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Abstract. This paper describes and evaluates T3, an algorithm that builds trees
of depth at most three, and results in high accuracy whilst keeping the size of
the tree reasonably small. T3 is an improvement over T2 in that it builds larger
trees and adopts a less greedy approach. T3 gave better results than both T2 and
C4.5 when run against publicly available data sets: T3 decreased classification
error on average by 47% and generalisation error by 29%, compared to T2; and
T3 resulted in 46% smaller trees and 32% less classification error compared to
C4.5. Due to its way of handling unknown values, T3 outperforms C4.5 in
generalisation by 99% to 66%, on a specific medical dataset.

1   Introduction

Classification produces a function that maps a data item into one of several predefined
classes, by inputting a training data set and building a model of the class attribute
based on the rest of the attributes. Decision tree classification has an intuitive nature
that matches the user’s conceptual model without loss of accuracy [4]. However no
clear winner exists [5] amongst decision tree classifiers when taking into account tree

size, classification and generalisation accuracy1.
This paper describes and evaluates T3, an algorithm that builds trees of depth at

most three, and results in high accuracy whilst keeping the size of the tree reasonably
small. T3 outperforms C4.5 and T2 on average. The key concepts where T3 differs
from T2 are the maximum depth of the tree permitted to be built and the Maximum
Acceptable Error (MAE) allowed at any node as a tree building stop criterion.

The paper is structured as follows: C4.5 and T2 are briefly described and compared
in sections 2 and 3; T3 is presented in section 4; experimental results are given in
section 5 and evaluated in section 6; conclusions and future work are presented in
section 7.

2   Description of C4.5 and T2

C4.5 is a well-known classification algorithm that constructs decision trees of
arbitrary depth in a top-down recursive divide-and-conquer strategy with splits

                                                          
1 Tree size is measured by counting the number of its nodes, classification accuracy is the

proportion of records in the training set that are correctly classified and generalisation
accuracy is the proportion of records in the test set that are correctly classified.
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maximising the Gain Ratio [7]. It is biased, however, in favour of continuous
attributes, a weakness partly addressed by later improvements [8]. C4.5 employs a
pruning technique that replaces subtrees with leaves, thus reducing overfitting. In a
number of datasets the accuracy achieved by C4.5 was comparatively high [7, 8].

T2 calculates optimal decision trees up to depth 2 using two kinds of decision
nodes: (1) discrete splits on a discrete attribute, where the node has as many branches
as there are possible attribute values, and (2) interval splits on continuous attributes
where the node has as many branches as there are intervals and the number of
intervals is restricted to be either at most as many as the user specifies if all the
branches of the decision node lead to leaves, or otherwise to be at most 2 [2]. The
attribute value ‘‘unknown’’ is treated as a special attribute value and each node has an
additional branch, that takes care of unknown attribute values.

3   Comparing T2 with C4.5

T2 was reported to perform better than C4.5 in terms of accuracy in 5 out of 15 data
sets, of size up to 3196 records and number of attributes varying between 4 and 60
[2]. C4.5 resulted in a higher accuracy of 4% on average.
These experiments have been verified using 8 of the publicly available datasets from
the UCI repository [9] used in [2]. The pruned version of C4.5 trees is used to
compare generalisation accuracy, as C4.5 unpruned trees have lower performance.
Table 1 illustrates the results in terms of generalisation accuracy. The last column is
the quotient of T2’s accuracy over that of C4.5. T2 performed better in only 1 out of 8
datasets having on average a 6.3% worse generalisation accuracy than C4.5. T2
performed 2.7% on average worse than C4.5 in terms of classification accuracy.

Table 1: Comparing the generalisation accuracy of T2 and C4.5 pruned trees

Generalisation Accuracy (%)Data sets
T2 C4.5 pruned T2 over C4.5 pruned

Iris 94.0 92.0 1.02
Hepatitis 67.3 80.8 0.83
Breast-cancer 70.5 74.7 0.94
Cleve 70.3 77.2 0.91
Crx 75.5 83.0 0.91
Pima 76.6 76.6 1.00
Hypotheroid 99.1 99.2 1.00
Chess 86.6 99.5 0.87

4   T3: An Enhancement of T2

Despite its simplicity and its ability to produce reasonably accurate results, T2 has
deficiencies such as decreased efficiency when dealing with data sets containing
many categorical attributes [1, 3] caused by the greedy approach used for discrete
splits; problems when the classification task involves more than four classes [3];
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inability to cope with very large data sets [3, 8]; the lack of useful information derived
when data sets present complex interrelations, that cannot be fully described by a two-
level decision tree; and possible overfitting of the training set [1].

T2’s behaviour for various data set sizes has been studied and the maximum depth
of 2 restricts its efficiency when dealing with large sets. Hence, the approach here is
to enhance T2 with the ability to build trees of depth up to 3. This enhancement is
termed T3 and uses the same building tree approach. The cost of allowing T3’s trees
to grow bigger, needs to be balanced by limiting the tree size to only that necessary.
The approach taken introduces a new parameter called Maximum Acceptable Error
(MAE). MAE is a positive real number less than 1, used as a stopping criterion during
tree building. The idea is based on the observation that T2 uses a greedy tree building
approach meaning that further splitting at a node would stop only if the records
already classified in this node, belonged to a single class.
However, this greedy approach is not optimal, as minimising the error in the leaf
nodes does not necessarily result in minimising the overall error in the whole tree. In
fact, it has been proved that a strategy choosing locally optimal splits necessarily
produces sub-optimal trees [6]. Furthermore, even minimising classification error
does not always cause minimisation of the generalisation error, due to overfitting.
By introducing MAE, the user can specify the level of “purity” in the leaves and stop
further building of the tree, concerning a potential node split. MAE has been set to
have 4 distinct values, namely 0.0, 0.1, 0.2 and 0.3, meaning that splitting at a node
stops even if the error in that node is equal to or below a threshold of 0, 10, 20 or 30%

respectively2.
More precisely, building the tree would stop at a node in two cases: (1) when the

maximum depth is reached; (2) at that node when all the records remaining there to be
classified belong to the same class in a minimum proportion of 70,80, 90 or 100%.

5   Experimental Results

Several experiments have been done using 22 data sets from the UCI repository that

were converted to MLC++ format [5] and one real stroke register data set3. The
selection included the data sets used in section 3 plus other sets with different number
of records, attributes, classes, missing values and different proportions of continuous
and discrete attributes. Table 2 displays the selected data sets together with the
number of records, attributes, continuous attributes and classes.

The following naming convention is used: T3.0, T3.1, T3.2 and T3.3 are the
versions of T3 with depth 3 and MAE set to 0.0, 0.1, 0.2 and 0.3 respectively, while
T2.0, T2.1, T2.2 and T2.3 are the versions of T3 with depth 2 and MAE set to 0.0,
0.1, 0.2 and 0.3 respectively. Hence, T2.0 is actually the original T2.

The 8 different versions of T3 were run against all 23 data sets. In 7 of them results
were identical for all versions of T3. Those were namely: Breast, Diabetes, Heart,

                                                          
2 Higher values of MAE were also used but resulted in lower accuracy and/or trivial trees built.
3 Med_123 was provided by Dr Theodoulidis & Dr Saraee, Department of Computation,

UMIST. Their contribution to the evaluation of results is also acknowledged.
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Pima, Iris, Waveform-21 and Waveform-40. The following discussion concerns the
rest of the data sets.

In the remaining 16 data sets T2.3 was the best version in terms of generalisation
accuracy, resulting in higher performance on 7 sets. T2.2 was second best achieving
highest performance 6 times out of 16. In terms of classification accuracy, T3.0 was a
clear winner in all of the 16 sets. The second best version was T3.1 achieving equal to
T3.0 performance in 11 cases. Finally, in terms of tree size, T2.3 resulted in smaller
trees in 16 out of 16 sets, leaving T2.2 in the second place, as it achieved equally
small trees in 8 cases.

Table 2: The data sets used for experimenting with T3

Data sets Rec. Att. Cont Cl.
Lenses 24 4 - 3
Lymphography 148 18 3 4
Iris 150 4 4 3
Hepatitis 155 19 6 2
Heart 270 13 13 2
Breast-cancer 286 9 - 2
Cleve 303 13 6 2
Monk1 556 6 - 2
Monk2 601 6 - 2
Monk3 554 6 - 2
Vote 435 16 - 2

Data sets Rec. Att. Cont Cl.
Soybean 683 35 - 19
Australian 690 14 6 2
Crx 690 15 6 2
Breast 699 10 10 2
Diabetes 768 8 8 2
Pima 768 8 8 2
Med_123 795 37 11 2
Hypotheroid 3163 25 7 2
Chess 3196 36 - 2
Waveform-40 5000 40 40 3
Waveform-21 5000 21 21 3
Mushroom 8124 22 - 2

6   Performance Evaluation

T2.3 had the best performance in all 16 cases in terms of size and in 8 out of 16 cases
in terms of generalisation accuracy. That means that T2.3 is by far the best version of
T3. However, as expected, T3.0 is better for classification accuracy in all 16 cases.
Furthermore in no case did T3.0 result in minimal trees. T3.1, T3.2 and T3.3 resulted
in minimal trees in 1, 1 and 3 cases respectively out of 16. A conclusion to be drawn
from this is that the less greedy is the approach the smaller is the tree. An explanation
is that less greedy approaches, i.e. higher values for maximum acceptable error, cause
a “premature” stop to the tree building phase. This argument is also justified by the
fact that T2.0, T2.1 and T2.2 resulted in minimal trees in 5, 7 and 8 cases respectively
out of 16. A general conclusion is that increasing the size of a tree, increases the
classification accuracy, but results in decrease of generalisation accuracy.

Table 3 displays the best version of T3 for each of the 16 data sets, with the
relevant tree size, classification and generalisation error of them, in comparison to T2.
The table illustrates that classification error is on average decreased by 47% and the
generalisation error, decreased on average by 29%, while the relevant trees are on
average double the size of the ones built by T2.

Comparing the best overall versions of T3 and C4.5 for classification accuracy,
namely T3.0 and C4.5 unpruned, shows that in 9 out of 16 cases T3.0 performed
better than C4.5 unpruned, and they were equal twice. On average T3.0 resulted in
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32% less classification error than C4.5 unpruned. Similarly the ‘best’ versions can be
compared for tree size and generalisation accuracy, that is T2.3 and C4.5 pruned. T2.3
resulted in smaller trees 12 out of 16 times. It also resulted in higher generalisation
accuracy in 4 out of 16 cases and was equal 3 times. On average T2.3 resulted in 46%
smaller trees but 15% more generalisation error than C4.5 pruned. Results are
presented in Table 4.

Table 3: An evaluation of how much T3 improves T2’s performance

Data sets T3 T2 T3 over T2
best size class gen size class gen size class gen

Lenses 3.0 20 0.0 62.5 10 12.5 62.5 2 0 1
Lymphography 2.0 28 15.3 22.0 28 15.3 22 1 1 1
Hepatitis 3.0 33 1.0 26.9 12 6.8 32.7 2.8 0.15 0.82
Breast-cancer 2.3 46 22 25.3 99 19.9 29.5 0.5 1.11 0.86
Cleve 3.1 49 5.9 22.8 20 15.8 29.7 2.5 0.37 0.77
Monk1 3.0 47 0 0 17 16.9 16.7 2.8 0 0
Monk2 3.0 48 20.0 38.9 14 33.7 39.4 3.4 0.59 0.99
Monk3 2.0 15 6.6 2.8 15 6.6 2.8 1 1 1
Vote 3.1 45 2.7 3.7 17 4 3.7 2.6 0.68 1
Soybean 3.3 72 11.9 12.7 28 28.6 33.8 2.6 0.42 0.38
Australian 3.3 49 12.0 14.3 60 12.6 19.1 0.8 0.95 0.75
Crx 2.2 27 11.8 17.5 65 11.4 24.5 0.4 1.04 0.71
Med_123 3.2 54 0 0.4 18 0.2 0.8 3 0 0.5
Hypotheroid 3.0 24 0.5 0.9 11 0.7 0.9 2.2 0.71 1
Chess 3.0 19 5.9 6.8 10 12.9 13.4 1.9 0.46 0.51
Mushroom 3.0 124 0 0 75 0.5 0.7 1.7 0 0

Of particular interest is the performance of T3 when used on real stroke register data
compared to C4.5. More specifically, T3.0 resulted in 0% and 0.8% classification and
generalisation error as compared to the respective 20.9% and 33.6% achieved by
C4.5. This indicates that T3 may have much potential when used on “real” data that
have not been extensively pre-processed like the sets found in [9].

7   Conclusions and Future Work

Experimental results have shown that T3 produces relatively small sized and
comprehensible trees with high accuracy in generalisation and classification. It
improves the performance of T2, in terms of both generalisation accuracy and
particularly classification accuracy. T3 also outperforms C4.5 in terms of tree size and
classification accuracy. However, T3’s generalisation accuracy remains lower than
that of C4.5. It should be noted that T3 performed exceptionally well on “real” data.
T3 addresses T2’s deficiency when dealing with data sets containing many categorical
attributes by using a less greedy approach for discrete splits. This is demonstrated by
the results for the Mushroom and Breast-cancer data sets containing many multi-
valued discrete attributes. Another reported weakness of T2, that of dealing with data
sets that have more than four classes, is addressed by building larger trees as indicated
by results for Soybean-Large. T3 also partly tackles the potential problem of T2 in
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capturing less useful information when used on data sets presenting complex
interrelations that cannot be fully described by a two-level decision tree. Further work
will address the way continuous attributes are treated, as the current algorithm does
not improve on T2 in this respect. Scalability is another known weakness of T2 that
has not been addressed yet by T3. T3, as T2, seems to achieve better performance for
small or medium size data sets.

Table 4: A comparison between T3 and C4.5

Data set T2.3 C4.5 pr. T3.0 C4.5 unpr.
size gen size gen size class size class

Lenses 1 62.5 7 37.5 20 0 7 6.2
Lymphography 19 22.0 21 24.0 74 2.0 25 6.1
Hepatitis 1 13.5 11 19.2 33 1.0 17 4.9
Breast-cancer 42 25.3 41 25.3 257 7.9 120 12.6
Cleve 12 26.7 27 22.8 53 5.4 55 5.0
Monk1 17 16.7 18 24.3 47 0 43 9.7
Monk2 14 39.4 31 35.0 48 20.0 73 14.2
Monk3 15 2.8 12 2.8 55 4.1 25 3.3
Vote 9 3.0 7 3.0 45 2.0 25 2.7
Soybean-large 28 33.8 68 10.5 82 10.5 150 3.5
Australian 11 13.9 58 13.0 140 4.6 124 5.0
Crx 33 19.0 58 17.0 171 3.7 90 3.9
Med_123 18 0.8 1 33.6 39 0 186 20.9
Hypotheroid 1 5.2 7 0.8 24 0.5 17 0.5
Chess 7 22.1 53 0.5 19 5.9 63 0.3
Mushroom 16 1.8 30 0 124 0 30 0
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