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Abstract 
 

The paper investigates the applicability of data mining 
in software reliability assessment and maintenance. The 
proposed methodology comprises three steps. First the 
input models are defined by selecting parts of the source 
code, such as functions, routines and variables, to 
populate a database. Then Clustering is applied to 
identify sub-sets of source code that are grouped together 
according to custom-made similarity metrics. Finally 
Association rules are used to establish inter-group and 
intra-group relationships. Experimental results show that 
the methodology can assess modularity, detect complexity 
and predict the impact of changes. 

 

1. Introduction 

 

Assessing software reliability and testability is a major 
challenge related to testing and maintenance. Testability 
is a measurement of structural complexity, which has no 
operational definition and can neither have an absolute 
value nor can it reveal every weakness in reliability [10]. 
However, it can be used to assess the impact of changes. 
High testability makes the validation phase more efficient 
and improves maintenance and comprehension. 

Cognitive complexity is influenced by structural 
properties, such as coupling and cohesion. Systems 
composed of highly coupled classes are more fault-prone, 
and hard to comprehend and maintain. Coupling Between 
Object Classes is a measure which depends on classes’ 
usage of methods or attributes that belong to other classes, 
where uses can mean as a member, method local variable, 
or parameter type [1]. Another way for predicting fault-

prone modules is to exploit metrics using data mining1 
[5].  

Data mining is suitable to support software reliability 
assessment, as it achieves results for large collections of 
data even when limited background knowledge is 
available. It has also been applied to get a better 
understanding of source code. Examples include 
identification of data cohesive subsystems [8], recovery 
and maintenance of software system structures [7] and 
architectural design recovery [9].  

 

2. Data mining for assessing software 
reliability and facilitating maintenance 

 
2.1. Aims and objectives 

 
This work aims at facilitating software reliability 

assessment, maintenance and comprehension by 
identifying fault-prone modules and predicting the impact 
of changes. Objectives include the definition of data 
representation models for source code, and the application 
of appropriate data mining techniques. Mining data 
derived from code, rather than metrics can be used to 
explore module complexity and interrelationships, in a 
manner similar to methods based on coupling and 
cohesion. 

 

2.2. Input models 

 
Defining input models involved representing programs 

as a number of entities each consisting of several 
                                                           
1 Data Mining means applying data analysis and discovery algorithms 
that produce a particular enumeration of patterns over the data [3]. It 
incorporates several techniques, such as Clustering, which partitions a 
data set into mutually exclusive groups and Association rules which 
return relationships among sets of items where presence of an item in a 
record implies the presence of others in the same record. 



attributes. Two models were used to extract data from 
code and populate a database suitable for data mining. 
One model for C/C++, where entities are functions and 
attributes are defined according to the use and types of 
parameters and variables, and the types of returned 
values. The model for COBOL caters for a medium level 
involving paragraphs as entities, and a low level, where 
entities are merely lines of code. Attributes in both levels 
are binary depending on the presence of user-defined and 
language-defined identifiers. 

 

2.3. Clustering 

 
Data Mining Code Clustering (DMCC) is the 

approach taken for grouping C/C++ functions, based on 
their similarity, into clusters, which represent subsystems. 
A prototype tool was developed using an agglomerative 
hierarchical clustering algorithm [4] and custom-made 
similarity metrics founded on the association coefficient 
paradigm. The tool utilised additional information about 
interrelationships amongst attributes. It was evaluated 
using systems of various sizes, of up to 18 modules and 
118 functions. Experiments resulted in multi-layered 
high-level abstractions of given systems, as a number of 
subsystems consisting of “similar” functions. 
Interrelationships amongst functions were identified 
likewise.  

DMCC produces systems’ overviews, which aid 
comprehension. Grouping program components into 
subsystems reduces the perceived complexity thus 
facilitating maintenance. Complexity can be detected by 
identifying subsystems which consist of comparatively 
large number of functions.  Large, complex and strongly 
interrelated subsystems are likely to be fault-prone. 

Software reliability assessment is supported by 
automatically deriving a meaningful decomposition of 
source code into several subsystems, identifying the 
interfaces connecting them, and determining the role each 
subsystem plays in performing a service. This can further 
help to modify existing code in a manner consistent with 
the original structure and understand the overall impact of 
such modifications. For any changes, especially related to 
parameter usage within the body of a function, the 
software engineer should consider the possibility of 
affecting other “similar” functions. This supports fast 
code modification risk assessment, even prior to 
regression tests. 

DMCC can also be used to improve systems cohesion 
and coherence by increasing modularity. This improves 
reliability and can be done in two ways. First by 
relocating functions into modules where they more 
“naturally” belong, i.e. amongst similar functions. 

Second, by adjusting the processing performed within 
functions to better reflect the functionality designed to be 
encapsulated within. 

 

2.4. Association rules 

 
Mining association rules is suitable for binary 

attributes derived from COBOL programs. A parsing tool 
using code as input was developed to populate a database. 
Another tool based on Apriori, a well-established 
algorithm, was developed to scan the database and derive 
association rules among attributes 2. The tool groups 
paragraphs together if they contain a user-defined number 
of strong rules. This grouping is an alternative to 
clustering paragraphs according to their “similarity”, 
analogously to DMCC. 

Experiments with COBOL programs of up to 1000 
lines of code highlighted the potential of the method in 
identifying groups of variables and/or reserved words 
which tend to appear in the same module, thus implying 
that they are interrelated. The method also identifies 
programming styles, by exposing patterns related to the 
presence of variables and reserved words in paragraphs. 
Finally, grouping paragraphs gives an insight into 
modularity thus facilitating the prediction of the impact of 
changes and software reliability assessment. 

Irregularities in the observed patterns suggest that 
some parts of the program are exceptional, and may 
require further testing. Rules and patterns obviously need 
expert examination, interpretation and validation. 
Ongoing work involves expert consultation on the 
significance of this methodology and the validity of the 
patterns derived by Clustering and Association rules [6]. 
Further experimentation for fine-tuning of the tools is also 
required to optimise performance.  
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