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Abstract 
This paper presents ongoing work on using data 

mining clustering to support the evaluation of software 
systems’ maintainability. As input for our analysis we 
employ software measurement data extracted from 
Java source code. 
 
1. Introduction 

The scope of this work is to facilitate maintenance 
engineers to comprehend a software system and 
evaluate its evolution and maintainability. We attempt 
to address questions such as which classes are fault 
prone and more difficult to understand and maintain; 
how a system evolves from version to version and 
finally what are the dynamics of a system’s classes 
through time. 

For this reason we present a methodology which 
employs the clustering mining technique for the 
analysis of software measurement data. The k-
Attractors algorithm which is tailored for software 
measurement data [4] was used for this purpose. The 
proposed methodology consists of two steps. At the 
first step, each version of a software system is analyzed 
separately in order to evaluate its maintainability. The 
second step comprises a macro-clustering analysis 
which investigates the derived clusters from all the 
versions of a software system. The aim of this step is to 
study a system’s evolution by observing how clusters 
from each version grow up or shrink and how their 
centroids are moving in space from version to version. 
 
2. Related work 

Data mining [4], is the process which extracts 
implicit, previously unknown, and potentially useful 
information from data, by searching large volumes of 
them for patterns and by employing techniques such as 
classification, association rules mining, and clustering. 
More specifically, data mining has been previously 
used for identification of subsystems based on 
associations (ISA methodology) [2]. Sartipi et al. used 
it for architectural design recovery [11]. They proposed 
a model for the evaluation of the architectural design of 
a system based on associations among system 
components and used system modularity measurement 
as an indication of design quality and its 

decomposition into subsystems. Besides association 
rules, the clustering data mining technique has been 
used to support software maintenance and software 
systems knowledge discovery [13], [10]. The work in 
[10] proposes a methodology for grouping Java code 
elements together, according to their similarity and 
focuses on achieving a high level system 
understanding. 

Understanding low/medium level concepts and 
relationships among components at the function, 
paragraph or even line of code level by mining C and 
COBOL legacy systems source code was addressed in 
[9]. For C programs, functions were used as entities, 
and attributes were defined according to the use and 
types of parameters and variables, and the types of 
returned values. Then clustering was applied to 
identify sub-sets of source code that were grouped 
together according to custom-made similarity metrics 
[8]. An approach for the evaluation of clustering in 
dynamic dependencies is presented in [14]. The scope 
of this solution is to evaluate the usefulness of 
providing dynamic dependencies as input to software 
clustering algorithms. Additionally, Clustering over a 
Module Dependency Graph (MDG) [6] uses a 
collection of algorithms which facilitate the automatic 
recovery of the modular structure of a software system 
from its source code. This method creates a 
hierarchical view of system architecture into 
subsystems, based on the components and the 
relationships between components that can be detected 
in source code. 

Moreover, in [5] an approach that examines the 
evolution of code stored in source control repositories 
is presented. This technique identifies Change 
Clusters, which can help managers to classify different 
code change activities as either maintenance or new 
development. On the other hand, [12] analyzes whether 
some change coupling between source code entities is 
significant or only minor textual adjustments have been 
checked in; in order to reflect the changes to the source 
code entities. An approach for analyzing and 
classifying change types based on code revisions has 
been developed. 

In addition, Beyer and Noack in [3] presented a 
method based on clustering software artifacts, in order 
to organize software systems into subsystems and by 



this way make changes less expensive and less error 
prone. Towards the same goal of comprehending large 
software systems by creating abstractions of the 
software system’s structure, Mitchell and Mancoridis 
in [8] presented the Bunch clustering system. In this 
work, clustering is implemented by search techniques 
and is performed on graphs that represent the system’s 
structure. The subsystems are generated by partitioning 
a graph of entities and relations. Another approach in 
the context of software clustering is the Limbo 
algorithm, introduced by Tzerpos and Andritsos [1]. 
This scalable hierarchical algorithm focuses on 
minimizing the information loss when clustering a 
system, by applying weighting schemes that reflect the 
importance of each component. 

Clustering algorithms are also used by Mancoridis 
et al. [7] in order to support the automatic recovery of 
the modular structure of a software system from its 
source code. The algorithms selected in this case are 
traditional hill-climbing and genetic algorithms. 
Towards program comprehension, a crucial step is 
detecting important classes of the system, since they 
implement the most basic and high level actions. 
Zaidman et al [15] introduced four static web-mining 
and coupling metrics in order to identify such classes 
and generally analyze a software system. 

The work presented in this paper differs from the 
literature discussed above in means of performing 
clustering on the software measurement data, aiming at 
comprehending a software system and assessing its 
maintainability. More specifically, instead of applying 
clustering algorithms on graphs or directly on the 
source code, we employ the k-Attractors clustering 
algorithm on metrics that reflect the most important 
design aspects of a software system concerning its 
quality and maintainability. We employ a two-steps 
clustering analysis in order to provide a quick and 
rough grasp of a software system and depict its 
evolution by from version to version. 
 
3. Clustering Analysis 
 
3.1. Objectives 

The primary objective of the proposed clustering 
methodology is to provide a general but illuminating 
view of a software system that may lead engineers to 
useful conclusions concerning its maintainability. This 
data mining technique is useful for 
Similarity/Dissimilarity analysis; in other words it 
analyzes what data points are close to each other in a 
given dataset. 

In the domain of software measurement data 
analysis for maintenance purposes, clustering can be 
formalized by the following function signature: 

 
cluster : vM×U → vM×U×G  

where: 
 

•  U: units in the system 
•  M: measurements performed on units 
•  G: groups of units 

Thus, a matrix of measurement values is partitioned 
into a list of such matrices. Each matrix represents a 
cluster of items that are similar in terms of their 
measurement values. 

In order to extract useful information for the 
maintenance engineers through the clustering analysis, 
it is very interesting to observe the form of each cluster 
over time. How each cluster grows up or shrinks and 
how its median is moving in space. In order to achieve 
that, a first task to be performed is the identification of 
each cluster in each version. An approach is to 
combine all the data sets (the data points corresponding 
to classes) into a large data set. Each point is marked 
with a different color in order to disentangle them later 
on. If we apply a clustering algorithm in this data set 
(k-Attractors in our case) we can make the assumption 
that a cluster will encompass data items of the same 
cluster through the versions. In each of these clusters 
will exist the same data items with different color and 
thus from different version. We can verify this by 
inventing an inner metric: the percentage of data points 
that exist in the cluster with all the possible colors (or a 
percentage respectively of them, for example 3 out of 5 
of the versions). There are several ways to exploit this 
clustering by automated methods: we can trace the data 
items that have escaped the cluster and examine if they 
have gone to a better or a worse cluster, by examining 
in each cluster the sub-clusters, each one with a 
different color, and how their centroid is moving and 
the portion of their spatial overlap. By these panoramic 
observations, the sequence of centroids and proportion 
of the overlap, we can see if the data items of the 
corresponding cluster evolve to better or a worse state. 

In order to quantify the cluster changes we define a 
metric m(i) of each cluster i which expresses how 
many variations, data items (from version to version) 
exist in the same cluster at the same time, and thus in 
the same quality space. This metric is expressed by the 
following formula: 
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Where n is the number of the formed clusters, 
occ(xi) is the number of occurrences of each data item 
x in cluster i, and pi is the cardinality (population) of 
cluster i. 



3.2. k-Attractors Algorithm 
 
In the case of software maintainability evaluation, 
clustering produces overviews of systems by creating 
mutually exclusive groups of classes, member data or 
methods, according to their similarities in terms of 
technical (source code) measurements [16]. This helps 
reducing the time required to understand and evaluate 
the overall system. Another contribution of clustering 
is that it helps discovering programming patterns and 
“unusual” or outlier cases which may require attention. 
For this purpose the k-Attractors algorithm was 
employed which is tailored for numerical data such as 
measurements from source code [4]. The main 
characteristics of k- Attractors are: 
o  It defines the desired number of clusters (i.e. the 

number of k), without user intervention. 
o  It locates the initial attractors of cluster centers 

with great precision. 
o  It measures similarity based on a composite 

metric that combines the Hamming distance and 
the inner product of transactions and clusters’ 
attractors. 

The k-Attractors algorithm employs the maximal 
frequent itemset discovery and partitioning in order to 
define the number of desired clusters and the initial 
attractors of the centers of these clusters. The intuition 
is that a frequent itemset in the case of software 
metrics is a set of measurements that occur together in 
a minimum part of a software system’s classes. Classes 
with similar measurements are expected to be on the 
same cluster. The term attractor is used instead of 
centroid, as it is not determined randomly, but by its 
frequency in the whole population of a software 
system’s classes. 
 
4. Evaluation –Case Study 
 

The evaluation of the proposed methodology 
involved the study of Apache Geronimo Application 
Server. It is a fully certified J2EE 1.4 platform for 
developing and deploying Enterprise Java applications, 
Web applications and portals. Three publicly available 
versions of Apache Geronimo were evaluated 
employing a set of software evaluation metrics and 
their analysis using the k-Attractors clustering 
algorithm.  

In the first step of the analysis we created 
overviews for each version of Apache in order to have 
an indication for their maintainability status. Then by 
studying the formed clusters for each version, we 
discovered classes which were fault prone. Those 
classes were members of the outlier clusters and 
examples are CdrOutputStream and 

CdrInputStream. These classes are used for 
streaming objects in Corba Common Data 
Representation format. These classes are used fairly 
widely within the application server, for, among others, 
serializing non-primitive data structures, hence the 
high complexity values. They should be of interest to 
the maintenance engineers, since they are at 
Geronimo’s core and widely used, so for 
maintainability and runtime performance they will be 
important classes.  Classes 
KernelManagementHelper and MockGBean can 
also be interesting from a maintenance engineer’s 
perspective. 

In the second step, the macro-clustering analysis, 
we traced classes that their quality was either degraded 
or upgraded. Such classes are RefContext and 
AbstractWebModuleBuilder 
 
5. Future Work 

Our findings indicate that the proposed 
methodology has considerable merit in facilitating 
maintenance engineers to monitor how a system’s 
maintainability evolves. On the other hand though, it 
lacks the ability to predict the maintainability of an 
upcoming version of a system. Another data mining 
technique with prediction capabilities (such as 
classification) could be additionally employed in order 
to enhance our methodology. 

Moreover and apart from this, we consider the 
following various alternatives in order to further 
develop the proposed methodology: Systems’ 
components clustering based on their dynamic 
dependencies. It would be of great interest to attempt 
to evaluate the usefulness of analysing the dynamic 
dependencies of a software system’s artefacts. Employ 
an alternative approach for monitoring cluster 
changes from version to version. Another approach for 
monitoring cluster changes is to perform the clustering 
procedure for each one of the versions. We use all 
these clusters (each one with a different color 
according to the version that belongs) in a second 
clustering phase, using the corresponding centroids, in 
order to produce clusters of clusters in a hierarchical 
way. We can assume that each one of the level two 
clusters consists of the same cluster of data item 
through versions. 
 
6. Conclusions 

In this research work, the development of a 
methodology based on the clustering data mining 
technique was presented. It consists of two steps: 

i.  a separate clustering step for every version of 
a system to assist software system’s 
evaluation in means of maintainability. 



ii.  a macro-clustering analysis in order to study 
the system’s dynamics from version to 
version. 

The scope of the proposed methodology is to 
facilitate maintenance engineers to identify classes 
which are fault prone and more difficult to understand 
and maintain as well as to study the evolution of a 
system from version to version, and its classes’ 
dynamics. We chose to employ the k-Attractors 
clustering algorithm as it is tailored for the analysis 
software measurement data. 

Our work is different than [7], which employs 
clustering in order to produce a high-level organization 
of the source code. Additionally, instead of applying 
clustering algorithms directly on the source code [7], 
we clustered software metrics that reflect the most 
important aspects of a system concerning its quality 
and maintainability. Moreover the study of the classes’ 
evolution through versions differentiates this work 
from [15] which only detects the most important 
classes on a single version of the system. 
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