populated database describing the software system.
This approach is typified by the Lassie system [8].

2) Plan driven, algorithmic program understanders or
recognisers. Two examples of this type are the
Programmer’s Apprentice [20], and GRASPR [27].

3) Model driven, plausible reasoning understanders.
Examples of this type include DM-TAO [3], [4],
IRENE [17], and HB-CA [10], [12].

One exception to this categorisation is Hartman’s
work [14] that falls between approaches 2 and 3.

Systems using approaches 1 and 2 are good at
completely deriving concepts within small-scale programs
but cannot deal with large-scale programs due to
overwhelming computational growth. Approach 3
systems can easily handle large-scale programs since their
computational growth appears to be linear in the length of
the program under analysis. They suffer from
approximate and imprecise results [3].
Figure 1 is based on the summary of the program
understanding landscape in [3] as extended in [10]. The
original has been updated to include additional work on
program understanding, with the number of each oval
providing a key to the citations below. Citations have
also been added to the original figure.

4. A method for system level comprehension

Data mining involves applying data analysis and

discovery algorithms to data collections that produce a
particular enumeration of patterns over the data [9].
Several techniques can give insight into vast amounts of
data and extract useful, previously hidden knowledge.
Clustering is such a technique for partitioning a data set
into mutually exclusive groups (clusters). Members of a
cluster are similar to one another and dissimilar from
members of other groups, according to some metric.
Similarity is decided by measuring the distance of records
with respect to all available variables [15].

Data Mining Code Clustering (DMCC) [25] is an
approach, devised to address the need for automated
methods providing a quick, rough grasp of a software
system, to enable practitioners, who are not familiar with
it, to commence maintenance with a level of confidence
as if they had this familiarity.
DMCC primarily aims at providing a broad contextual
picture of a system, rather than a detailed model [25].
This provides a roadmap by which maintainers can
quickly navigate around the code, scoping the change

 Deductive/
Algorithmic
Methods

 Plausible
Reasoning/
Heuristic
Methods

Specialised
Application Domains

 Model-Driven
Methods

Domain
Specificity

General Application
Domains

Computer
Science Knowledge

Fundamental
Knowledge

 Formal

Key to citations

Oval Author(s) System C

1 Karakostas IRENE [17]

2 Biggerstaff et al. DM-TAO [3], [

2 Gold HB-CAS [10],

3 Rich, Waters Programmer’s

Apprentice

[20]

3 Woods et al. PU-CSP [28]

4 Hartman UNPROG [14]

4 Wills GRASPR [27]

Figure 1: The progra

request and solution space. This enables more
analysis of targeted code to be undertaken.

DMCC portrays a program as a number of
grouped in clusters representing subsystems, b
their similarity. Clusters indicate functions struc
interrelationships among them, in a way that the i
changes can be predicted. A prototype tool for c
C/C++ source code was developed, using func

BIOS
Deco
 Brachman

Rigorous

 F

itation(s) O

4]

 [11], [12]

m understand

detailed

 entities
ased on
ture and
mpact of
lustering
tions as

mpilers

DM-TAO

Model-Free
Methods

Semi-

Formal

Systematic Ad Hoc

ormality

val Author(s) System Citation(s)

4 Ning

Kozaczynski

Concept

Recogniser

[18]

4 Johnson PROUST [16]

4 Chin, Quilici DECODE [6]

4 Harandi, Ning PAT [13]

5 Biggerstaff et al. DESIRE [2], [3], [4]

5 Siff, Reps FCA Tools [21]

5 Canfora et al. Various Methods [6]

ing landscape [10] after [3]

entities. Attributes include the use and types of variables /
parameters and the types of returned values. Additional
information about interrelationships among attributes is
also used. Custom-made similarity metrics based on the
association coefficient paradigm, were introduced and an
agglomerative hierarchical clustering algorithm using the
complete linkage method was employed.

The tool was evaluated using data extracted from
C/C++ systems of various sizes. Experimental results
indicate that a high-level system abstraction as a number
of subsystems can be achieved by clustering program
functions into groups. Interrelationships amongst
components were identified in a similar manner. The
accuracy of the results was evaluated by comparing the
produced subsystem abstractions with experts’ mental
models. The abstractions were accurate, capturing the
subsystems consistently with the mental model. Pair-wise
values of precision and recall ranged between (50%, 40%)
and (87%, 100%), i.e. highest precision achieved was
87% and highest recall 100% [24].

Grouping program components into subsystems
reduces the perceived complexity thus facilitating
maintenance. Corrective and adaptive maintenance is
supported by the automatic derivation of a meaningful
decomposition of source code into several subsystems, by
identifying the interfaces between subsystems and
determining the role each plays in performing a service
[25]. This can further help to modify existing code in a
manner consistent with the original structure and
understand the overall impact of such modifications. Any
changes, especially those related to parameter usage
within the body of a function, suggest the maintainer
should consider the possibility of other “similar”
functions being affected. This supports fast code
modification risk assessment, before even performing
regression tests which in practise are time consuming and
often neglected. Maintainers should even be enabled to
replace code sections of code without affecting
functionality.

DMCC can also be used for perfective maintenance,
when improving system cohesion and coherence by
increasing modularity. This happens in two ways. Firstly,
functions can be relocated within modules where they
“naturally” belong. Secondly, processing within functions
could be adjusted to better reflect the functionality that is
supposed to be encapsulated within.

grouped together according to their similarity and their
interrelationships are highlighted. It also provides the
means to visualise and record a representation of a
system, resembling a mental model which can be used to
confirm perceptions, communicate these models and
cross-reference them across a team. DMCC also provides
maintainers with the required multi-layered subsystem
abstraction which captures module interrelationships and
can indicate the possible impacts of modifications.

HB-CA successfully addresses requirements 2, 3, 4,
and 5. The need to share mental models is facilitated to
some extent by the use and extension of the knowledge
base by several maintainers. HB-CA provides a
particularly good method for identifying the starting point
for maintenance by providing the maintainer with a
program representation in conceptual terms that they have
nominated. The starting point can be expressed in terms
closer to the problem. The shared knowledge base
enables the recording of knowledge highlighted in
requirement 4. Although the knowledge base structure is
not elaborate, it does provide a mechanism by which
maintainers can store parts of their system and program
understanding for others to use. One of the main sources
of knowledge for the HB-CA analysis is inline comments,
used to determine which concepts are implemented in a
particular section of code. It can be seen as a knowledge
capturing method as desired in requirement 5.

The result of coupling DMCC and HB-CA addresses
the rest of the requirements set by industrial practitioners,
i.e. switching between System Level Comprehension and
Program Comprehension (requirement 6) and accelerating
and improving the quality of partial comprehension
(requirement 7). The way these further requirements are
met will be explained in the following section.

7. Combined method for better support

This section describes ways in which DMCC and
HB-CA could be combined to improve the support
offered to software maintainers.

DMCC gives an overview of the interrelations among
low-level modules (functions) found in program files.
Therefore:
• It can be used to assess modularity.
• It may be used for code ripple analysis and

risk/impact analysis.
• It could be used prior to remodularization.

HB-CA gives an overview of the concepts found in a
particular program file by mapping concepts (terms) to
their implementation in code. Therefore:
• It can be used for business rule/code ripple analysis

and risk/impact analysis.
• It can be used for module selection prior to change.
• It can be used to help with code reuse.
• It’s useful in software module comprehension

There are several ways in which DMCC could be
coupled with HB-CA to improve the completeness of
comprehension support:
a. DMCC could assist in CA knowledge base

generation. DMCC could be used to locate indicators
(perhaps within the data sections of programs) and
possibly concept-concept relationships. Concepts
produced by DMCC are of “higher order” than the ones
usually stored in the knowledge base. For example,
instead of having a read concept, DMCC can introduce
a sort concept which in fact consists of concepts of
“lower order” such as read, write etc. This hierarchical
approach extends the scope and enriches the usefulness
of CA.

b. Segmentation could be based on DMCC “clusters”
rather than regions of code formed between primary
segmentation points or as an alternative to using neural
network processing to find conceptual coherence. HB-
CA initially segments code at section boundaries and
then by use of Self-Organising Maps (SOMs) to reflect
the conceptual structure of the program as expressed in
terms of the knowledge base content. DMCC suggests
further groupings of routines or paragraphs, which are
more likely to contain “higher order” concepts and
relationships.

c. Enhanced code ripple analysis and module selection.
As both DMCC and CA may be used for code ripple
analysis and risk/impact analysis results can be cross-
validated when “overlapping” or combined when
addressing different issues.

d. Cross-validation of DMCC and CA findings. This
may happen if, instead of coupling the processes of the
two methods, we only allow their results to be coupled.
In other words, as DMCC produces high-level results
and HB-CA produces low-level ones, there is a valid
expectation that these can complement each other. This
can be achieved by highlighting different aspects of a
system or by providing two different angles for viewing
a single aspect, lying in the boundaries of the scope of
each method.

8. Conclusions and future work

System and program level comprehension is crucial

for industrial scale software maintenance. A set of
relevant requirements identified during a survey is only
partly met by existing methods and tools. In this paper we
have presented two methods that meet most of these
needs individually. We have also proposed several ways
in which they may be combined to greater effect and to
provide more substantial support. This combination
potentially addresses all the requirements.

There are a number of directions for further work in
this area:
1) Empirical validation of the combined approach. It

would be useful to expose the combined method to

maintainers in the real world to determine whether it
can actually meet the needs identified in the early part
of this paper.

2) Closer integration between the methods. The current
style of coupling between the methods is loose and
maintainers would benefit from a closer fit between
them, as it would give them the ability to switch
quickly between system views.

3) Framework Development. Many aspects of data
mining are adopted in program comprehension tools
and we plan to develop a framework to characterise and
classify such tools by the data mining methods they
adopt for data extraction and processing.

Acknowledgements

We gratefully acknowledge the support of EPSRC,

the Leverhulme Trust, and CSC for various aspects of this
work.

References

[1] F. Balmas, H. Wertz and J. Singer, "Understanding

Program Understanding", Proc. 8th Int'l Workshop
Program Comprehension (IWPC 00), IEEE Comp. Soc.
Press, 2000, pp. 256.

[2] T.J. Biggerstaff, "Design Recovery for Maintenance and
Reuse", IEEE Computer, Vol. 22, No. 7, July 1989, pp. 36-
49.

[3] T.J. Biggerstaff, B. Mitbander, D. Webster, "The Concept
Assignment Problem in Program Understanding",
Proceedings of the Fifteenth International Conference on
Software Engineering, Baltimore, Maryland, May 17-21,
1993, IEEE Computer Society Press, 1993, pp. 482-498.

[4] T.J. Biggerstaff, B.G. Mitbander, D.E. Webster, "Program
Understanding and the Concept Assignment Problem",
Communications of the ACM, Vol. 37, No. 5, May 1994,
pp. 72-82.

[5] E. Burd, M. Munro, "Evaluating the Use of Dominance
Trees for C and COBOL", Proceedings of the International
Conference on Software Maintenance, Oxford, England,
August 30-September 3, 1999, IEEE Computer Society
Press, 1999, ISBN 0769500161, pp. 401-410.

[6] G. Canfora, A. Cimitile, A. De Lucia, G.A. Di Lucca,
“Decomposing legacy systems into objects: an eclectic
approach”, Information and Software Technology, Vol. 43,
2001, pp 401-412.

[7] D.N. Chin, A. Quilici, "DECODE: A Cooperative Program
Understanding Environment", Journal of Software
Maintenance, Vol. 8, No. 1, 1996, pp. 3-34.

[8] P. Devanbu, R.J. Brachman, P.G. Selfridge, B.W. Ballard,
"LaSSIE: A Knowledge-Based Software Information
System", Communications of the ACM, Vol. 34, No. 5,
May 1991, pp. 35-49.

[9] U. Fayyad, G. Piatetsky-Shapiro and P. Smyth, "From Data
Mining to Knowledge Discovery: an Overview", Advances
in Knowledge Discovery and Data Mining, AAAI Press,
1996, pp. 1-34.

[10] N.E. Gold, “Hypothesis-Based Concept Assignment to
Support Software Maintenance”, PhD. Thesis, Department
of Computer Science, University of Durham, 2000.

[11] N.E. Gold and K.H. Bennett, “A Flexible Method for
Segmentation in Concept Assignment”, Proc. Int’l
Workshop on Program Comprehension (IWPC 01), IEEE
Comp. Soc. Press, 2001.

[12] N.E. Gold, “Hypothesis-Based Concept Assignment to
Support Software Maintenance”, Proc. Int’l Conference on
Software Maintenance (ICSM 01), IEEE Comp. Soc. Press,
2001.

[13] M.T. Harandi, J.Q. Ning, "Knowledge-Based Program
Analysis", IEEE Software, Vol. 7, No. 1, January 1990, pp.
74-81.

[14] J. Hartman, "Automatic Control Understanding for Natural
Programs", Ph.D. Thesis, University of Texas at Austin,
May 1991.

[15] A. K. Jain and R. C. Dubes, Algorithms for Clustering
Data, Prentice-Hall, 1988.

[16] W.L. Johnson, Intention-Based Diagnosis of Novice
Programming Errors, Morgan Kaufmann Publishers Ltd,
1986, ISBN 0273087681.

[17] V. Karakostas, "Intelligent Search and Acquisition of
Business Knowledge from Programs", Software
Maintenance: Research and Practice, Vol. 4, 1992, pp. 1-
17.

[18] W. Kozaczynski, J.Q. Ning, "Automated Program
Understanding By Concept Recognition", Automated
Software Engineering, Vol. 1, No. 1, March 1994, pp. 61-
78.

[19] T.M. Pigoski, Practical Software Maintenance: Best
Practices for Managing your Software Investment, Wiley
Computer Publishing, 1996.

[20] C. Rich, R.C. Waters, The Programmer's Apprentice, ACM
Press (Frontier Series), 1990, ISBN 0201524252.

[21] M. Siff, T. Reps, “Identifying Modules via Concept
Analysis”, IEEE Transactions on Software Engineering,
Vol. 25, No. 6, November/December 1999.

[22] I. Sommerville, Software Engineering, 6th edition, Harlow,
Addison-Wesley, 2001.

[23] F. Tip, "A Survey of Program Slicing Techniques",
Technical Report CS-R9438, Centrum voor Wiskunde en
Informatica, Amsterdam, 1994.

[24] C. Tjortjis, “Using Data Mining for Program
Comprehension”, PhD. Thesis, Department of
Computation, UMIST, to appear 2002.

[25] C. Tjortjis and P.J. Layzell, "Using Data Mining to Assess
Software Reliability", Suppl. Proc. IEEE 12th Int’l
Symposium Software Reliability Engineering
(ISSRE2001), IEEE Comp. Soc. Press, 2001, pp. 221-223.

[26] C. Tjortjis and P.J. Layzell, "Expert Maintainers’ Strategies
and Needs when Understanding Software: A Qualitative
Empirical Study", Proc. IEEE 8th Asia-Pacific Software
Engineering Conf. (APSEC 2001), IEEE Comp. Soc. Press,
2001, pp. 281-287.

[27] L.M. Wills, "Automated Program Recognition by Graph
Parsing", PhD Thesis, AI Lab, Massachusetts Institute of
Technology, July 1992.

[28] S.G. Woods, A.E. Quilici, Q. Yang, Constraint-Based
Design Recovery for Software Reengineering: Theory and
Experiments, Kluwer Academic Publishers, 1998, ISBN
0792380673.

	Abstract
	Formality
	
	
	Key to citations

	Oval
	
	Acknowledgements
	References

