
Using Data Mining to Assess Software Reliability

Christos Tjortjis and Paul Layzell
Department of Computation, UMIST

P.O. Box 88, Manchester, M60 1QD, UK
Email: {christos, pjl}@co.umist.ac.uk

Index terms- Reliability assessment tools, Software Maintenance, Data Mining, Cluster analysis, Association rules.

Abstract

The paper investigates the applicability of data mining
in software reliability assessment and maintenance. The
proposed methodology comprises three steps. First the
input models are defined by selecting parts of the source
code, such as functions, routines and variables, to
populate a database. Then Clustering is applied to
identify sub-sets of source code that are grouped together
according to custom-made similarity metrics. Finally
Association rules are used to establish inter-group and
intra-group relationships. Experimental results show that
the methodology can assess modularity, detect complexity
and predict the impact of changes.

1. Introduction

Assessing software reliability and testability is a major
challenge related to testing and maintenance. Testability
is a measurement of structural complexity, which has no
operational definition and can neither have an absolute
value nor can it reveal every weakness in reliability [10].
However, it can be used to assess the impact of changes.
High testability makes the validation phase more efficient
and improves maintenance and comprehension.

Cognitive complexity is influenced by structural
properties, such as coupling and cohesion. Systems
composed of highly coupled classes are more fault-prone,
and hard to comprehend and maintain. Coupling Between
Object Classes is a measure which depends on classes’
usage of methods or attributes that belong to other classes,
where uses can mean as a member, method local variable,
or parameter type [1]. Another way for predicting fault-

prone modules is to exploit metrics using data mining1
[5].

Data mining is suitable to support software reliability
assessment, as it achieves results for large collections of
data even when limited background knowledge is
available. It has also been applied to get a better
understanding of source code. Examples include
identification of data cohesive subsystems [8], recovery
and maintenance of software system structures [7] and
architectural design recovery [9].

2. Data mining for assessing software
reliability and facilitating maintenance

2.1. Aims and objectives

This work aims at facilitating software reliability

assessment, maintenance and comprehension by
identifying fault-prone modules and predicting the impact
of changes. Objectives include the definition of data
representation models for source code, and the application
of appropriate data mining techniques. Mining data
derived from code, rather than metrics can be used to
explore module complexity and interrelationships, in a
manner similar to methods based on coupling and
cohesion.

2.2. Input models

Defining input models involved representing programs

as a number of entities each consisting of several

1 Data Mining means applying data analysis and discovery algorithms
that produce a particular enumeration of patterns over the data [3]. It
incorporates several techniques, such as Clustering, which partitions a
data set into mutually exclusive groups and Association rules which
return relationships among sets of items where presence of an item in a
record implies the presence of others in the same record.

attributes. Two models were used to extract data from
code and populate a database suitable for data mining.
One model for C/C++, where entities are functions and
attributes are defined according to the use and types of
parameters and variables, and the types of returned
values. The model for COBOL caters for a medium level
involving paragraphs as entities, and a low level, where
entities are merely lines of code. Attributes in both levels
are binary depending on the presence of user-defined and
language-defined identifiers.

2.3. Clustering

Data Mining Code Clustering (DMCC) is the

approach taken for grouping C/C++ functions, based on
their similarity, into clusters, which represent subsystems.
A prototype tool was developed using an agglomerative
hierarchical clustering algorithm [4] and custom-made
similarity metrics founded on the association coefficient
paradigm. The tool utilised additional information about
interrelationships amongst attributes. It was evaluated
using systems of various sizes, of up to 18 modules and
118 functions. Experiments resulted in multi-layered
high-level abstractions of given systems, as a number of
subsystems consisting of “similar” functions.
Interrelationships amongst functions were identified
likewise.

DMCC produces systems’ overviews, which aid
comprehension. Grouping program components into
subsystems reduces the perceived complexity thus
facilitating maintenance. Complexity can be detected by
identifying subsystems which consist of comparatively
large number of functions. Large, complex and strongly
interrelated subsystems are likely to be fault-prone.

Software reliability assessment is supported by
automatically deriving a meaningful decomposition of
source code into several subsystems, identifying the
interfaces connecting them, and determining the role each
subsystem plays in performing a service. This can further
help to modify existing code in a manner consistent with
the original structure and understand the overall impact of
such modifications. For any changes, especially related to
parameter usage within the body of a function, the
software engineer should consider the possibility of
affecting other “similar” functions. This supports fast
code modification risk assessment, even prior to
regression tests.

DMCC can also be used to improve systems cohesion
and coherence by increasing modularity. This improves
reliability and can be done in two ways. First by
relocating functions into modules where they more
“naturally” belong, i.e. amongst similar functions.

Second, by adjusting the processing performed within
functions to better reflect the functionality designed to be
encapsulated within.

2.4. Association rules

Mining association rules is suitable for binary

attributes derived from COBOL programs. A parsing tool
using code as input was developed to populate a database.
Another tool based on Apriori, a well-established
algorithm, was developed to scan the database and derive
association rules among attributes 2. The tool groups
paragraphs together if they contain a user-defined number
of strong rules. This grouping is an alternative to
clustering paragraphs according to their “similarity”,
analogously to DMCC.

Experiments with COBOL programs of up to 1000
lines of code highlighted the potential of the method in
identifying groups of variables and/or reserved words
which tend to appear in the same module, thus implying
that they are interrelated. The method also identifies
programming styles, by exposing patterns related to the
presence of variables and reserved words in paragraphs.
Finally, grouping paragraphs gives an insight into
modularity thus facilitating the prediction of the impact of
changes and software reliability assessment.

Irregularities in the observed patterns suggest that
some parts of the program are exceptional, and may
require further testing. Rules and patterns obviously need
expert examination, interpretation and validation.
Ongoing work involves expert consultation on the
significance of this methodology and the validity of the
patterns derived by Clustering and Association rules [6].
Further experimentation for fine-tuning of the tools is also
required to optimise performance.

References

[1] R. Agrawal and R. Srikant, ‘Fast Algorithms for Mining

Association Rules’, Proc. 20th Int’l Conf. Very Large
DataBases (VLDB 94), 1994, pp. 487-499.

[2] S. Benlarbi, N. Goel, K. El Emam and S. Rai ‘Thresholds
for OO Measures’, Proc. 11th Int’l Symposium Software
Reliability Engineering (ISSRE 2000), IEEE Comp. Soc.
Press, 2000, pp. 24-37.

[3] U. Fayyad, G. Piatetsky-Shapiro and P. Smyth, ‘From Data
Mining to Knowledge Discovery: an Overview’, Advances

2 Each rule is characterised by its confidence, i.e. the proportion of times
the rule is correct, and its support, i.e. the proportion of times the rule
applies. A rule with high confidence and support is strong [1].

in Knowledge Discovery and Data Mining, AAAI Press,
1996, pp. 1-34.

[4] K. Jain and R. C. Dubes, Algorithms for Clustering Data,
Prentice-Hall, 1988.

[5] T. Khoshgoftaar, E. Allen and R. Shan, ‘Improving Tree-
based Models of Software Quality with Principal
Components Analysis’, Proc. 11th Int’l Symposium
Software Reliability Engineering (ISSRE 2000), IEEE
Comp. Soc. Press, 2000, pp. 198-209.

[6] M. Li, C. Smidts and R. Brill, ‘Ranking Software
Engineering Measures Related to Reliability Using Expert
Opinion’, Proc. 11th Int’l Symposium Software Reliability
Engineering (ISSRE 2000), IEEE Comp. Soc. Press, 2000,
pp. 246-258.

[7] S. Mancoridis, B.S. Mitchell, Y. Chen and E.R. Gansner,
‘Bunch: A Clustering Tool for the Recovery and

Maintenance of Software System Structures’, Proc. Int’l
Conf. Software Maintenance (ICSM 99), IEEE Comp. Soc.
Press, 1998, pp. 50-59.

[8] C.M. de Oca and D.L Carver, ‘Identification of Data
Cohesive Subsystems Using Data Mining Techniques’,
Proc. Int’l Conf. Software Maintenance (ICSM 98), IEEE
Comp. Soc. Press, 1998, pp.16-23.

[9] K. Sartipi, K. Kontogiannis and F. Mavaddat,
‘Architectural Design Recovery Using Data Mining
Techniques’, Proc. 2nd European Working Conf. Software
Maintenance Reengineering (CSMR 2000), IEEE Comp.
Soc. Press, 2000, pp. 129-140.

[10] Y. Le Traon, F. Oaubdesselam and C. Robach ‘Analyzing
Testability on Data Flow Designs’, Proc. 11th Int’l
Symposium Software Reliability Engineering (ISSRE
2000), IEEE Comp. Soc. Press, 2000, pp. 168-173

