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Abstract 

Clustering is a data mining technique that allows 
the grouping of data points on the basis of their 
similarity with respect to multiple dimensions of 
measurement. It has also been applied in the 
software engineering domain, in particular to 
support software quality assessment based on source 
code metrics. Unfortunately, since clusters emerge 
from metrics at the source code level, it is difficult to 
interpret the significance of clusters at the level of 
the quality of the entire system. In this paper, we 
propose a method for interpreting source code 
clusters using the ISO/IEC 9126 software product 
quality model. Several methods have been proposed 
to perform quantitative assessment of software 
systems in terms of the quality characteristics 
defined by ISO/IEC 9126. These methods perform 
mappings of low-level source code metrics to high-
level quality characteristics by various aggregation 
and weighting procedures. We applied such a 
method to obtain quality profiles at various 
abstraction levels for each generated source code 
cluster. Subsequently, the plethora of quality profiles 
obtained is visualized such that conclusions about 
different quality problems in various clusters can be 
obtained at a glance. 

 
1. Introduction 

Reliable assessment of the quality of large 
software-intensive systems is of prime importance to 
IT management for making decisions about planning, 
budgeting, and controlling the processes of 
developing, delivering, maintaining, and operating 
these systems. The main challenge of methods and 
techniques for such software product quality 
assessment is to translate technical findings on the 
level of source code artifacts into meaningful 
appraisals of characteristics of the system as a whole. 
For example, if a certain percentage of the source 

code lines are part of a method with cyclomatic 
complexity over 50, then what does this mean for the 
testability aspect of the system’s overall quality? 
Though it may seem tempting to look for a single 
number to capture system quality as a whole, a more 
practical approach is to provide an abstract, but 
informative characterization of weak and strong parts 
of the software for a selected number of high-level 
quality aspects. 

A breakdown of the concept of software product 
quality into sub-characteristics is offered by the 
ISO/IEC 9126 international standard for software 
product quality [5]. The first part of this standard 
provides a quality model that breaks software 
product quality up into six characteristics, which are 
then further decomposed into a total of 27 sub-
characteristics. This consensual identification and 
definition of software quality characteristics provides 
a useful frame of reference and standardized 
terminology which facilitates communication and 
thought concerning software quality. 

Several methods have been proposed to perform 
assessment of quality aspects according to ISO/IEC 
9126 for a given software system, i.e. to come to a 
judgment regarding these characteristics at the 
system level from concrete findings at the technical 
level via a repeatable and objective process [14], 
[10], [16], [12]. Many of these methods focus on the 
maintainability characteristic and its sub-
characteristics [4], [1], [2]. Some methods are 
tailored to the object-oriented paradigm [1], while 
others are paradigm-agnostic [4]. Each of these 
methods employs more or less sophisticated 
instruments for aggregating and summarizing 
technical data. In all cases, the final quality 
judgments are presented in terms of the 
characteristics and sub-characteristics of the ISO/IEC 
9126 quality model. 

Apart from judgments on the level of an entire 
system, software quality assessment may call for a 



course-grained subdivision of the system into parts 
with different quality profiles. Though structural 
subdivision is the bread-and-butter of the software 
quality engineer, it is not the most appropriate 
instrument for quality assessment for several reasons. 
Firstly, structural subdivisions may group together 
elements that are strongly dissimilar in terms of their 
quality. Secondly, along the lifetime of a system, its 
structure often degrades significantly, to the point of 
losing its usefulness for system comprehension. In 
fact, a software quality engineer may need to invest 
substantial effort to discover system structure at all. 

As an alternative to structural subdivision, 
clustering can be used. This is a data mining 
technique that allows the grouping of data points on 
the basis of their similarity with respect to multiple 
dimensions of measurement [6]. It is a discovery-
driven data analysis technique, rather than a 
verification-driven technique, which makes it 
particularly useful in problems where there is little 
prior information available about the data. It can be 
applied in the context of software quality assessment 
to group the elements of a software system according 
to their similarities in terms of technical (source 
code) measurements [17]. 

Unfortunately, the source code clusters that are 
discovered by the application of a clustering 
algorithm may be meaningful at the level of the 
source code metrics from which they are computed, 
but they are difficult to interpret at the level of 
quality aspects. For example, when a set of Java 
classes are grouped together on the basis of their 
values for a suite of object-oriented design metrics, 
what does their similarity in terms of these values 
mean for their changeability or testability? 

In this paper, we explore the possibility of 
attaching meaning to source code clusters using a 
method for software quality assessment in terms of 
ISO/IEC 9126. In particular, we will apply a recent 
improvement of the k-Means clustering algorithm, 
called the k-Attractors algorithm [8], to derive 
clusters from source code metrics. Subsequently, we 
apply a method for software quality assessment – an 
improvement over the methods of [4] and [1] – to 
interpret these metrics at the level of source code 
properties and finally at the level of ISO/IEC 9126 
maintainability sub-characteristics. We have applied 
and validated the proposed approach in an industrial 
case study. 

The paper is organized as follows. Section 2 
presents a formal statement of the problem under 
investigation. Section 3 discusses the necessary 
background information on the various ingredients of 
our proposal, such as cluster analysis, analytical 
hierarchical processing and the ISO/IEC 9126 
quality model. Section 4 discusses our proposed 

approach that combines these ingredients. Section 5 
presents empirical results from the analysis of a case 
study and discusses the benefits and risks of our 
methodology. Section 6 presents related work in the 
area of software quality evaluation. Finally, section 7 
concludes with a summary of our work and indicates 
directions for future work. 

 
2. Formal Problem Statement 

The challenge addressed in this paper is to 
interpret technical measurement data about the units 
of a large software system into high-level appraisals 
of the quality characteristics of its main parts. 
Typically, the units are individual methods or 
functions in the system. The main parts, in our 
approach, will typically be a handful of groups of 
such units. 

A concise formalization of our problem is given 
by the following function signature: 
 

appraisal : vM×U → nB×Q×G 
 
where: 
 
 U: units in the system 
 M: measurements performed on units 
 G: groups of units 
 Q: high-level quality characteristics 
 B: bins in a quality profile 
 
Thus, the input of our problem is a two-dimensional 
matrix of measurement values. For each unit in U 
and each measurement M there is a measurement 
value v. Measurements are typically source code 
metrics such as lines of code or cyclomatic 
complexity. Units can be methods, classes, etc. 

The output is a three dimensional matrix of 
counts. These three dimensions are best understood 
when we look at the output as a two-dimensional 
matrix of vectors: 

 
nB×Q×G = (nB)Q×G 

 
Each vector nB is what we call a “quality profile”. 
Each quality profile is a vector of counts that 
summarizes the quality of a given group G of units 
for a given quality characteristic Q. In this paper, we 
will use histograms as quality profiles, and by B we 
denote the bins of the histogram. 

Given this formalization of the problem, we will 
proceed to discuss the individual techniques that we 
will combine to assemble the overall translation. 
 
3. Background 

To resolve the problem formalized above, we 
have adopted and combined several techniques, 



including a 2-step mapping of source code metrics to 
ISO/IEC 9126 quality characteristics, analytical 
hierarchical processing, and clustering. 

 
3.1 k-Attractors Clustering 

Clustering is a technique known from data 
mining. On the basis of the similarity of data points 
with respect to multiple dimensions of measurement, 
clustering allows grouping of these points [6]. 
Clustering is a discovery-driven data analysis 
technique, rather than a verification-driven 
technique, which makes it particularly useful in 
problems where there is little prior information 
available about the data. 

In the case of software quality evaluation, 
clustering produces overviews of systems by creating 
mutually exclusive groups of classes, member data 
or methods, according to their similarities in terms of 
technical (source code) measurements [17]. This 
helps reducing the time required to understand and 
evaluate the overall system. Another contribution of 
this method is that it helps discovering programming 
patterns and “unusual” or outlier cases which may 
require attention. 

For this purpose the k-Attractors algorithm was 
employed which is tailored for numerical data like 
measurements from source code [8]. The main 
characteristics of k- Attractors are: 
o It defines the desired number of clusters (i.e. the 

number of k), without user intervention. 
o It locates the initial attractors of cluster centers 

with great precision. 
o It measures similarity based on a composite 

metric that combines the Hamming distance and 
the inner product of transactions and clusters’ 
attractors. 

The k-Attractors algorithm employs the maximal 
frequent itemset discovery and partitioning in order 
to define the number of desired clusters and the 
initial attractors of the centers of these clusters. The 
intuition is that a frequent itemset in the case of 
software metrics is a set of measurements that occur 
together in a minimum part of a software system’s 
classes. Classes with similar measurements are 
expected to be on the same cluster. The term 
attractor is used instead of centroid, as it is not 
determined randomly, but by its frequency in the 
whole population of a software system’s classes. 

Clustering can be formalized by the following 
function signature: 
 

cluster : vM×U → vM×U×G  
 

Thus, a matrix of measurement values is 
partitioned into a list of such matrices. Each matrix 

represents a cluster of items that are similar in terms 
of their measurement values. 
 
3.2 Analytic Hierarchical Processing 

AHP is a decision-making technique that reduces 
complex multi-criterion decisions to a series of one-
on-one comparisons [15]. Compared to other 
techniques, like ranking or rating techniques, AHP 
leverages the human ability to compare single 
properties of alternatives. From the result of a large 
number of one-on-one comparisons, a smaller 
number of weights for each criterion is synthesized. 

At first let us assume that a set of objectives has 
been established. Then we are trying to establish a 
normalized set of weights to be used when 
comparing alternatives using these objectives. AHP 
forms a pair wise comparison matrix a, where the 
number in the i-th row and j-th column gives the 
relative importance of objective O(i) as compared 
with O(j). Values that usually are used are in a 1–9 
scale, with a(i,j) = 1 if the two objectives are equal 
in importance, a(i,j) = 3 if O(i) is weakly more 
important than O(j), a(i,j) = 5 if O(i) is strongly 
more important than O(j), a(i,j) = 7 if O(i) is very 
strongly more important than O(j), and a(i,j) = 9 if 
O(i) is absolutely more important than O(j). After 
this procedure the comparison matrix is normalized 
and its eigenvalues are computed. These eigenvalues 
play the role of coefficients/weights when someone 
wants to evaluate the alternatives for the objectives 
under examination.  

A concise formalization of AHP is given by the 
following function signature: 

 
ahp : aO×O → wO 

 
Here, O is the number of criteria or objectives. Thus, 
a square matrix of relative importance scores a for 
each pair of criteria is transformed into a vector of 
weights w. One weight is obtained for each criterion. 

After weights have been obtained by AHP, they 
can be applied to aggregate input criteria into a 
weighted score, with the following function: 

 
score : wO × xO → y 
score([w1,..,wO],[x1,..,xO]) = w1 x1+…+wO xO 
 

Here, criteria x are mapped to a score y. 
Below, we will use AHP to obtain high-level 

quality characteristics from low-level measurement 
data in a weighted manner. 
 
3.3 Quality appraisal based on ISO/IEC 9126 
Part 1 of the ISO/IEC 9126 international standard for 
software product quality [5] describes a model that 
dissects the notion of software product quality into  



six main characteristics: functionality, reliability, 
usability, efficiency, maintainability, and portability. 
These main characteristics are further subdivided 
into a total of 27 sub-characteristics. 

Though the ISO/IEC 9126 model defines a useful 
terminological framework for thought and 
communication about software quality, it does not 
provide an operational instrument for quality 
evaluation. 

In parts 2 and 3 of the model, measures are 
suggested for evaluating the quality sub-
characteristics defined in the model of part 1. 
However, these measures are not limited to 
observations of the software product itself, but for 
instance involve comparison of implemented features 
to required features or measurement of the activities 
of software engineers. 

The Software Improvement Group (SIG) has 
developed a pragmatic operationalization of the 
ISO/IEC 9126 model, which has been described in 
simplified form by Heitlager et al [4]. The method is 
used to support IT management in activities such as 
vendor management, outsourcing, product selection, 
quality improvement programs, and strategic risk 
mitigation. 

The SIG method maps source code measurements 
to quality sub-characteristics in two steps, with so-
called system properties as intermediate layer. For 
the maintainability characteristic, the mapping 
between system properties and quality sub-
characteristics is depicted in Figure 1. We discuss 
each step in turn. 

 
3.3.1 Mapping code measures to system 

properties 
For each system property, one or two source code 

measures are defined, together with an aggregation 
and scoring method. We discuss two examples. 

Duplication: The system property “duplication” 
is calculated as the percentage of all code that occurs 
more than once in equal code blocks of at least 6 
lines. When comparing code lines, leading spaces are 
ignored. For scoring, the following table is used: 

 
Table 1: Duplication Scores 

rank duplication 
++ 0-3% 
+ 3-5% 
o 5-10% 
- 10-20% 
-- 20-100% 

 
Thus, a well-designed system should have no more 
than 5% code duplication, while only systems with 
lower than 3% duplication are considered excellent. 

Complexity: The system property “complexity” is 
measured using the well-known cyclomatic 
complexity metric of McCabe [11]. This metric is 
computed for each unit. To aggregate the 
measurements for all units in a meaningful way, the 
units are first categorized according to the following 
table, published by the Software Engineering 
Institute: 

 
Table 2: Complexity Levels 

MCC value risk level 
1-10 simple, without much risk 

11-20 more complex, moderate risk 
21-50 complex, high risk 
> 50 untestable, very high risk 

 
With this table, the risk level of each unit can be 
determined. Subsequently, aggregation is performed 
by counting for each risk level what percentage of 
code lines falls within units at that level. Finally, the 
following table is used to arrive at a complexity 
score at the system level: 

Figure 1, ISO/IEC-9126 Maintainability Model according to [4]and [1] 



Table 3: Complexity on System Level 
 Maximum relative LOC 

rank Moderate 
risk 

High risk very high 
risk 

++ 25% 0% 0% 
+ 30% 5% 0% 
o 40% 10% 0% 
- 50% 15% 5% 
-- - - - 

 
Thus, to be rated as excellent for instance, a system 
can have not more than 25% of code with moderate 
risk, and no code with higher than moderate risk. 
 
3.3.2 Mapping system properties to quality sub-
characteristics 

The mapping of system properties to quality sub-
characteristics as defined by the ISO/IEC 9126 
quality model is given for the maintainability 
characteristic by the following table: 

 
Table 4: System Properties Mapping 
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analyzability x  x x  
changeability  x x   
stability     x 
testability  x  x x 

 
Thus, for example, the sub-characteristic of 
changeability is influenced by the system properties 
of complexity and duplication. 
 
3.3.3 Formalization 

A concise formalization of the 2-step mapping of 
SIG is given by the following two function 
signatures: 

 
map1 : vM→ pP 
map2 : pP → qQ 

 
The first function maps source code measurement 
values v onto system properties p. The second 
function translates system properties to quality 
characteristics. The number of system properties in 
the model is represented by P. As in the 
formalization of the problem statement, M and Q 
represent the number of measurements and the 
number of quality characteristics.  

AHP can be applied to introduce weights into the 
ISO/IEC-9126 appraisals described above. Since the 
translation from source code measurements to 
quality characteristics is done in two steps, there are 
two levels at which AHP can be applied: to obtain 
property scores from measurements, and to obtain 

quality scores from properties. At each of these 
layers, multiple properties and quality scores exist, 
so, in fact, the scoring function is applied many 
times: 
 

 scoreproperies : wM × mM → pP 
 scorecharacteristics : wP × pP → qQ  

 
Thus, each scoring function computes weighted sums 
of the values at one level to obtain a vector of scores 
on the next level. 

Note that in the SIG model the source code 
measurements v are already aggregated from single 
units to the entire system.  
 

aggregate : vM×U → vM 
 
When using clustering, we are not interested in 
performing aggregation so early in the process. 
Instead, we apply the scoring functions per unit and 
per cluster: 
 

 scoreproperies : wM × mM×U×G → pP×U×G 
 scorecharacteristics : wQ × pP×U×G → qQ×U×G  

 
Thus, after applying clustering and the two scoring 
functions in sequence, we obtain a three-dimensional 
matrix that contains a quality score for each 
ISO/IEC-9126 maintainability sub-characteristic of 
each unit in each cluster. 
 
3.4 Quality profiles 
Since clusters can contain large numbers of units, a 
separate quality score per unit is not a convenient 
way to report the cluster’s quality. A good summary 
can be obtained by aggregating these separate scores 
into a so-called quality profile. This means that a 
limited number of bins are defined, together with 
criteria for assigning units to these bins. The counts 
of units assigned to each bin provide a concise 
summary. A particular case of such a quality profile 
is a histogram. 

Quality profiles are formalized by the following 
function signature: 
 

profile : xU → nB 
We will apply quality profiling to each cluster and 
each quality characteristic: 

Figure 2, Steps of the Methodology 



 
profile : qQ×U×G → nB×Q×G 

 
Thus, we obtain a series of histograms that together 
provide an overview of the quality of the system. 
 
4. Method Description 

We have combined AHP, clustering, ISO/IEC-
9126 appraisal, and quality profiling into a single 
method for software product quality assessment. An 
overview of the overall method is provided in Figure 
2. The left column in the figure indicates the 
application of the ISO/IEC-9126 appraisal using 
AHP-generated weights to the system as a whole, i.e. 
without clustering. The right column in the figure 
indicates what happens if clustering is applied first. 
In that case, the ISO/IEC-9126 appraisal is applied to 
each cluster separately. The result of the left column 
is one quality profile per quality characteristic. The 
result of the right column is one profile per 
combination of cluster and quality characteristic. 

We will explain the various steps of the 
methodology in turn. 

 
4.1 Set the assessment parameters 

The first step of the methodology consists in 
choosing the values of its various parameters. These 
parameters include the following: 

 
• M: the types of measures applied to source code 

units. 
• P: the system properties to which the measures 

M are aggregated, using weights from AHP. 
• Q: the quality sub-characteristics to which the 

system properties P are aggregated, using 
weights from AHP. 

• B: the number of bins employed to create quality 
profiles. 

 
4.2 Elicit one-on-one comparisons 

The second step of the methodology is to use 
AHP to configure the various scoring functions. The 
pair-wise comparisons to be elicited from the experts 
are determined by the choice of measures M, 
properties P, and quality characteristics Q. 
4.3 Metrics extraction 
For each unit of the system under study, source code 
measures are performed to obtain a vector vM of 

measurement values. 
In general, the extracted metrics are numerical 

data with different ranges. Data normalization is 
performed in order to fit the measurement values into 
the range [0…1]. This makes the data suitable for 
clustering and for scoring with AHP. 

 
4.4 Clustering Parameters 
The matrix of measurement value vectors vM×U is 
divided into groups using the k-Attractors clustering 
algorithm. The following table presents the input 
parameters of the algorithm. 
 

Table 5: Clustering Parameters 
Parameter Description 

Support s Defines the required support for the 
discovery of initial attractors 

Hamming 
Distance power h 

Defines the similarity metric’s 
sensitivity to Hamming distance [8] 

Inner Product 
power i 

Defines the similarity metric’s 
sensitivity to the Inner product [8] 

Number of 
Attractors k 

Defines the maximum number for 
the derived attractors [8] 

 
After setting these parameters, the k-Attractors 

can be applied. 
 

4.5 ISO/IEC 9126 appraisal 
After clustering, the scoring functions are applied 

to derive the appraisals in terms of ISO/IEC 9126 
sub-characteristics. 

 
4.6 Visualization 

The histogram representation was employed for 
visualization purposes as it enhances the 
understanding of parameters of interest [7]. It is a 
graphic representation of frequency counts of a 
population. The X-axis lists the unit intervals of a 
quality aspect (i.e. ISO/IEC-9126 maintainability 
sub-characteristic, system property, software metric) 
ranked in ascending order from left to right, and the 
Y-axis contains the frequency counts. The purpose of 
the histogram is to show the distribution 
characteristics of a quality dimension such as overall 
shape, central tendency, dispersion, and skewness. 

 
 
 
 
 

Figure 3, Employed Assessment Parameters 



5. Experimental Results 
We have evaluated our proposed method by 

applying it to a number of case studies taken from 
the IT management consultancy practice of the 
Software Improvement Group. Here we report on 
one of these case studies. 

The Software Improvement Group specializes in 
providing IT management consultancy grounded in 
source code analysis of the software systems of its 
clients. SIG’s main services are Software Risk 
Assessments [3] in which a single snapshot of a 
system is studied in depth, and Software Portfolio 
Monitoring [9] in which one or several systems are 
studied over time. Currently, SIG analyses about 50 
industrial-size, mission-critical software systems per 
year, developed in a wide variety of technologies. 

The case study reported on in this section, 
concerns a 3-year old administrative system for a 
regional government. The system is developed in 
Java. The Java code amounts to about 400.000 lines 
of code, divided over about 5000 compilation units. 

 
5.1 Assessment parameters 

Figure 3 presents the selected parameters for the 
performed assessment. The assessment focused on 
the maintainability aspect of software product 
quality, which ISO/IEC 9126 defines in terms of the 
following sub-characteristics: 
•  Analysability: how easy is it to understand 

where in the system changes need to be made? 
•  Changeability: how easy is it to actually make 

change? 
•  Stability: after making a change, how easy is it 

to bring the overall system back into a consistent 
state? 

•  Testability: how easy is it to determine whether 
the change made has been made correctly? 

The number of bins B of the quality profiles has 
been set to 24. 

 
5.2. Weight assignment by AHP 

The pair-wise comparisons used as input for the 
AHP scoring were elicited from senior consultants of 
SIG. The weight elicitation was done independently 
of the system assessment itself, as the consultants 
had no prior knowledge of the system under study. 
The elicited pair-wise comparisons gave rise to the 
following weights wP for scoring of quality sub-
characteristics: 

 
 
 
 
 
 
 

Table 6: System Properties Weights 
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Volume 0.32 0.05 0.07 0.08 
Duplication 0.21 0.15 0.31 0.07 
Complexity 0.11 0.08 0.17 0.24 

Testing 0.15 0.35 0.12 0.37 
Inheritance 0.08 0.11 0.09 0.08 
Coupling 0.14 0.27 0.23 0.15 

 
Weights were also given in order to reflect the 

importance of metrics in relation to source code 
properties. The following tables present the weights 
wM concerning the metrics relevance to the source 
code properties of complexity, inheritance and 
coupling respectively. 

 
Table 7: Complexity Weights 

 Complexity 
Methods violating maximum complexity 0.36 

LOC of units with McCabe 1-5 0.05 
LOC of units with McCabe 6-10 0.08 

LOC of units with McCabe 11-20 0.12 
LOC of units with McCabe 21-50 0.22 

LOC of units with McCabe 51 and higher 0.16 

 
Table 8: Inheritance Weights 

 Inheritance 
Maximum Inheritance Depth 0.54 
Method Inheritance Factor 0.30 

Abstractness 0.16 

 
Table 9: Coupling Weights 

 Coupling 
Fan In 0.30 

Fan Out 0.30 
Afferent Coupling 0.17 
Efferent Coupling 0.17 

Instability 0.06 

 
5.3. Clustering 
Clustering was performed on the measurement data 
using the k-Attractors algorithm. The values of input 
parameters values are in the following table. The 
support factor s for the frequent itemsets discovery 
was chosen to be 0.1 (10%) because the value of 
each class metric has a large range, thus it is more 
difficult to find frequent itemsets with a greater 
support. Additionally we have chosen to give more 
weight to the Hamming distance in relation to the 
inner product distance, because of the similar values 
of every module metric which result in a low 
Hamming distance for the most data items. The 
number of clusters in k-Attractors was derived by 



applying the graph partitioning algorithm (kMetis). 
In our case, kMetis partitioned the graph into 7 parts, 
thus the initial number of clusters was 7. 
 

Table 10: Employed Parameters 
Parameter Description 

Support s 0.10 
Hamming Distance power h 5 
Inner Product power i 3 
Number of Attractors k 7 

 
The algorithm derived 6 clusters of various sizes: 
 

Table 11: Obtained Clusters 
Cluster No Size % 

1 0.52% 
2 73.71% 
3 4.64% 
4 0.52% 
5 5.15% 
6 15.46% 

5.4 Results evaluation 
Inspection of the visualized quality profiles helps 

to obtain a quality appraisal of the various clusters 
discovered in the system. To this end, the various 
histograms are plotted side-by-side for easy 
comparison. For example, Figure 4 shows the 
histograms for the changeability sub-characteristic 
for all clusters. In once glance, one can deduce that 
the worst cluster in terms of changeability is cluster 
number 6. 

 

 
Figure 4: Clusters Changeability 

 
Alternatively, a quality engineer can inspect all 

histograms for a single cluster. For example, figure 5 
shows all four sub-characteristic histograms for 
cluster number 6. At a glance, one can deduce that 
this cluster scores well in terms of testability, but 
poorly in terms of changeability. 

 

 
Figure 5: Cluster 6 overview 

 
Histograms for lower levels can be used to zoom 

in on the root causes of problems recognized at 
higher levels. For example, figure 6 shows the 
histograms for system properties for the same 
cluster. These histograms show that the poor 
changeability is caused by the high duplication and 
complexity of this cluster. 

 

 
Figure 6: Cluster 6 Source Code Properties 

 
5.5 Discussion 
 
Using our methodology for interpreting source code 
clusters in terms of ISO/IEC 9126 quality 
characteristics, we were able to quickly obtain high-
level, but informative information about the quality 
of the system. The method has a number of attractive 
aspects. Firstly, the method compares well with the 
most naïve technique for interpreting source code 
metrics, being the identification of outliers for 
individual metrics. Such outliers are important to 
identify, but they only point to local quality 
problems. They do not say much about the quality of 
the system as a whole. 

Secondly, the method compares well with 
existing methods for translating source code 
measurements into high-level quality characteristics. 
The introduction of clustering into the process 
ensures that aggregation is done on relatively 
homogenous groups of units. Without such 
homogeneity, the high-level aggregation is 
necessarily less informative. 

Thirdly, the use of AHP, rather than other 
weighting schemes turned out to scale up nicely to 
the high number of metrics and system properties 
addressed in the case study. 
 
6. Related Work 

Plosh et al. [14] presented the EMISQ method, 
which stands for “Evaluation Method for Internal 
Software Quality” and it consists of a quality model, 
an assessment model, a set of documents and a tool 
named S.P.Q.R. (Software Product Quality 
Reporter). The EMISQ’s quality model is based on 
the ISO/IEC-9126 quality model, enhanced with 
input from the SATC and CMM quality models. 

Liang et al. [10] present a five-step practical 
procedure, which also combines the ISO/IEC 9126 
with a sophistication of AHP named fuzzy AHP 
(FAHP) in the context of the ERP selection problem 
optimization. The first step is the project initiation 
and requirements identification. Then, the feasible 
software search and selection criteria are extracted 
whereas the third step is the construction of 
hierarchy concerning the ERP software. Computing 
the values by employing the FAHP approach and 
selecting the optimal ERP software are the last two 
final steps of this procedure. 

Svanhberg et al. [16] present an empirical study 
of a method that enables quantification of the 
importance different quality attributes have for 



different software architecture patterns (e.g. layered, 
pipes and filters, blackboard etc.). For this study the 
quality characteristics of ISO/IEC 9126 were 
employed in order to cover a wide range of a 
software system’s aspects. AHP on the other hand 
was used as the decision method that will enable the 
quantitative comparison between different quality 
attributes and architecture candidates. 

Broy et al. [2] have independently developed a 
similar model of maintainability in which 
maintenance activities are strictly separated from 
facts about the system being maintained. Both 
activities and facts are organized into hierarchical 
trees whose leaves are related through a (weighted) 
matrix that indicates which atomic facts influence 
each atomic activity. The decomposition of activities 
is based on the IEEE 1219 standard maintenance 
process, and the decomposition of facts has been 
developed in concert with industrial partners. A 
simplified part of the full model is presented only. 
Specific rating guidelines or weights are not 
presented. 

Oman et al. [12] have proposed a hierarchical 
structure of measurable maintainability attributes, 
based on a review of 35 publications. They attach 
specific software metrics to the leaves of the tree and 
propose a formula for combining them into a single 
index. No specific weights are proposed to 
instantiate that formula. A much larger number of 
metrics is proposed than in [13], and they include not 
only source code metrics, but also metrics about e.g. 
changes, defects found, and documentation. 

Moreover [17] is employing clustering for 
predicting software modules’ fault proneness and 
potential noisy modules. K-Means and Neural – Gas 
algorithms were employed in order to group together 
modules with similar software measurements. A 
software engineering expert inspected the derived 
clusters and labeled them as fault prone or not. 

The value of our work is the integration of an 
improved model of quantitative quality assessment 
with the k-Attractors clustering algorithm; into a 
methodology for interpreting the derived clusters in 
terms of the ISO/IEC 9126 quality characteristics. 
Moreover, a method for visualizing the quality 
profiles associated to generated clusters using word-
sized histograms, allows drawing conclusions about 
the variation of quality scores among generated 
clusters. 

 
7. Conclusions and Future Work 

We briefly summarize our contributions, and we 
provide an outlook for possible elaborations and 
improvements of our ideas. 

 

7.1 Contributions 
We have taken various pre-existing techniques 

for data mining and software quality analysis and 
combined them into a single method for obtaining a 
high-level quality assessment for a software system 
from low-level measurements of its source code. The 
following contributions have been made: 
•  We have shown how Analytic Hierarchical 

Processing can be used to improve our previous 
approach to mapping source code measurements 
to ISO/IEC 9126 quality sub-characteristics. We 
have shown that AHP can be used to incorporate 
expert knowledge into the weighting process in 
a structured way. 

•  We have shown that clusters of source code 
units discovered by unsupervised clustering can 
be interpreted in terms of system-wide quality 
characteristics. We have shown that the 
improved mapping of source code 
measurements to ISO/IEC 9126 sub-
characteristics can be used to provide such 
interpretation. 

•  We have demonstrated that histograms or 
quality profiles are an effective means for 
summarizing the quality appraisal information 
obtained at system level. 

•  
7.2 Future work 

Many directions for future work are worth 
exploring. 
• We have opted to use the k-Attractors clustering 

algorithm for grouping source code units. Other 
grouping methods can be used. For example, the 
grouping of source code into packages, layers, 
or modules, as performed by the designers and 
developers can be used instead of clustering. It 
remains to be seen in what circumstances such 
alternative groupings are feasible and perhaps 
more informative than clustering. 

• We have focused on the maintainability 
characteristic of the ISO/IEC 9126 quality 
model. It will be worthwhile to explore the 
inclusion of further characteristics, such as 
reliability, efficiency, and usability, into the 
analysis. 

• We have made a particular selection of source 
code metrics and system properties to 
operationalize the ISO/IEC-9126 quality model. 
Experimentation is needed with other sets of 
metrics and properties. 

• We have reported on a single case study in this 
paper. Other case studies are underway. We are 
especially interested in applying the approach to 
even larger systems, and systems with different 
technology footprints. 
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