SIGKDD Explorations

Mining Source Code Elements for Comprehending Object-
Oriented Systems and Evaluating Their Maintainability

Yiannis Kanellopoulos
The University Of Manchester,
School Of Informatics, U.K.
Yiannis.Kanellopoulos
@postgrad.manchester
.ac.uk

Thimios Dimopulos
Deutsche Telekom Labs,
Berlin, Germany

Thimios.Dimopulos
@telekom.de

ABSTRACT

Data mining and its capacity to deal with large volumes of data
and to uncover hidden patterns has been proposed as a means to
support industrial scale software maintenance and comprehension.
This paper presents a methodology for knowledge acquisition
from source code in order to comprehend an object-oriented
system and evaluate its maintainability. We employ clustering in
order to support semi-automated software maintenance and
comprehension.

A model and an associated process are provided, in order to
extract elements from source code; K-Means clustering is then
applied on these data, in order to produce system overviews and
deductions. The methodology is evaluated on JBoss, a very large
Open Source Application Server; results are discussed and
conclusions are presented together with directions for future work.

Keywords

Code mining, clustering, software maintenance,
comprehension, metrics, maintainability.

1. INTRODUCTION

Software maintenance is considered a very important and
complex stage in software lifecycle typically consuming 50-70%
of the total effort allocated to a software system [14], [17].
According to Sutherland [19], US companies spent more than $70
billion annually on software maintenance. There are several
studies for evaluating a system’s maintainability and controlling
the effort required to carry out maintenance activities [1], [3],
[20]. Additionally program comprehension is an important part of
this stage, especially when program structure is complex,
modularity has deteriorated and the documentation is not up to
date. 50-90% of maintainers’ time is reported to be spent on
program comprehension [21].

program

The aim of this work is to facilitate maintenance engineers to
comprehend the structure of a software system and assess its
maintainability. For this reason elements from source code are
collected, including:

e Entities that belong either to the behavioral (as classes,
member methods) or the structural domain (as member data).

e Attributes that describe the entities (such class name,
superclass, method name etc.).

e Metrics used as additional attributes that facilitate the software
maintainer to comprehend more thoroughly the system under
maintenance.

The University Of Manchester,

Christos Makris
University Of Patras,
Department of Computer
Engineering & Informatics

Christos Tjortjis

School Of Informatics, U.K.
C.Tjortjis) s
@manchester.ac.uk makri@ceid.upatras.gr

Our research objectives include: the definition of an input data
model, the population of a database containing data extracted
from source code, the application of clustering on the database
and the evaluation of results and the usefulness of mining data
from source code. For this purpose we used a large open source
software system used in industrial real life applications: the JBoss
Open Source Application Server, version 4.0.3SP1 [24]. Results
have shown that clustering data extracted from source code and
software metrics can uncover a lot of useful information about
various aspects of software systems.

The remaining of this paper is organized as follows: Section 2
reviews existing work in the area of data mining for program
comprehension and maintainability evaluation. Section 3 outlines
the proposed method for extracting metrics and elements from
Java source code, the input data model and the clustering method.
Section 4 assesses the accuracy of the output of the proposed
framework, analyses its results and outlines deductions from its
application. Finally, conclusions and directions for future work
are presented in Section 5.

2. BACKGROUND

Developing software systems of any size which do not need to be
changed is unattainable [17]. Such systems, once in use, need to
be functional and flexible in order to operate correctly and fulfill
their mission, as new requirements emerge. Consequently,
software systems remain subject to changes and maintenance
throughout their lifetime. Program comprehension is required by
maintenance engineers in order to identify problematic files or
modules; and to assess their maintainability [14].

Data mining and its ability to deal with vast amounts of data, has
been considered a suitable solution in assisting software
maintenance, often resulting in remarkable results [12], [22], [23],
[24].

Data mining techniques have been used previously, for
identification of subsystems based on associations (ISA
methodology) [12]. This approach provides a system abstraction
up to the program level as it produces a decomposition of a
system into data cohesive subsystems by detecting associations
between programs sharing the same files.

Clustering has also been used to support software maintenance
and systems knowledge discovery. A method for grouping Java
code elements together according to their similarity was proposed
in [15]. It focuses on achieving a high level system understanding.
The method derives system structure and interrelationships, as
well as similarities among systems components, by applying
cluster analysis on data extracted from source code. Hierarchical

Volume 8, Issue 1

Page 33

SIGKDD Explorations

Agglomerative Clustering was employed to reveal similarities
between classes and other code elements thus facilitating software
maintenance and Java program comprehension.

An approach for the evaluation of dynamic clustering was
presented in [23]. The scope of this solution was to evaluate the
usefulness of providing dynamic dependencies as input to
software clustering algorithms. This method was applied to
Mozilla, a large open source software system with more than four
million lines of C/C++.

All these approaches employ data mining techniques only to
recover the structure of a software system. On the other hand [24]
is employing clustering for predicting software modules’ fault
proneness and potential noisy modules. K-Means and Neural —
Gas algorithms were employed in order to group together modules
with similar software measurements. A software engineering
expert inspected the derived clusters and labelled them as fault
prone or not.

The value of our work that differentiates it from what presented
above, is that we employ data mining techniques for both
recovering the structure of a software artifact and assessing its
maintainability. We do that by creating an input model which
considers as program’s entities’ attributes both metrics (e.g.
Chidamber and Kemerer metrics suite [5]) and elements from
source code data (e.g. class name, method name, superclass etc.).
This is presented in §3.2.

classfile

3. THE PROPOSED FRAMEWORK

This section presents the proposed framework for extracting
metrics and elements from Java source code, the input data model
and the clustering method.

3.1 Application Selection

In order to evaluate if and how mining elements from source code
can facilitate software system comprehension and maintainability
evaluation, we required a software system with the following
required properties:

e Its size must be considerable, in order for clustering to be
meaningful [23].

e Its source code must be publicly available.

e It should be Object Oriented as this paradigm is becoming
increasingly popular [3].

e [t should be used extensively.

Many open source systems have most of these properties; fewer
have the last one. We selected JBoss as a test bed for this research
work, as it does have these properties [24].

3.2 Input Model

Input model definition requires the specification of program
entities and their attributes, which should be suitable for
clustering. Clustering imposes requirements on the type and
number of attributes, the lack of distinction between predictive
and predicted attributes and so on [7], [9].

datamember

pk
name
superclass

WMC
DIT
NOC
CBO
RFC
LCOM
Ca
NPM

HENNEE!

[1]

fk_classfile_id

fk_classfile_id

. |

(o

|fk_class_id | fk_constructor_id

| |fk_interface_id | fk_method_id

[name lname

| type_dimensions | stringid

| type_idref " |type_dimensions

| |type_name | type._idref

- type_primitive | type_name

| _|stringid | type_primitive
visibility —

Figure 1: Input Model

Volume 8, Issue 1

Page 34

SIGKDD Explorations

Moreover entities need to contain a common set of attributes in
order to achieve homogeneity; this allows for entities’ comparison
on the basis of their attributes, which is the main principle of
clustering. The number of selected attributes needs also to be
sufficient in order to avoid misleading comparisons or discovering
accidental similarities. Selected attributes are both binary and
qualitative, as they are predominant in a source code application
domain [4].

The schema in Fig. 1 outlines the proposed input model in terms
of entities and their respective attributes. Each entity is described
by attributes thus formulating database tables.

The proposed input model consists of:

e Entities that belong either to behavioral (i.e. class, interface,
member method) or structural domain (i.e. member data). In
this research work we are mostly interested in working with
classes, packages, classfiles, methods and member data.

e Attributes that describe the selected entities (class name,
superclass, method name an so on).

Metrics which are considered as attributes that further describe
an OO program’s entities. More specifically and as depicted in
Fig. 1, metrics are employed as attributes of the entity Class. In
§3.4 we further describe the selected metrics and we justify why
we think they are important in facilitating a maintenance engineer
to comprehend and evaluate a system’s maintainability.

3.3 Data Extraction Process

Source code representation in an abstract way is a key research
topic [2]. Representing source code in an xml format can be
useful for the following reasons:

e XML is a strict, well defined format that can be manipulated
by a plethora of tools (i.e. parsers, editors etc) while it still
remains a human readable format.

e An XML representation could also be abstract, independent
of any programming language [6].

The scope of the proposed extraction process is to parse javaml
xml files and extract elements and metrics from java code. The
current version stores information like class name, package of the
class, constructor names and their arguments, method names and
arguments etc as depicted in Fig. 1. This information is
subsequently stored in a relational database so that the Clustering
Data Mining technique can be applied.

3.4 Metrics Selection and Description

According to Lehman [10] as software demonstrates regular
behaviour and trends, these can be measured. Software evolution
and maintenance require the collection of such metrics. This
enables maintenance engineers to track status, control costs, and
make decisions related to their maintenance tasks. These metrics
can be useful as indicators for evaluating a system’s
maintainability and identifying potential problematic areas [13],
[16]. We have to emphasise at this point that metrics can be used
only as indicators for a system’s maintainability, as this is a
complex and largely subjective software attribute.

For this work we decided to employ the Chidamber and Kemerer
metrics suite [5], as it can be applied to OO programs and can be
used as a predictor and evaluator of maintenance effort according

Volume 8, Issue 1

to [11]. More specifically we chose the following subset of this
metrics suite:

o Weighted Methods per Class (WMC), which is simply the sum
of the complexities of its methods.

e Coupling between Objects — Efferent Coupling (CBO), which
represents the number of classes a given class, is coupled to.

e Number of Children (NOC), which measures the number of
immediate descendants of the class.

o Depth of Inheritance Tree (DIT), which provides for each
class a measure of the inheritance levels from the object
hierarchy top.

o Afferent (inward) Coupling (Ca), which measures the number
of other classes that depend on the class under examination.

e Number of Public Methods (NPM), which counts all the
methods in a class that are declared as public.

Those selected metrics are used as additional attributes in order to
further describe the Classes entity.

3.5 Clustering

At first the maintenance engineer needs a quick and rough grasp
of a software system in order to maintain it with a level of
confidence as if he/she had this familiarity. Clustering is more
suitable for this purpose as it produces overviews of systems by
creating mutually exclusive groups of classes, member data or
methods, according to their similarities and hence reduces the
time required to understand the overall system. Another
contribution of this method is that it helps discovering
programming patterns and “unusual” or outlier cases which may
require attention.

For this purpose K-Means clustering was employed. Its
popularity is largely due to its simplicity and low-time
complexity. The input parameters we used for this algorithm are
presented in Table 1.

Input‘Dataset [D] The dataset used.
Max. Passes [P]

Maximum number of passes the
algorithm goes through the data.

Max. No of Maximum number of clusters the

Clusters [C] algorithm generates. High values
produce many small clusters facilitating
outlier identification.

Similarity It limits the values accepted as best fit

threshold [S] for a cluster.

Accuracy Minimum % improvement on clustering

Improvement [A] quality after each pass.

Table 1: Input Parameters for K-means Clustering

4. RESULT EVALUATION

The proposed framework was evaluated in terms of ability to
capture knowledge relevant to software maintenance activities,
using the JBoss Open Source Application Server. The following
sub-sections discuss separately the outcomes of our empirical
experimentation with this application.

Page 35

SIGKDD Explorations

4.1 Experimental Setup

Before describing the experimental application of our framework
to a real software system, it is necessary to describe the
experimental setup. The core idea was to extract elements and
metrics from JBoss Open Source Application Server’s source
code and store these data in a database. The outcome of this step
gave us the ability to:

1. Apply K-Means Clustering to the classes of JBoss based on
their structural similarities, like the packages they belong to,
or their respective superclasses. The derived clusters provide
maintenance engineers with an overview of the basic parts of
the system.

2. Apply K-Means Clustering to the classes of JBoss based on
their metric values. The formed clusters can provide
maintenance engineers with insights concerning the classes’
characteristics described in §3.3. The input parameters for this
task are presented in Table 2.

3. As soon as the clusters are formed, the maintenance engineer
has the ability to mine inside each cluster separately, in order
to find similarities concerning classes’ structure (their
respective methods and data for example).

~ A flat file conta; ning records describing
the Class Entity including metrics.

Input D

Max. Passes [P] The chosen value is 2, as we wanted to
increase the accuracy. More passes

could improve quality.

Max. No of We used a range of values between 9

Clusters [C] and 25, so that we could both extract
system overviews and identify niches.

Similarity The chosen value is 0.6, so that only

threshold [S] records with 60% identical fields are
assigned to the same cluster.

Accuracy The chosen value is 2; a trade off

Improvement [A] between clustering accuracy and limited

processing time.

Table 2: Experimental Setup Parameters

4.2 Case Study: JBoss Application Server
JBoss is a free J2EE certified application server, and is one of the
most widely used open source professional software [25]. Table 3
shows the statistics concerning its size.

! Lines of Code (LO%) 1,615,289
Classes 6,448
Java Files 4,714
Packages 569

Table 3: JBoss Statistics

JBoss is built on a modular architecture on top of the JMX (Java
Management Extension) infrastructure, which is a reusable
framework that can expose applications to remote or local
management tools. The major JBoss modules are manageable
MBeans connected by the MBean server and are illustrated in Fig.
2.

Volume 8, Issue 1

EJB

Container JBossTx | | Deployment | | JBaossNS
3 [: 3
4 ¥ 1

JMX implementation

3 3 t A
/ 4 Y

WebServer JBossCx JBossSx JBossMQ

Figure 2: JBoss Model
4.2.1 System Overview

One of the main goals of this work was to provide the
maintenance engineer a quick and rough grasp of a software
system in order to maintain it with a level of confidence as if
he/she had this familiarity. That reduces the required time to
comprehend a system’s structure. For this reason, we started our
experiment by clustering JBoss’ classes based on attributes like
the package they belong to and their respective superclasses. Fig.
3 depicts the formed clusters of the classes of JBoss based on
these attributes.

0

Figure 3: JBoss Clusters

In the X axis are the ids of the formed clusters while on the Y axis
the ones of JBoss’ classes. As we can see the clusters with the
highest population are 2, 3, 6, 7, 8 while 0, 4, 5 represent a small
part of the system. Based on Fig. 2 the parameter C (Maximum
Number of Clusters) was set to 9 as we did not want to search for
outliers but to give an overview of JBoss’ main structure. Table 4
presents the formed clusters, and the predominant packages they
are included in each cluster.

The first cluster (0) consists of packages defined by the JMX
specification. javax.management and org.jboss.mx are
related with MBeans which are Java objects that implement the
standard MBean Interface. Another interesting cluster is the third
one which consists of packages related to the Aspect Oriented
Programming support that JBoss provides for AO middleware.
Cluster 2 also consists of classes belonging to packages that are
related to the administration of entity bean classes. More
specifically org.jboss.console provides a simple web
interface for managing the MBean server while
org.jboss.ejb3 is the most basic package for an EJB
(Enterprise Java Beans) implementation.

Page 36

SIGKDD Explorations

1 6.38 org.jboss.ejb, javax.xml

2 15.72 org.jboss.console,
org.jboss.ejb3

3 15.75 org.jboss.aop.deployment,
org.jboss.aspects,
org.jboss.mg

4 3.07 org.jboss.management

5.77 org.jboss.util,

org.jboss.resource

6 1578 org.jboss.ejb.plugins,
org.jboss.invocation,
org.jboss.metadata

7 23.57 org.jboss.axis,
jboss.org.resource.adapter,
.jdbc, org.jboss.webservice

8 8.04 org.jboss.security,

org.jboss.tm
Table 4: JBoss Clusters

4.2.2 Weighted Methods per Class (WMC - Class
Complexity)

Fig. 4 depicts clusters formed of JBoss classes, based on their
complexity. By examining these clusters, a maintenance engineer
can identify classes with exceptional values and then examine
them closely and consider refactoring to improve their design.
More specifically, the X axis shows the cluster IDs while the Y
axis shows WMC attribute values. The 14th, 12th and 22nd
clusters (7% of the whole population) are formed by classes that
exhibit high WMC values. In practice, these classes may be

difficult to maintain and reuse. For example the
org.jboss.axis.message.SOAPElementAxisImpl

class, declares 141 methods in a 2100 lines java file. This class
implements the base type of nodes of a SOAP message parse tree.
Although such a size would usually imply low maintainability of
a class, the purpose of this specific class (to represent a soap
message) could justify its size.
i e

S

it

Figure 4: Weighted Methods per Class Clusters

The common characteristics of the classes that exhibit high WMC
values are:

e Their methods return types are not primitive. Most of them are
of the type Logger, Document, WrappedStatement,

CallableStatement, PreparedStatement, and
ManagedEntityManagementFactory.
e Most of them belong to the jboss.org.axis,

jboss.org.resource.adapter.jdbc,
jboss.org.ejb3 packages.

On the other hand there are clusters like 3, 8 and 20 (25% of the
whole population) that are formed by classes with very low WMC
value. The common characteristic between these classes is that
most of their methods return types are primitives like Boolean,
long, int or void. Another interesting observation is that there are
a significant number of classes having low WMC values that
belong to the Aspect Oriented Programming package
(org.jboss.aop.deployment).

4.2.3 Coupling Between Objects (CBO)

Fig. 5 depicts the formed clusters of the classes of JBoss based on
their coupling. The 15th, 17th, 20th and 23rd (2.4% of the whole
population) are formed by classes having high CBO values.

o i v

090

o g

-

Figure 5: Coupling Between Objects Clusters

In practice these classes may be difficult to maintain and reuse as
a change in a class may affect the classes it is coupled to.
Inspecting the code for these classes a maintenance engineer can
find out more. For example there is on the 20th cluster a class
named EJBQLToSQL92Compiler, which implements
QLCompiler and JBossQLParserVisitor interfaces and
compiles EJB-QL and JBossQL into SQL using OUTER and
INNER joins. It is a class of 1546 lines of code; has 84 couplings,
and there are tens of methods like the following:

public Object visit (ASTStringLiteral
node, Object data)
{
StringBuffer Dbuf = (StringBuffer)
data;
buf .append (node.value) ;
return data;
}
The common characteristics of classes like

EJBQLToSQL92Compiler are:

Volume 8, Issue 1

Page 37

SIGKDD Explorations

e Their methods return types are not primitive. Most of them are
of the type Logger, Class, RemoteBinding,
Thread, ThreadGroup, Emmiter, and Object.

e Most of them belong to
org.jboss.ejb.plugins.cmp.jdbc,
org.jboss.ejb.plugins.cmp.jdbc2, and
org.jboss.ejb3.service packages.

On the other hand there are clusters like 3 and 4, formed by
classes with very low CBO value. Most of them belong to the
org.jboss.aop.deployment, javax.management,
org.jboss.mx and org.jboss.mq packages.

4.2.4 Number of Children (NOC)

Fig. 6 depicts the formed clusters of the classes of JBoss based on
their number of children (NOC) attribute. Most of the classes
(68.08% of the whole population) have no children, while another
30% have 1, 2 or 3 children.

s
.
.
Y
g

Figure 6: Number of Children Clusters

On the other hand there are clusters like 6, 7 and 8 (1.8% of the
whole population) that contain classes with more than 8 children.
In the 8" cluster a class named ServiceMBeanSupport that
has 152 children was discovered. This class is a warning for a
maintenance engineer to inspect for subclassing misuse as it has
an abnormally number of children. The common characteristic of
the methods that belong to the classes of clusters 6, 7 and 8 is that
their return types are not primitive. Most of them are loggers,
nodes or vectors. Classes that belong to those clusters may
also be fundamental elements in JBoss’s structure.

Figure 7: Depth of Inheritance Tree Clusters

4.2.5 Depth of Inheritance Tree (DIT)

Fig. 7 depicts the formed clusters of the classes of JBoss based on
their depth of inheritance (DIT) attribute. It is obvious that as in
many object-oriented systems inheritance is not really used a lot
[18]. In JBoss, classes (clusters 5 and 6) with the highest DIT
value are subclasses of the org.jboss.axis.message and
org.jboss.varia.scheduler packages. The tree of inheritance

leading to these classes has a depth of 6. A good example is class
org.jboss.varia.scheduler.xmLScheduleProvider

which has one of the deepest inheritance trees we found.

4.2.6 Afferent Couplings (Ca):

Fig. 8 depicts the formed clusters of the classes of JBoss based on
their inward coupling. We can see here that on the 11th cluster
there is the Logger class that depends on 2 only other classes,
while 1200 other depend on it. That is why the maintenance
engineer has to be very cautious when changing its interface and
behaviour.

1]
-

Figure 8: Afferent (Inward) Coupling (Ca) Clusters
4.2.7 Number of Public Methods (NPM)

Fig. 9 depicts the formed clusters of the classes of JBoss based on
their number of public methods.

Figure 9: Number of Public Methods Clusters

Exposing too much of the class logic through public methods can
be a sign of poorly designed code as it may need to split the class
into two. However, there are cases where this is inevitable. For
example, there are 144 public methods in class
org.jboss.resource.adapter.jdbc.WrappedResul

tSet. This class implements a wrapper to access the results of a
sql query using the java database connectivity API. Its internal
logic is not complicated (almost all of its methods consist of one

Volume 8, Issue 1

Page 38

SIGKDD Explorations

or two lines), but it provides many public methods to access the
result of the query in many ways.

4.3 Result Interpretation

As derived from the clustering (based on its structural
characteristics), JBoss is an OO system that is built based on the
JMX (Java Management Extension) infrastructure and supports
also Aspect Oriented Programming middleware. We consider that
packages which play the most significant role in formulating
clusters would be the main packages of JBOSS. For example
Cluster 3 is formed by classes that belong to
org.jboss.console which provides a simple web interface
for managing the MBean server and org.jboss.ejb3 which is the
most basic package for an EJB implementation. We also
discovered a very interesting cluster (Cluster 4) which comprises
of packages that implement AOP (Aspect Oriented Programming)
— based services.

On the other hand most of the classes of JBoss have very low
complexity values and they do not expose too excessive either
afferent or efferent couplings. They also have no children and
they do not use inheritance very much. An interesting observation
was that classes related to the implementation of (AOP) support
have very low complexity (WMC) values. We also observed that
most of the classes with high WMC and CBO values have
member methods that their return types are not primitives.

The results presented in this section were derived without having
prior knowledge of the JBoss OS Application Server. We would
expect that domain experts could better support the evaluation of
the proposed method.

5. CONCLUSIONS AND FUTURE WORK

This section presents conclusions drawn by evaluating the
proposed framework and comparing it to similar ones. Directions
for future work are also discussed.

5.1 Conclusions

The aim of this work was to facilitate maintenance engineers to
comprehend the structure of a software system and assess its
maintainability.

The first step towards that was to develop an extraction process
that incorporates an xml representation of the code so that we can
leverage the effort already put on this field by others. This goal
was accomplished by using the javaml! representation. 1,615,289
LOC or 4,714 Java code files were parsed in less than an hour in
order to extract elements and metrics from JBoss’ source code.

The application of this extraction method differentiates this work
from [12] which is designed for procedural languages like
COBOL and C. The proposed solution is also semi automated
unlike [4] as the parsing engine extracts the data from the source
code and stores them on a database.

The second step towards our goal to facilitate a maintenance
engineer to comprehend a software system and assess its
maintainability was the application of clustering for both
recovering the structure of a software artifact and assessing its
maintainability. That makes our work more complete than [4], [9],
[12], [15], [23], which use data mining techniques only for
structure recovering and [24] which uses clustering for predicting
a software modules’ fault proneness.

Volume 8, Issue 1

On the other hand our method analyses only the static
dependencies of system’s entities unlike [23] which uses
Clustering in order to study the dynamic dependencies of a
system under maintenance. We also use the K-Means Clustering
algorithm which has the drawback that the user has to define the
number of the derived clusters. On the contrary [15] employs the
Hierarchical Agglomerative Clustering (HAC) algorithm which
automatically defines the number of the derived clusters.

5.2 Future Work

We consider the following various alternatives in order to
enhance the proposed framework:

e Systems’ components clustering based on their dynamic
dependencies

It would be of great interest to attempt to evaluate the usefulness
of analysing the dynamic dependencies of a software system’s
artefacts.

¢ Integration of more data mining algorithms

The proposed framework integrates the K-Means algorithm.
However it may be useful if more custom data mining algorithms
were integrated in this framework. This would result in a
complete system for automated program and system
comprehension. An example is the integration of hierarchical
clustering algorithms that they do not need the user to define the
number of the desired output clusters [8].

o Enhance the Extraction Method

The proposed method processes information derived only from
Java source code files (*.java). It is of great interest to extract data
from other OO languages like C++, C# and Borland Delphi. It can
also be more flexible. For example, logic could be incorporated in
java objects in order to compute software engineering metrics
directly from the javaml files. These metrics could later be stored
in the database using hibernate, just like the rest of the
information.

e Enrich the Input Model with more metrics and meta-
metrics

Based on this work we extracted elements and metrics from
source code. The proposed Input Model can be enriched by
employing more metrics except these in Chidamber and Kemerer
Object Oriented suite [S]. We can also use meta-metrics in order
to evaluate how accurate and right are the metrics we employ to
assess a system’s maintainability.

6. ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers for the
constructive feedback on the original manuscript.

7. REFERENCES

[1] E. Arisholm, L.C. Briand, A. Foyen, “Dynamic Coupling
Measurement for Object-Oriented Software”, [EEE
Transactions Software Engineering, Vol. 30, No. 8, 2004,
pp. 491-506.

[2] G.J. Badros, “JavaML: A Markup Language for Java Source
Code”, Computer Networks, Vol. 33, No 1-6, 2000, pp 159-
177.

Page 39

SIGKDD Explorations

[31 RK. Bandi, V.K. Vaishnavi, D.E. Turk, “Predicting
Maintenance Performance Using Object Oriented Design
Complexity Metrics”, [EEE Transactions Software
Engineering, Vol. 29, No. 1, 2003, pp. 77-87.

[4] K. Chen, C. Tjortjis and P.J. Layzell, “A Method for Legacy
Systems Maintenance by Mining Data Extracted from
Source Code”, Case Studies IEEE 6th European Conf.
Software Maintenance Reengineering (CSMR 02), 2002, pp.
54-60.

[51 S. R. Chidamber and C. F. Kemerer. A Metrics Suite for
Object-Oriented Design. IEEE Transactions Software
Engineering, Vol.20, No.6, 1994, pp.476-493.

[6] Al-Ekram, R., Kontogiannis, K., “An XML-Based
Framework for Language Neutral Program Representation
and Generic Analysis”, Proc. IEEE 9th European
Conference Software Maintenance Reengineering (CSMR
2005), 2005, pp. 42-51.

[71 U. M. Fayyad, G. Piatetsky-Shapiro and P. Smyth. “From
Data Mining to Knowledge Discovery: An Overview”,
Advances in Knowledge Discovery and Data Mining, AAAI
Press, 1996.

[8] A. Jain, M.N. Murty, and P.J. Flynn, “Data Clustering: A
Review”, ACM Computing Surveys, Vol. 31, No. 3, 1999,
pp.264 - 323.

[9] Y. Kanellopoulos, C. Tjortjis, “Data Mining Source Code to
Facilitate Program Comprehension: Experiments on
Clustering Data Retrieved from C++ Programs”, Proc. IEEE
12th Int’l Workshop Program Comprehension (IWPC 2004),
2004, pp. 214-223.

[10] M.M. Lehman, “Programs, Life Cycles, and Laws of
Software Evolution”, Proc. IEEE, Vol. 68, No 9, 1980, pp.
1060 - 1076.

[11] W. Li, S. Henry, D. Kafura and R. Schulman, “Measuring
Object Oriented Design”, J. Object— Oriented Programming,
Vol. 8, No. 4, 1995, pp. 48-55.

[12] C. M. de Oca and D. L. Carver, “Identification of Data
Cohesive Subsystems Using Data Mining Techniques”,
Proc. Int'l Conf. Software Maintenance (ICSM 98), 1998,
pp.16-23.

[13] T. Pearse and P. Oman, “Maintainability Measurements on
Industrial Source Code Maintenance Activities”, Proc. Int’l
Conference Software Maintenance, (ICSM 95), 1995, pp.
295-303.

[14] T.M. Pigoski, Practical Software Maintenance: Best
Practices for Managing your Software Investment, Wiley
Computer Publishing, 1996.

[15] D. Rousidis, C. Tjortjis, “Clustering Data Retrieved from
Java Source Code to Support Software Maintenance: A Case
Study”, Proc. IEEE 9th European Conf. Software
Maintenance Reengineering (CSMR 05), 2005, pp. 276-279.

[16] HM. Sneed, “Applying Size Complexity and Quality
Metrics to an Object Oriented Application”, Proc. European

Software Control and Metrics Conference - Software
Certification Programme in Europe, 1999.

[17]1 I. Sommerville, Software Engineering, 6th ed., Harlow,
Addison-Wesley, 2001.

[18] D. Spinellis. Code Quality, Addison-Wesley, 2006.

[19] J. Sutherland, “Business Objects in Corporate Information
Systems”, ACM Computing Survey, Vol. 27, 1995, pp 274-
276.

[20] Y. Tan, V.S. Mookerjee, “Comparing Uniform and Flexible
Policies for Software Maintenance and Replacement”, JEEE
Transactions Software Engineering, Vol. 31, No. 3, 2005,
pp. 238-255.

[21] C. Tjortjis and P.J. Layzell, “Expert Maintainers’ Strategies
and Needs when Understanding Software: A Qualitative
Empirical Study”, Proc. IEEE 8th Asia-Pacific Software
Engineering Conf. (APSEC 2001), IEEE Comp. Soc. Press,
2001, pp. 281-287.

[22] C. Tjortjis, L. Sinos and P.J. Layzell, “Facilitating Program
Comprehension by Mining Association Rules from Source
Code”, Proc. IEEE 1Ith Int’'l Workshop Program
Comprehension (IWPC 03), 2003, pp. 125-132.

[23] C. Xiao, V. Tzerpos, “Software Clustering on Dynamic
Dependencies”, Proc. IEEE 9th European Conf. Software
Maintenance Reengineering (CSMR 05), 2005, pp. 124-133.

[24] S. Zhong, T.M. Khoshgoftaar, and N. Seliya, “Analyzing
Software Measurement Data with Clustering Techniques”,
IEEE Intelligent Systems, Vol. 19, No. 2, 2004, pp. 20-27.

[25] JBoss Community home page http://www.jboss.org

Volume 8, Issue 1

About the authors:

Yiannis Kanellopoulos is a PhD candidate at the School of
Informatics, University of Manchester, U.K. His research interests
are in the areas of Data Mining, Program Comprehension and
Maintenance, and Software Engineering Quality.

Thimios Dimopulos is a Software Engineer at Deutsche Telekom
Labs, Berlin, Germany. His research interests are in the areas of
and Software Engineering and Maintenance.

Christos Tjortjis is a Lecturer at the School of Informatics,
University of Manchester, and a part time Lecturer at the
Nottingham Business School, Nottingham Trent University, U.K.
His research interests are in the areas of data mining, software
comprehension and maintenance where he has published widely.

Christos Makris is an Assistant Professor at the Department of
Computer Engineering and Informatics, University of Patras,
Greece. His research interests include Data Structures, Web
Algorithmics, Computational Geometry, Data Bases and
Information Retrieval.

Page 40

