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Abstract. In this paper, we present PRICES, an efficient algorithm for mining 

association rules, which first identifies all large itemsets and then generates 

association rules. Our approach reduces large itemset generation time, known to 

be the most time-consuming step, by scanning the database only once and using 

logical operations in the process. Experimental results and comparisons with 

the state of the art algorithm Apriori shows that PRICES very efficient and in 

some cases up to ten times as fast as Apriori. 

1   Introduction 

Association rules, is a data mining technique which identifies relationships between 

items in databases. The process can be decomposed into two steps: large itemsets 

generation and association rules generation [1]. It is well established that, while 

association rules generation is rather straightforward, large itemset generation can be 

a bottleneck in the process. A number of algorithms have been proposed in order to 

increase the efficiency of the process [1], [2], [3], [4], [5], [6], [7]. We discuss and 

review the most prominent ones in section 2.  

Here we present a new algorithm for mining association rules called PRICES. The 

algorithm uses the same two steps as in other algorithms; it is however faster as it 

scans the database only once, to store transactions information in the memory by a 

succinct form we call Prices Table. This table is then pruned by creating a pseudo 

transaction table called Pruned Prices Table, which contains all 1-size large itemsets 

after eliminating all 1-size small itemsets. Recursion is used to generate k-size (k>1) 

large itemsets from the Pruned Prices Table and (k-1)-size large itemsets. Finally, 

association rules are generated using the large itemsets. The innovation of the 

algorithm is that it uses logical operations, such as AND, OR, XOR and left-shift in 

the process of generating large itemsets and association rules, thus accelerating the 

process. Experimental results have shown that PRICES is efficient and outperforms 

Apriori in terms of speed. 

A more detailed description of PRICES is given in Section 3. Section 4 presents 

experimental results and comparisons with Apriori. Conclusions and directions for 

further work are outlined in section 5. 
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2   Background 

Since the introduction of mining association rules in [1], many algorithms that 

discover large itemsets have been proposed. The number of times an algorithm scans 

the entire database is a significant factor in terms of speed as it determines the number 

of time consuming I/O operations involved. 

AIS generates all large itemsets by making multiple passes over the database [1]. 

After reading a transaction, large itemsets are extended by appending 

lexicographically larger items to generate candidate itemsets. If the support for 

candidate itemsets is above a minimum threshold, they are chosen as large itemsets, 

and the next pass commences, until there are no more large itemsets. A limitation of 

AIS is that it only produces one item in the consequent of rules. 

Apriori is a well-known improvement over AIS, which utilizes the concept that any 

subset of a large itemset is a large itemset [2]. It improves candidate generation by 

joining large itemsets together. DHP is a hash-based Apriori-like algorithm, effective 

in generating large 2-itemsets [5]. However, both Apriori and DHP scan the database 

many times producing a substantial I/O overhead. 

The Partition algorithm reduces the number of database scans to 2 [6]. It partitions 

the database into small segments. Local large itemsets of each segment are then 

united and a further entire database scan is needed to generate the global large 

itemsets. The Sampling algorithm improves on the Partition algorithm [7]. It reduces 

the number of database scans to one in the best case and two in the worst. A sample is 

drawn and large itemsets of it are generated and finally large itemsets are found. The 

sample is crucial because an unrepresentative one can cause a very big candidate set. 

SETM is an algorithm designed for using SQL to generate large itemsets [4]. Large 

itemsets are in the form of <TID, itemset> where TID is a unique identifier for each 

transaction. One disadvantage of SETM is that it generates too many candidate 

itemsets, thus reducing efficiency. 

All in all, the number of database scans needed by AIS, Apriori DHP and SETM, 

depends on the number of items while Partition and Sampling algorithms reduce this 

number to 2, despite their other limitations. 

3   The Algorithm PRICES 

PRICES is an algorithm which mines association rules in two steps by use of logical 

operations. First, large itemsets are identified, and then association rules are 

generated. Section 3.1 presents basic principles and underlying assumptions used by 

the algorithm. Large itemsets generation is described in section 3.2, and association 

rules generation is explained in section 3.3. 

3.1   Basic Principles and Assumptions 

Prices uses logical operations such as AND, OR, XOR and left-shift to generate large 

itemsets and association rules. In addition, every item in the transactions is given a 
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unique value. Every transaction can be represented by a price, which is the sum of 

item values it consists of. Items values are assumed be such that that no value can be 

the sum of other values. Therefore, every price represents a unique itemset pattern.  

For example, if there are 5 items, A, B, C, D and E in a database, let the value of 

item A be 2
4
, the value of item B 2

3
 and so on. The price of transaction {A, C, D} will 

be 10110 in binary mode. In this way, an itemset can also be represented as a price.  

Under this assumption, we can apply logical operation AND to the price of one 

transaction and the price of one itemset to determine whether this transaction 

“contains” this itemset, by comparing the result with the itemset price. For example, 

transaction {A, C, D} (price PT = 10110) contains itemset {A, C} (price PAC = 10100) 

because the result of PT AND PAC is equal to PAC. Therefore, our task is to identify all 

the itemsets prices from {00…01} to {11…11} occurring above a threshold in the 

prices of transactions.  

For a better understanding of the algorithm we shall use the following example for 

the rest of the discussion: consider a database with transaction information as in Table 

1 and assume that minimum support and confidence are both set to 50%. 

Table 1. A database example 

TID Items 

T1 

T2 

T3 

T4 

ACD 

BCE 

ABCE 

BE 

Table 2. The Prices Table (PT) 

TID Items Prices 

T1 

T2 

T3 

T4 

ACD 

BCE 

ABCE 

BE 

10110 

01101 

11101 

01001 

3.2   Large Itemset Generation 

The PRICES algorithm generates large itemsets in three steps. First, the Pruned 

Prices Table (PPT) is created, then all large 2-itemset are created and finally, all large 

itemsets are generated. 

PRICES scans the database, calculates the prices of all transactions and stores 

these in memory using an array called Prices Table (PT). Table 2 shows the PT for 

the example given in section 3.1. 

It is known that any itemset which contains a small itemset will also be small [2]. 

Therefore, we can prune the PT by eliminating the column of small items. This is 

done in two steps: first generate the Large Bit Mark (LBM), which is the price of the 

itemset which contains all large 1-itemsets; then create the Pruned Prices Table. To 

generate the LBM we set the price of the first 1-size candidate to 1 and apply a left-

shift operation to generate the second candidate price and so on. We calculate each 

candidate’s support. If a candidate is large, the corresponding position in LBM is set 

to 1, otherwise to 0. In addition, the large 1-size itemsets, along with the support and 

size, are stored in L .  

Given the LBM and PT, we can generate the Pruned Prices Table by eliminating 

the columns which have 0 in the corresponding position of LBM. One 0 in the LBM 

indicates that the corresponding item is small and thus any itemset containing this is 

also small. Therefore, removing these items shrinks the PT without affecting the 

generation of large itemsets.  
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By applying these steps to our example, we obtain the respective LBM as seen in 

Table 3. Table 4 shows how the pruned price of T1 is generated from LBM and T1. 

Table 3. Generation of the LBM 

 A B C D E 

Support 2 3 3 1 3 

comp. with minsup >= >= >= < >= 

LBM 1 1 1 0 1 

Table 4. Price and Pruned Price of T1 

 A B C D E  

P1 1 0 1 1 0 10110 

LBM 1 1 1 0 1 11101 

PP1 1 0 1 - 0 1010 

As every single item in the Pruned Prices Table is large, every 2-size itemset 

composed of different single item is a candidate. We calculate the support of every 

candidate and if it is large, we record it into L , along with its support and size. We 

also use the OR operation to compose two different item prices into one price. For 

example, the price of itemset {A, E} (10001) can be derived by applying OR to 

itemset {A} (10000) and {E} (00001). 

k-size large itemsets can then be generated from (k-1)-size large itemsets and the 

PPT. We use the XOR operation as a difference indicator from which we can find 

how many different bits (items) there are between two (k-1)-size large itemsets. To 

generate a candidate kc , two (k-1)-size large itemsets must have exactly two different 

bits. Hence, the fact that 2-size itemset composed by two different bits of two (k-1)-

size large itemsets is included in large 2-itemsets ( 2L ) is a prerequisite of that the 

itemset composed by these two (k-1)-size large itemsets is a candidate. Furthermore, 

whether all the other (k-1)-size subsets of this potential kc  are included in 1−kL  are 

checked. Finally, the candidate support is calculated and recorded it if large. This is 

recursively repeated until less than k large (k-1)-size itemsets are found. 

Finally, in order to get the large itemsets from L , we restore the prices in L  from 

pruned prices and map those into itemsets. According to the definition of LBM, a 0 is 

inserted into pruned prices at corresponding positions to restore prices. Once the 

prices are restored, we can map these into itemsets based on the previous definition of 

the relationship between price and itemset. 

3.3   Association Rules Generation  

In this section, we present the way to generate association rules from the final set of 

large itemsets. We know that an association rule YX → holds if: (1) φ=YX I ; 

(2) LYXYX ∈U,, ; (3) ≥
)(

)(

Xs

YXs U
 minconf. 

 

Therefore, for every two large itemset il and jl L∈ , if il  AND jl = 0 (1), 

Lll ji ∈U (2) and ≥
)(

)(

i

ji

ls

lls U
minconf (3) are all met, then the rule ji ll → holds. 
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4.   Experimental Results 

In order to evaluate the performance of PRICES, we developed a prototype and 

carried out experiments. We created several synthetic datasets by using Quest dataset 

generator [9]. The average transaction length is 10 and the average size of potentially 

maximal large itemsets is 4. Table 5 shows the datasets we generated.  

Table 5. Synthetic datasets 

# No. of transactions No. of items Name 

1 1,000 100 T1K.I100 

2 10,000 100 T10K.I100 

3 100,000 100 T100K.I100 

4 1,000,000 100 T1M.I100 

For comparison purposes we used an implementation of the state of the art Apriori 

algorithm obtained from Weka Data Mining System [8]. All the experiments were 

executed on a Personal Computer at 1800MHz, with 256MB of main memory, 

running Windows XP Professional. In order to get more accurate results, we executed 

each experiment three times.  Average execution times are shown in Fig. 1. 
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Fig. 1. Experimental results 

Results show that PRICES is faster to Apriori as it only scans the database once 

and uses logical operations performed in the main memory. The pruning technique 
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used in PRICES also contributes to the high performance. The most important finding 

of the result analysis is that the larger the database grows in terms of transactions 

number, the faster PRICES gets compared to Apriori. So for example for a dataset 

with a million transactions PRICES is more than ten times faster than Apriori. 

5.   Conclusions and further work 

In this paper, we proposed PRICES, a new efficient algorithm for mining association 

rules. Its major advantage is that it only scans the database once and any consecutive 

processing takes places in memory using logical operations. Extensive experiments 

using different synthetic datasets were conducted to assess the performance of the 

algorithm. Results have been positive and PRICES outperformed Apriori in terms of 

speed. 

We are currently experimenting with memory requirements and various techniques 

to address performance deterioration due to I/O overhead when data do not fit in 

memory due to the possibly very large size of datasets. Plans for further work include 

devising an extension of the algorithm to match the needs of different applications, 

such as document retrieval, information recovery and text mining.  
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