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Abstract. This paper presents ongoing work on using data mining clustering to 
facilitate software maintenance, program comprehension and software systems 
knowledge discovery. We propose a method for grouping Java code elements 
together, according to their similarity. The method aims at providing practical 
insights and guidance to maintainers through the specifics of a system, 
assuming they have little familiarity with it. Our method employs a pre-
processing algorithm to identify the most significant syntactical and 
grammatical elements of Java programs and then applies hierarchical 
agglomerative clustering to produce correlations among extracted data. The 
proposed method successfully reveals similarities between classes and other 
code elements thus facilitating software maintenance and Java program 
comprehension as shown by the experimental results presented here. The paper 
concludes with directions for further work. 

1. Introduction 

A well documented problem faced by software maintainers when understanding a 
software system is the lack of familiarity with it, combined with the lack of accurate 
documentation [14]. Several techniques and methods have been proposed in order to 
facilitate this time consuming activity [3], [4], [7], [10], [12]. 

The work presented in this paper is part of a wider research effort investigating the 
applicability and suitability of using data mining to facilitate program comprehension 
and maintenance [9], [15], [17], [19]. This effort aims at developing a methodology 
for semi-automated program comprehension incorporating data mining. A 
fundamental underlying assumption is that the maintainer may have little or no 
knowledge of the program which is analysed. 

Data mining comprises of a number of different techniques with a varying degree of 
suitability for software maintenance purposes [1], [11], [13], [16], [20]. Two are the 
most prominent issues: defining an appropriate data model for pre-processing as code 
is not a “tabular” format, and then selecting a suitable data mining technique. We 

have already proposed methods addressing these issues for both COBOL and C/C++ 

code [9], [19]. 



  

This work is based on Java, a well established programming language, which 
however has not been studied extensively in this context. We aim at providing 
software maintainers with a method that aids them to identify similarities and patterns 
among Java code elements, thus assisting program comprehension. Knowledge of 
relations among system parts is very important to effective maintenance. 

The objectives of this work are: 

i) to define a data model for Java, suitable to create target data for mining. Data 
should be extracted from Java source code by selecting the most essential 
elements for data mining purposes. We propose here a pre-processing algorithm 
that ‘cleanses’ Java code by omitting any elements of non interest as ineligible 
data, extracts data from code using the input data model and populates a database. 

ii) to convert data stored in the database into substantive clustering material by 
applying a transformation algorithm, and to cluster the converted data thus 
producing non-trivial and valid patterns. 

The rest of this paper is organised as follows: Section 2 reviews research on data 
mining used for software maintenance and comprehension. In section 3 we propose a 
method for extracting useful knowledge form Java source code. Two case studies are 
discussed in section 4. Finally, section 5 concludes and proposes ideas for further 
work.  

2. Background 

Software maintenance is the most difficult stage in software lifecycle, often 
performed with limited understanding of the overall structure of a system because of 
commercial pressures [14]. Fast, unplanned modifications give rise to increased code 
complexity and deteriorated modularity, thus resulting in 50%-90% of the 
maintainers’ time to be spent on program comprehension [18]. 

Data mining and its ability to deal with vast amounts of data, has been considered a 

suitable solution in assisting software maintenance often resulting in notable results 

[1], [11], [13], [16], [20]. We have also used data mining in the past, to get insights 

into systems design and structure [9], [17], [19]. 

The following paragraph briefly reviews some solutions in the area of data mining for 

software maintenance and compares these to our approach.  

2.1 Using Clustering to Produce High-Level Organizations of Source Code.  

This solution proposes a model for automatically partitioning system components into 

clusters in order to minimise inter-connectivity (i.e. connections between components 

of two distinct clusters) while maximising intra-connectivity (i.e. connections 

between components of the same cluster) by using a collection of existing clustering 

algorithms [11]. 



  

The proposed architecture is divided in four parts: 

a. extract module-level dependencies from the source code and populate a database. 

b. query the database, filter the query results and produce a textual representation of 
the Module Dependency Graph (MDG). 

c. apply various clustering algorithms to the MDG. 

d. visualise results.  

 This approach applies clustering to module dependencies and its main objective is to 
facilitate program comprehension with the underlying assumption is that a well-
designed system is organised into cohesive clusters that are loosely interconnected. 

2.2 A Software Evaluation Model Using Component Association Views 

This solution proposes a model for architectural design evaluation of a system based 
on the association among system components [16]. It allows system modularity 
measurement, as an indication of design quality. The following three system 
association views are generated: 

i) Control passing: It represents the correlation among system components based on 
function invocation. 

ii) Data exchange: It epitomises the correlation among system components based on 
aggregate data types that are either passed as parameters between two functions or 
are referenced by a function. 

iii) Data sharing: It signifies the correlation among system components based on 
functions sharing their global variables. 

In this approach the software system is modelled as an attributed relational graph with 
system entities as nodes and data-control-dependencies as edges. At this point, 
application of mining association rules helps decomposing the graph into domains of 
entities based on the association property. The next step is to populate a database of 
these domains. This approach is based on the concept of the association between the 
components of a system. There are however other characteristics that play crucial role 
in grouping system components, such as the number of member data or functions in a 
class. These can be discovered by using other data mining techniques such as 
clustering. 

3. Description of the Proposed Framework 

The proposed framework was developed for pre-processing Java source code at the 
program level and consists of the following parts: 

i) The input data model and the respective data type used to create and populate a 
database. 



  

ii) The pre-processing model which transforms tables into a format suitable for 
clustering. 

iii) The data clustering method which is applied to the pre-processed data. 

The remaining of this section outlines the main characteristics of the input model, the 
pre-processing and cluster analysis methodologies. 

3.1 Input Model 

We selected four Java code elements to be used for clustering: packages, classes, 
methods, and parameters. We consciously have excluded less relevant code parts and 
unnecessary details. These elements are the entities stored in four respective tables. 
After we pre-process code to strip it from comments and white space, we analyse it in 
a top-down fashion (starting from files/packages, then classes, then methods and 
finally parameters). Each entity in this input data model has attributes which are 
stored in respective tables.   

3.2 Pre-Processing Methodology 

Pre-processing is a phase when Java code files are analysed and data are extracted and 
stored in corresponding tables, according to the input model discussed in 3.1. The 
process model for this is illustrated in Figure 2.  

First we process packages and extract information about their name, and any packages 
imported from the Java API. Then we collect information on Classes such as their 
name, whether they inherit and which class from, and whether the class implements 
other classes and the names of the implemented classes. 

Methods are parsed next. We extract their names, whether they have any arguments, 
their number and type, the returned values and the method’s modifiers. Finally, 

parameters’ attributes such as their name, and their type are gathered. 

3.3 Clustering Methodology 

We use an Agglomerative Hierarchical Algorithm Clustering (HAC) on the data 

extracted from Java code. This is because this technique gives more intuitive results 

and has also more widely used in the past in similar context [8], [17].  This algorithm 

creates sets of clusters in order of increasing distance. It requires that data should be 

pre-processed. As the tables contain entities with both nominal and numerical values 

we need to transform all values to numerical so that the distance among entities can 

be measured and stored in a matrix [6]. The details of this technique are analysed in 

Section 3.3.1. Finally, we use the Single Linkage Technique for merging two clusters.  

3.3.1 Data transformation. The tables consist of raw, unprocessed data that are not 

suitable for clustering. These must be transformed in order to be of an acceptable 



  

format for the algorithm. The records need to be transformed to a format appropriate 
for calculating their distance. Therefore we apply the following procedure: 

We create a basic distance matrix where each attribute is assigned a numerical value. 
This value, (d(i, j)),  is the distance between records I and j in the table. This distance 
can range between 0 and 1 (1 corresponding to the greatest distance) and is calculated 
by applying the following formula to each record: 
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where: 

d(i, j): is the distance between the two records i and j, 

n: is the number of attributes of each record. 

X and Y are two functions dependent on f, and 

Xi,j: is a function that can have only two values, 0 and 1.   

•  Xi,j is 0 when an attribute, namely qi,f or qj,f,, of one of the two records is 
missing, otherwise, 

•  Xi,j is 1. 

Yi,j: is a function that also depends on the type of attributes on each record: 

i) if the attribute is binary or nominal, then if:  

•  qi,f = qj,f then Yi,j equals 0, otherwise 

•  Yi,j equals 1. 

ii) if the attribute is numerical then the function f is calculated based on the 
following formula: 

, ,
,

, ,

| - | 

(max( ) min( ))
i f j f

i j
m f m f

q q
Y

q q
=

−
       (Formula 3.2) 

where: 

, ,| - |i f j fq q  is the absolute value of the subtraction between qi,f and qj,f,  

,max( )m fq is the maximum attribute value, and 

,min( )m fq  is the minimum attribute value. 



  

Results after applying Formula 3.1 are shown in Figure 1. It is a distance matrix that 
stores a collection of proximities that are available for all pairs of n objects.  
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Fig. 1:  The Distance Matrix 

The next example illustrates how the above formulas can be applied to the records of 

a database. Let us assume that the Methods Table in the database consists of 4 records 

with 8 attributes (MethodID, Method Name, Has Arguments, Number of Arguments, 

Return Type, Modifier, Other, ClassID) as in Table 1. 

Table 1: Methods Table 

MethodID Method 
Name 

Has  
Arguments 

Number of 
Arguments 

M0003 tick no 0 
M0011 swap yes 2 
M0017 singleton no 0 
M0033 createIcon yes 1 
Return 
Type 

Modifier Other ClassID 

void public static C0002 
void public  C0002 
void private static C0004 
Icon protected static C0012 

By applying the Formula 3.1 we derive a distance matrix that corresponds to a format 

similar to that of the matrix in Figure 1. The methods distance matrix is shown in 

Figure 2. 

 
Fig. 2: Distance Matrix for the Methods Table 

For instance, the distance between the second record (method Swap) and the third 

record (method Singleton) is 0.857, with 0 being the most similar and 1 the least 

similar. We calculate this distance using Formula 3.1. For example, when comparing 

attribute values for ReturnType, the fifth column in Table 1, we see that both methods 



  

have void return type. Therefore, the function Yi,j receives the value 0, since the two 
objects are equal and the attribute’s element is a nominal relation.  

The same procedure is followed for remaining attributes, except the 

(NumOfArguments), where Formula 3.2 is used, as the attribute is numerical. In this 

occasion we take into consideration the minimum and maximum value for attribute 

NumOfArguments, zero and two respectively.  

We apply the formulas to these two records (the second and the third row), and 

calculate their distance to be: 
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where:  

the first product represents the distance of the two clusters for the first column that is 

checked (the MethodName column, since the MethodID column is been excluded), the 

second product represents the distance for the second column and so on. 

 

3.3.2 Merge into a new cluster with the smallest distance. Whenever the smallest 

distance between two clusters is found then these two clusters are merged into a new 

one, and the number of the rows is decremented by one.  

 

Fig. 3: Merging the two most similar clusters 

The methodology that is followed for this part of the clustering procedure was based 

on the comparison of the clusters: 



  

i) If the two merging clusters have the same data, numerical or nominal, then the 
new cluster has exactly the same information. For instance if the data at both the 
initial clusters is “sameData”, then the new merged column also receives the 
“sameData” information. 

ii) If the clusters have different data then these two different pieces of data are joined 
into a new one, which will have both pieces of data separated by a comma. For 
instance if the value (nominal or numerical) on the first cluster is “value1”and on 
the second cluster is “value2” then the merged cluster receives in the same 
column the value “value1,value2”. 

This pattern is shown in Fig. 3. 

After applying an Agglomerative Algorithm results and a textual representation of 
correlations and patterns among Java code elements are produced. 

4. Result Evaluation 

Our method aims at grouping Java program components according to their similarity. 
These grouping can be evaluated for precision by comparing them with the original 
developers’ perceptions on such “natural groupings”. Thus we cross-reference actual 

results as produced by our method, with expected ones as proposed by the developers 

of Java systems. We discuss here a case study on a program called “Keep in Touch 

(KIT)”, where the programmer was requested to group classes according to their 

perceived conceptual similarity among these classes. Keep In Touch (KIT) is a 

medium application. A very small fragment of this application with 15 methods was 

used for experimentation. 

4.1 Case Study 

Methods were grouped by the programmer according to their perceived similarity into 

3 groups (DB Control, Setters-Getters and GUI) as presented in Table 2. Results 

after applying our method are shown in Table 3. 

Table 2: Case study:  Expected results 

Group 1 
(DB Control) 

Group 2 
(Setters-Getters) 

Group3 
(GUI) 

prospectActivity activitySupport activityForm 
getPractivityRow clearAllFields showDialog 
getPPractivityPK updateAllFields setState 

getActivity Create process 
getDescription Commit fire 

 



  

Table 3: Case study: Actual results. 

Group 1 
(DB Control) 

Group 2 
(Setters-Getters) 

Group3 
(GUI) 

getPractivityRow clearAllFields activityForm 
getPPractivityPK updateAllFields showDialog 

getActivity create setState 
getDescription commit process 

  fire 
  activitySupport 

Group 4 
(Misc) 

  

prospectActivity   
 

Comparison of the two Tables 2 and 3 shows that 13 out of 15 methods (86.67% 
precision) were placed in the correct group and just one method (activitySupport) 
was actually misplaced. The prospectActivity method was not grouped with any 
methods because of the high number of its arguments. Such result was expected as the 
number of the method’s arguments is of great importance for the distance 

measurement (as it is appears in Formula 3.2). The main drawback of this formula is 

that it takes twice into account the property of a method having or not having an 

argument, once with the HasArguments attribute, and second time with the 

NumOfArguments attribute. We run further tests on the inclusion or not of these 

attributes and turned out that, despite the increase in distance between two records 

when there is a big difference in their arguments number, using these increases 

overall precision. 

All in all, the main reason for achieving precision slightly less than 100% can be 

attributed to the exclusion of significant attributes. Results could be improved if a top-

level attribute would be added at the tables. The packageID should be included at the 

Class Table, the ClassID at the Method Table and the MethodID at the Parameter 
Table. Finally, including more attributes which address Java code details is an option 

worth considering. For instance argument type along with its name can be used as 

extra attributes. 

5. Conclusions and Future Work  

This section presents conclusions drawn by evaluating the proposed method and 

comparing it to similar ones. Directions and ideas for future work are also discussed. 

5.1 Conclusions 

The proposed method successfully reveals similarities between classes and other code 

elements. In addition, whenever a frequently used method or class is identified, these 

can be added at the Java vocabulary and then used without having to reconstruct 



  

them. This pattern recognition can reduce the programmer’s effort when 

understanding and maintaining Java systems. In addition, possible repetitious or 

redundant methods and classes can be identified, and thus some reduction of the 

code’s volume can be achieved. 

Another benefit of the method is the freedom it provides for controlling records in the 

database. Tables are accessible for filtering and selection of specific information 

through queries.  

The method successfully takes into account and recognises data about packages, 
classes, methods and parameters. On the other hand, not all of the grammar was 

considered. There are many keywords, along with their accompanied data that were 

excluded from our analysis; this is work we plan to carry out in the future. The 

following section gives some more directions for further work. 

5.2 Future Work 

We have so far explored only a limited subset of possibilities with regards to the input 

model and the data mining technique to be used on Java code. Obviously the input 

model depends on the technique. The model could be extended to include more 

elements like Objects and Arrays, control statements (if…else, while, do…until, 

switch, and so on), Exceptions and even other keywords. 

 We used a hierarchical agglomerative clustering with single linkage. Alternatives 
include a number of different clustering algorithms which can be parameterised for 
maximum performance. Additional data mining techniques like classification, 
association rules could also be used for experimentation. Moreover, metrics can be 
used and the methods proposed by Basili et al [2] or Chidamber and Kemerer [5] can 
be adopted, although data mining seems to be more suitable for our method. 

Another possible improvement could be to include weighs for attributes [5] to reflect 
their relative importance. The algorithm also can be optimised. For instance the 
merging algorithm introduced in section 3.3.1 could improve by use of a more 
sophisticated version which involves having more than one “smallest distance” pair of 

clusters in the distance matrix. Instead of merging just one record at a time we could 

be merging more than one pairs with the same smallest distance.  

Finally, further evaluation on larger and more complex programs is needed to assess 

how the method scales to deal with real industrial scale systems. 
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