
Interpretation of Source Code Clusters in Terms of
the ISO/IEC-9126 Maintainability Characteristics

Yiannis Kanellopoulos1,2 Ilja Heitlager3

Christos Tjortjis1 Joost Visser3

1University of Manchester, School of Computer Science, UK

2University of Patras, Computer Engineering and Informatics Department, Greece
3Software Improvement Group, The Netherlands

Yiannis.Kanellopoulos@postgrad.manchester.ac.uk i.heitlager@sig.nl
Christos.Tjortjis@manchester.ac.uk j.visser@sig.nl

Abstract

Clustering is a data mining technique that allows
the grouping of data points on the basis of their
similarity with respect to multiple dimensions of
measurement. It has also been applied in the
software engineering domain, in particular to
support software quality assessment based on source
code metrics. Unfortunately, since clusters emerge
from metrics at the source code level, it is difficult to
interpret the significance of clusters at the level of
the quality of the entire system. In this paper, we
propose a method for interpreting source code
clusters using the ISO/IEC 9126 software product
quality model. Several methods have been proposed
to perform quantitative assessment of software
systems in terms of the quality characteristics
defined by ISO/IEC 9126. These methods perform
mappings of low-level source code metrics to high-
level quality characteristics by various aggregation
and weighting procedures. We applied such a
method to obtain quality profiles at various
abstraction levels for each generated source code
cluster. Subsequently, the plethora of quality profiles
obtained is visualized such that conclusions about
different quality problems in various clusters can be
obtained at a glance.

1. Introduction

Reliable assessment of the quality of large
software-intensive systems is of prime importance to
IT management for making decisions about planning,
budgeting, and controlling the processes of
developing, delivering, maintaining, and operating
these systems. The main challenge of methods and
techniques for such software product quality
assessment is to translate technical findings on the
level of source code artifacts into meaningful
appraisals of characteristics of the system as a whole.
For example, if a certain percentage of the source

code lines are part of a method with cyclomatic
complexity over 50, then what does this mean for the
testability aspect of the system’s overall quality?
Though it may seem tempting to look for a single
number to capture system quality as a whole, a more
practical approach is to provide an abstract, but
informative characterization of weak and strong parts
of the software for a selected number of high-level
quality aspects.

A breakdown of the concept of software product
quality into sub-characteristics is offered by the
ISO/IEC 9126 international standard for software
product quality [5]. The first part of this standard
provides a quality model that breaks software
product quality up into six characteristics, which are
then further decomposed into a total of 27 sub-
characteristics. This consensual identification and
definition of software quality characteristics provides
a useful frame of reference and standardized
terminology which facilitates communication and
thought concerning software quality.

Several methods have been proposed to perform
assessment of quality aspects according to ISO/IEC
9126 for a given software system, i.e. to come to a
judgment regarding these characteristics at the
system level from concrete findings at the technical
level via a repeatable and objective process [14],
[10], [16], [12]. Many of these methods focus on the
maintainability characteristic and its sub-
characteristics [4], [1], [2]. Some methods are
tailored to the object-oriented paradigm [1], while
others are paradigm-agnostic [4]. Each of these
methods employs more or less sophisticated
instruments for aggregating and summarizing
technical data. In all cases, the final quality
judgments are presented in terms of the
characteristics and sub-characteristics of the ISO/IEC
9126 quality model.

Apart from judgments on the level of an entire
system, software quality assessment may call for a

course-grained subdivision of the system into parts
with different quality profiles. Though structural
subdivision is the bread-and-butter of the software
quality engineer, it is not the most appropriate
instrument for quality assessment for several reasons.
Firstly, structural subdivisions may group together
elements that are strongly dissimilar in terms of their
quality. Secondly, along the lifetime of a system, its
structure often degrades significantly, to the point of
losing its usefulness for system comprehension. In
fact, a software quality engineer may need to invest
substantial effort to discover system structure at all.

As an alternative to structural subdivision,
clustering can be used. This is a data mining
technique that allows the grouping of data points on
the basis of their similarity with respect to multiple
dimensions of measurement [6]. It is a discovery-
driven data analysis technique, rather than a
verification-driven technique, which makes it
particularly useful in problems where there is little
prior information available about the data. It can be
applied in the context of software quality assessment
to group the elements of a software system according
to their similarities in terms of technical (source
code) measurements [17].

Unfortunately, the source code clusters that are
discovered by the application of a clustering
algorithm may be meaningful at the level of the
source code metrics from which they are computed,
but they are difficult to interpret at the level of
quality aspects. For example, when a set of Java
classes are grouped together on the basis of their
values for a suite of object-oriented design metrics,
what does their similarity in terms of these values
mean for their changeability or testability?

In this paper, we explore the possibility of
attaching meaning to source code clusters using a
method for software quality assessment in terms of
ISO/IEC 9126. In particular, we will apply a recent
improvement of the k-Means clustering algorithm,
called the k-Attractors algorithm [8], to derive
clusters from source code metrics. Subsequently, we
apply a method for software quality assessment – an
improvement over the methods of [4] and [1] – to
interpret these metrics at the level of source code
properties and finally at the level of ISO/IEC 9126
maintainability sub-characteristics. We have applied
and validated the proposed approach in an industrial
case study.

The paper is organized as follows. Section 2
presents a formal statement of the problem under
investigation. Section 3 discusses the necessary
background information on the various ingredients of
our proposal, such as cluster analysis, analytical
hierarchical processing and the ISO/IEC 9126
quality model. Section 4 discusses our proposed

approach that combines these ingredients. Section 5
presents empirical results from the analysis of a case
study and discusses the benefits and risks of our
methodology. Section 6 presents related work in the
area of software quality evaluation. Finally, section 7
concludes with a summary of our work and indicates
directions for future work.

2. Formal Problem Statement

The challenge addressed in this paper is to
interpret technical measurement data about the units
of a large software system into high-level appraisals
of the quality characteristics of its main parts.
Typically, the units are individual methods or
functions in the system. The main parts, in our
approach, will typically be a handful of groups of
such units.

A concise formalization of our problem is given
by the following function signature:

appraisal : vM×U → nB×Q×G

where:

 U: units in the system
 M: measurements performed on units
 G: groups of units
 Q: high-level quality characteristics
 B: bins in a quality profile

Thus, the input of our problem is a two-dimensional
matrix of measurement values. For each unit in U
and each measurement M there is a measurement
value v. Measurements are typically source code
metrics such as lines of code or cyclomatic
complexity. Units can be methods, classes, etc.

The output is a three dimensional matrix of
counts. These three dimensions are best understood
when we look at the output as a two-dimensional
matrix of vectors:

nB×Q×G = (nB)Q×G

Each vector nB is what we call a “quality profile”.
Each quality profile is a vector of counts that
summarizes the quality of a given group G of units
for a given quality characteristic Q. In this paper, we
will use histograms as quality profiles, and by B we
denote the bins of the histogram.

Given this formalization of the problem, we will
proceed to discuss the individual techniques that we
will combine to assemble the overall translation.

3. Background

To resolve the problem formalized above, we
have adopted and combined several techniques,

including a 2-step mapping of source code metrics to
ISO/IEC 9126 quality characteristics, analytical
hierarchical processing, and clustering.

3.1 k-Attractors Clustering

Clustering is a technique known from data
mining. On the basis of the similarity of data points
with respect to multiple dimensions of measurement,
clustering allows grouping of these points [6].
Clustering is a discovery-driven data analysis
technique, rather than a verification-driven
technique, which makes it particularly useful in
problems where there is little prior information
available about the data.

In the case of software quality evaluation,
clustering produces overviews of systems by creating
mutually exclusive groups of classes, member data
or methods, according to their similarities in terms of
technical (source code) measurements [17]. This
helps reducing the time required to understand and
evaluate the overall system. Another contribution of
this method is that it helps discovering programming
patterns and “unusual” or outlier cases which may
require attention.

For this purpose the k-Attractors algorithm was
employed which is tailored for numerical data like
measurements from source code [8]. The main
characteristics of k- Attractors are:
o It defines the desired number of clusters (i.e. the

number of k), without user intervention.
o It locates the initial attractors of cluster centers

with great precision.
o It measures similarity based on a composite

metric that combines the Hamming distance and
the inner product of transactions and clusters’
attractors.

The k-Attractors algorithm employs the maximal
frequent itemset discovery and partitioning in order
to define the number of desired clusters and the
initial attractors of the centers of these clusters. The
intuition is that a frequent itemset in the case of
software metrics is a set of measurements that occur
together in a minimum part of a software system’s
classes. Classes with similar measurements are
expected to be on the same cluster. The term
attractor is used instead of centroid, as it is not
determined randomly, but by its frequency in the
whole population of a software system’s classes.

Clustering can be formalized by the following
function signature:

cluster : vM×U → vM×U×G

Thus, a matrix of measurement values is
partitioned into a list of such matrices. Each matrix

represents a cluster of items that are similar in terms
of their measurement values.

3.2 Analytic Hierarchical Processing

AHP is a decision-making technique that reduces
complex multi-criterion decisions to a series of one-
on-one comparisons [15]. Compared to other
techniques, like ranking or rating techniques, AHP
leverages the human ability to compare single
properties of alternatives. From the result of a large
number of one-on-one comparisons, a smaller
number of weights for each criterion is synthesized.

At first let us assume that a set of objectives has
been established. Then we are trying to establish a
normalized set of weights to be used when
comparing alternatives using these objectives. AHP
forms a pair wise comparison matrix a, where the
number in the i-th row and j-th column gives the
relative importance of objective O(i) as compared
with O(j). Values that usually are used are in a 1–9
scale, with a(i,j) = 1 if the two objectives are equal
in importance, a(i,j) = 3 if O(i) is weakly more
important than O(j), a(i,j) = 5 if O(i) is strongly
more important than O(j), a(i,j) = 7 if O(i) is very
strongly more important than O(j), and a(i,j) = 9 if
O(i) is absolutely more important than O(j). After
this procedure the comparison matrix is normalized
and its eigenvalues are computed. These eigenvalues
play the role of coefficients/weights when someone
wants to evaluate the alternatives for the objectives
under examination.

A concise formalization of AHP is given by the
following function signature:

ahp : aO×O → wO

Here, O is the number of criteria or objectives. Thus,
a square matrix of relative importance scores a for
each pair of criteria is transformed into a vector of
weights w. One weight is obtained for each criterion.

After weights have been obtained by AHP, they
can be applied to aggregate input criteria into a
weighted score, with the following function:

score : wO × xO → y
score([w1,..,wO],[x1,..,xO]) = w1 x1+…+wO xO

Here, criteria x are mapped to a score y.
Below, we will use AHP to obtain high-level

quality characteristics from low-level measurement
data in a weighted manner.

3.3 Quality appraisal based on ISO/IEC 9126
Part 1 of the ISO/IEC 9126 international standard for
software product quality [5] describes a model that
dissects the notion of software product quality into

six main characteristics: functionality, reliability,
usability, efficiency, maintainability, and portability.
These main characteristics are further subdivided
into a total of 27 sub-characteristics.

Though the ISO/IEC 9126 model defines a useful
terminological framework for thought and
communication about software quality, it does not
provide an operational instrument for quality
evaluation.

In parts 2 and 3 of the model, measures are
suggested for evaluating the quality sub-
characteristics defined in the model of part 1.
However, these measures are not limited to
observations of the software product itself, but for
instance involve comparison of implemented features
to required features or measurement of the activities
of software engineers.

The Software Improvement Group (SIG) has
developed a pragmatic operationalization of the
ISO/IEC 9126 model, which has been described in
simplified form by Heitlager et al [4]. The method is
used to support IT management in activities such as
vendor management, outsourcing, product selection,
quality improvement programs, and strategic risk
mitigation.

The SIG method maps source code measurements
to quality sub-characteristics in two steps, with so-
called system properties as intermediate layer. For
the maintainability characteristic, the mapping
between system properties and quality sub-
characteristics is depicted in Figure 1. We discuss
each step in turn.

3.3.1 Mapping code measures to system

properties
For each system property, one or two source code

measures are defined, together with an aggregation
and scoring method. We discuss two examples.

Duplication: The system property “duplication”
is calculated as the percentage of all code that occurs
more than once in equal code blocks of at least 6
lines. When comparing code lines, leading spaces are
ignored. For scoring, the following table is used:

Table 1: Duplication Scores

rank duplication
++ 0-3%
+ 3-5%
o 5-10%
- 10-20%
-- 20-100%

Thus, a well-designed system should have no more
than 5% code duplication, while only systems with
lower than 3% duplication are considered excellent.

Complexity: The system property “complexity” is
measured using the well-known cyclomatic
complexity metric of McCabe [11]. This metric is
computed for each unit. To aggregate the
measurements for all units in a meaningful way, the
units are first categorized according to the following
table, published by the Software Engineering
Institute:

Table 2: Complexity Levels

MCC value risk level
1-10 simple, without much risk

11-20 more complex, moderate risk
21-50 complex, high risk
> 50 untestable, very high risk

With this table, the risk level of each unit can be
determined. Subsequently, aggregation is performed
by counting for each risk level what percentage of
code lines falls within units at that level. Finally, the
following table is used to arrive at a complexity
score at the system level:

Figure 1, ISO/IEC-9126 Maintainability Model according to [4]and [1]

Table 3: Complexity on System Level
 Maximum relative LOC

rank Moderate
risk

High risk very high
risk

++ 25% 0% 0%
+ 30% 5% 0%
o 40% 10% 0%
- 50% 15% 5%
-- - - -

Thus, to be rated as excellent for instance, a system
can have not more than 25% of code with moderate
risk, and no code with higher than moderate risk.

3.3.2 Mapping system properties to quality sub-
characteristics

The mapping of system properties to quality sub-
characteristics as defined by the ISO/IEC 9126
quality model is given for the maintainability
characteristic by the following table:

Table 4: System Properties Mapping

vo
lu

m
e

co
m

pl
ex

ity

pe
r u

ni
t

du
pl

ic
at

io
n

un
it

si
ze

un
it

te
st

in
g

analyzability x x x
changeability x x
stability x
testability x x x

Thus, for example, the sub-characteristic of
changeability is influenced by the system properties
of complexity and duplication.

3.3.3 Formalization

A concise formalization of the 2-step mapping of
SIG is given by the following two function
signatures:

map1 : vM→ pP
map2 : pP → qQ

The first function maps source code measurement
values v onto system properties p. The second
function translates system properties to quality
characteristics. The number of system properties in
the model is represented by P. As in the
formalization of the problem statement, M and Q
represent the number of measurements and the
number of quality characteristics.

AHP can be applied to introduce weights into the
ISO/IEC-9126 appraisals described above. Since the
translation from source code measurements to
quality characteristics is done in two steps, there are
two levels at which AHP can be applied: to obtain
property scores from measurements, and to obtain

quality scores from properties. At each of these
layers, multiple properties and quality scores exist,
so, in fact, the scoring function is applied many
times:

 scoreproperies : wM × mM → pP
 scorecharacteristics : wP × pP → qQ

Thus, each scoring function computes weighted sums
of the values at one level to obtain a vector of scores
on the next level.

Note that in the SIG model the source code
measurements v are already aggregated from single
units to the entire system.

aggregate : vM×U → vM

When using clustering, we are not interested in
performing aggregation so early in the process.
Instead, we apply the scoring functions per unit and
per cluster:

 scoreproperies : wM × mM×U×G → pP×U×G
 scorecharacteristics : wQ × pP×U×G → qQ×U×G

Thus, after applying clustering and the two scoring
functions in sequence, we obtain a three-dimensional
matrix that contains a quality score for each
ISO/IEC-9126 maintainability sub-characteristic of
each unit in each cluster.

3.4 Quality profiles
Since clusters can contain large numbers of units, a
separate quality score per unit is not a convenient
way to report the cluster’s quality. A good summary
can be obtained by aggregating these separate scores
into a so-called quality profile. This means that a
limited number of bins are defined, together with
criteria for assigning units to these bins. The counts
of units assigned to each bin provide a concise
summary. A particular case of such a quality profile
is a histogram.

Quality profiles are formalized by the following
function signature:

profile : xU → nB
We will apply quality profiling to each cluster and
each quality characteristic:

Figure 2, Steps of the Methodology

profile : qQ×U×G → nB×Q×G

Thus, we obtain a series of histograms that together
provide an overview of the quality of the system.

4. Method Description

We have combined AHP, clustering, ISO/IEC-
9126 appraisal, and quality profiling into a single
method for software product quality assessment. An
overview of the overall method is provided in Figure
2. The left column in the figure indicates the
application of the ISO/IEC-9126 appraisal using
AHP-generated weights to the system as a whole, i.e.
without clustering. The right column in the figure
indicates what happens if clustering is applied first.
In that case, the ISO/IEC-9126 appraisal is applied to
each cluster separately. The result of the left column
is one quality profile per quality characteristic. The
result of the right column is one profile per
combination of cluster and quality characteristic.

We will explain the various steps of the
methodology in turn.

4.1 Set the assessment parameters

The first step of the methodology consists in
choosing the values of its various parameters. These
parameters include the following:

• M: the types of measures applied to source code

units.
• P: the system properties to which the measures

M are aggregated, using weights from AHP.
• Q: the quality sub-characteristics to which the

system properties P are aggregated, using
weights from AHP.

• B: the number of bins employed to create quality
profiles.

4.2 Elicit one-on-one comparisons

The second step of the methodology is to use
AHP to configure the various scoring functions. The
pair-wise comparisons to be elicited from the experts
are determined by the choice of measures M,
properties P, and quality characteristics Q.
4.3 Metrics extraction
For each unit of the system under study, source code
measures are performed to obtain a vector vM of

measurement values.
In general, the extracted metrics are numerical

data with different ranges. Data normalization is
performed in order to fit the measurement values into
the range [0…1]. This makes the data suitable for
clustering and for scoring with AHP.

4.4 Clustering Parameters
The matrix of measurement value vectors vM×U is
divided into groups using the k-Attractors clustering
algorithm. The following table presents the input
parameters of the algorithm.

Table 5: Clustering Parameters
Parameter Description

Support s Defines the required support for the
discovery of initial attractors

Hamming
Distance power h

Defines the similarity metric’s
sensitivity to Hamming distance [8]

Inner Product
power i

Defines the similarity metric’s
sensitivity to the Inner product [8]

Number of
Attractors k

Defines the maximum number for
the derived attractors [8]

After setting these parameters, the k-Attractors

can be applied.

4.5 ISO/IEC 9126 appraisal
After clustering, the scoring functions are applied

to derive the appraisals in terms of ISO/IEC 9126
sub-characteristics.

4.6 Visualization

The histogram representation was employed for
visualization purposes as it enhances the
understanding of parameters of interest [7]. It is a
graphic representation of frequency counts of a
population. The X-axis lists the unit intervals of a
quality aspect (i.e. ISO/IEC-9126 maintainability
sub-characteristic, system property, software metric)
ranked in ascending order from left to right, and the
Y-axis contains the frequency counts. The purpose of
the histogram is to show the distribution
characteristics of a quality dimension such as overall
shape, central tendency, dispersion, and skewness.

Figure 3, Employed Assessment Parameters

5. Experimental Results
We have evaluated our proposed method by

applying it to a number of case studies taken from
the IT management consultancy practice of the
Software Improvement Group. Here we report on
one of these case studies.

The Software Improvement Group specializes in
providing IT management consultancy grounded in
source code analysis of the software systems of its
clients. SIG’s main services are Software Risk
Assessments [3] in which a single snapshot of a
system is studied in depth, and Software Portfolio
Monitoring [9] in which one or several systems are
studied over time. Currently, SIG analyses about 50
industrial-size, mission-critical software systems per
year, developed in a wide variety of technologies.

The case study reported on in this section,
concerns a 3-year old administrative system for a
regional government. The system is developed in
Java. The Java code amounts to about 400.000 lines
of code, divided over about 5000 compilation units.

5.1 Assessment parameters

Figure 3 presents the selected parameters for the
performed assessment. The assessment focused on
the maintainability aspect of software product
quality, which ISO/IEC 9126 defines in terms of the
following sub-characteristics:
• Analysability: how easy is it to understand

where in the system changes need to be made?
• Changeability: how easy is it to actually make

change?
• Stability: after making a change, how easy is it

to bring the overall system back into a consistent
state?

• Testability: how easy is it to determine whether
the change made has been made correctly?

The number of bins B of the quality profiles has
been set to 24.

5.2. Weight assignment by AHP

The pair-wise comparisons used as input for the
AHP scoring were elicited from senior consultants of
SIG. The weight elicitation was done independently
of the system assessment itself, as the consultants
had no prior knowledge of the system under study.
The elicited pair-wise comparisons gave rise to the
following weights wP for scoring of quality sub-
characteristics:

Table 6: System Properties Weights

A
na

ly
sa

-b

ili
ty

St
ab

ili
ty

C
ha

ng
e-

A

bi
lit

y

Te
st

ab
ili

ty

Volume 0.32 0.05 0.07 0.08
Duplication 0.21 0.15 0.31 0.07
Complexity 0.11 0.08 0.17 0.24

Testing 0.15 0.35 0.12 0.37
Inheritance 0.08 0.11 0.09 0.08
Coupling 0.14 0.27 0.23 0.15

Weights were also given in order to reflect the

importance of metrics in relation to source code
properties. The following tables present the weights
wM concerning the metrics relevance to the source
code properties of complexity, inheritance and
coupling respectively.

Table 7: Complexity Weights

 Complexity
Methods violating maximum complexity 0.36

LOC of units with McCabe 1-5 0.05
LOC of units with McCabe 6-10 0.08

LOC of units with McCabe 11-20 0.12
LOC of units with McCabe 21-50 0.22

LOC of units with McCabe 51 and higher 0.16

Table 8: Inheritance Weights

 Inheritance
Maximum Inheritance Depth 0.54
Method Inheritance Factor 0.30

Abstractness 0.16

Table 9: Coupling Weights

 Coupling
Fan In 0.30

Fan Out 0.30
Afferent Coupling 0.17
Efferent Coupling 0.17

Instability 0.06

5.3. Clustering
Clustering was performed on the measurement data
using the k-Attractors algorithm. The values of input
parameters values are in the following table. The
support factor s for the frequent itemsets discovery
was chosen to be 0.1 (10%) because the value of
each class metric has a large range, thus it is more
difficult to find frequent itemsets with a greater
support. Additionally we have chosen to give more
weight to the Hamming distance in relation to the
inner product distance, because of the similar values
of every module metric which result in a low
Hamming distance for the most data items. The
number of clusters in k-Attractors was derived by

applying the graph partitioning algorithm (kMetis).
In our case, kMetis partitioned the graph into 7 parts,
thus the initial number of clusters was 7.

Table 10: Employed Parameters
Parameter Description

Support s 0.10
Hamming Distance power h 5
Inner Product power i 3
Number of Attractors k 7

The algorithm derived 6 clusters of various sizes:

Table 11: Obtained Clusters
Cluster No Size %

1 0.52%
2 73.71%
3 4.64%
4 0.52%
5 5.15%
6 15.46%

5.4 Results evaluation
Inspection of the visualized quality profiles helps

to obtain a quality appraisal of the various clusters
discovered in the system. To this end, the various
histograms are plotted side-by-side for easy
comparison. For example, Figure 4 shows the
histograms for the changeability sub-characteristic
for all clusters. In once glance, one can deduce that
the worst cluster in terms of changeability is cluster
number 6.

Figure 4: Clusters Changeability

Alternatively, a quality engineer can inspect all

histograms for a single cluster. For example, figure 5
shows all four sub-characteristic histograms for
cluster number 6. At a glance, one can deduce that
this cluster scores well in terms of testability, but
poorly in terms of changeability.

Figure 5: Cluster 6 overview

Histograms for lower levels can be used to zoom

in on the root causes of problems recognized at
higher levels. For example, figure 6 shows the
histograms for system properties for the same
cluster. These histograms show that the poor
changeability is caused by the high duplication and
complexity of this cluster.

Figure 6: Cluster 6 Source Code Properties

5.5 Discussion

Using our methodology for interpreting source code
clusters in terms of ISO/IEC 9126 quality
characteristics, we were able to quickly obtain high-
level, but informative information about the quality
of the system. The method has a number of attractive
aspects. Firstly, the method compares well with the
most naïve technique for interpreting source code
metrics, being the identification of outliers for
individual metrics. Such outliers are important to
identify, but they only point to local quality
problems. They do not say much about the quality of
the system as a whole.

Secondly, the method compares well with
existing methods for translating source code
measurements into high-level quality characteristics.
The introduction of clustering into the process
ensures that aggregation is done on relatively
homogenous groups of units. Without such
homogeneity, the high-level aggregation is
necessarily less informative.

Thirdly, the use of AHP, rather than other
weighting schemes turned out to scale up nicely to
the high number of metrics and system properties
addressed in the case study.

6. Related Work

Plosh et al. [14] presented the EMISQ method,
which stands for “Evaluation Method for Internal
Software Quality” and it consists of a quality model,
an assessment model, a set of documents and a tool
named S.P.Q.R. (Software Product Quality
Reporter). The EMISQ’s quality model is based on
the ISO/IEC-9126 quality model, enhanced with
input from the SATC and CMM quality models.

Liang et al. [10] present a five-step practical
procedure, which also combines the ISO/IEC 9126
with a sophistication of AHP named fuzzy AHP
(FAHP) in the context of the ERP selection problem
optimization. The first step is the project initiation
and requirements identification. Then, the feasible
software search and selection criteria are extracted
whereas the third step is the construction of
hierarchy concerning the ERP software. Computing
the values by employing the FAHP approach and
selecting the optimal ERP software are the last two
final steps of this procedure.

Svanhberg et al. [16] present an empirical study
of a method that enables quantification of the
importance different quality attributes have for

different software architecture patterns (e.g. layered,
pipes and filters, blackboard etc.). For this study the
quality characteristics of ISO/IEC 9126 were
employed in order to cover a wide range of a
software system’s aspects. AHP on the other hand
was used as the decision method that will enable the
quantitative comparison between different quality
attributes and architecture candidates.

Broy et al. [2] have independently developed a
similar model of maintainability in which
maintenance activities are strictly separated from
facts about the system being maintained. Both
activities and facts are organized into hierarchical
trees whose leaves are related through a (weighted)
matrix that indicates which atomic facts influence
each atomic activity. The decomposition of activities
is based on the IEEE 1219 standard maintenance
process, and the decomposition of facts has been
developed in concert with industrial partners. A
simplified part of the full model is presented only.
Specific rating guidelines or weights are not
presented.

Oman et al. [12] have proposed a hierarchical
structure of measurable maintainability attributes,
based on a review of 35 publications. They attach
specific software metrics to the leaves of the tree and
propose a formula for combining them into a single
index. No specific weights are proposed to
instantiate that formula. A much larger number of
metrics is proposed than in [13], and they include not
only source code metrics, but also metrics about e.g.
changes, defects found, and documentation.

Moreover [17] is employing clustering for
predicting software modules’ fault proneness and
potential noisy modules. K-Means and Neural – Gas
algorithms were employed in order to group together
modules with similar software measurements. A
software engineering expert inspected the derived
clusters and labeled them as fault prone or not.

The value of our work is the integration of an
improved model of quantitative quality assessment
with the k-Attractors clustering algorithm; into a
methodology for interpreting the derived clusters in
terms of the ISO/IEC 9126 quality characteristics.
Moreover, a method for visualizing the quality
profiles associated to generated clusters using word-
sized histograms, allows drawing conclusions about
the variation of quality scores among generated
clusters.

7. Conclusions and Future Work

We briefly summarize our contributions, and we
provide an outlook for possible elaborations and
improvements of our ideas.

7.1 Contributions
We have taken various pre-existing techniques

for data mining and software quality analysis and
combined them into a single method for obtaining a
high-level quality assessment for a software system
from low-level measurements of its source code. The
following contributions have been made:
• We have shown how Analytic Hierarchical

Processing can be used to improve our previous
approach to mapping source code measurements
to ISO/IEC 9126 quality sub-characteristics. We
have shown that AHP can be used to incorporate
expert knowledge into the weighting process in
a structured way.

• We have shown that clusters of source code
units discovered by unsupervised clustering can
be interpreted in terms of system-wide quality
characteristics. We have shown that the
improved mapping of source code
measurements to ISO/IEC 9126 sub-
characteristics can be used to provide such
interpretation.

• We have demonstrated that histograms or
quality profiles are an effective means for
summarizing the quality appraisal information
obtained at system level.

•
7.2 Future work

Many directions for future work are worth
exploring.
• We have opted to use the k-Attractors clustering

algorithm for grouping source code units. Other
grouping methods can be used. For example, the
grouping of source code into packages, layers,
or modules, as performed by the designers and
developers can be used instead of clustering. It
remains to be seen in what circumstances such
alternative groupings are feasible and perhaps
more informative than clustering.

• We have focused on the maintainability
characteristic of the ISO/IEC 9126 quality
model. It will be worthwhile to explore the
inclusion of further characteristics, such as
reliability, efficiency, and usability, into the
analysis.

• We have made a particular selection of source
code metrics and system properties to
operationalize the ISO/IEC-9126 quality model.
Experimentation is needed with other sets of
metrics and properties.

• We have reported on a single case study in this
paper. Other case studies are underway. We are
especially interested in applying the approach to
even larger systems, and systems with different
technology footprints.

Acknowledgements
This research work has been partially supported

by the Greek General Secretariat for Research and
Technology (GSRT) and Dynacomp S.A. within the
program “P.E.P. of Western Greece Act 3.4”.

REFERENCES

[1] P. Antonellis, D. Antoniou, Y. Kanellopoulos, C.
Makris, E. Theodoridis, C. Tjortjis, and
N.Tsirakis, “A data mining methodology for
evaluating maintainability according to ISO/IEC-
9126 software engineering – product quality
standard,” in Special Session on System Quality
and Maintainability (SQM), 2007.

[2] M. Broy, F. Deissenboeck, and M. Pizka,
“Demystifying maintainability,” in Fourth
International Workshop on Software Quality
Assurance (SOQUA 2007). ACM, 2007.

[3] Arie van Deursen, Tobias Kuipers: Source-Based
Software Risk Assessment. ICSM 2003: 385-388

[4] I. Heitlager., T. Kuipers, and J. Visser, A
Practical Model for Measuring Maintainability,
In proceedings of the 6th International
Conference on the Quality of Information and
Communications Technology (QUATIC 2007),
IEEE Computer Society Press, 2007.

[5] ISO/IEC 9126-1, Software Engineering –
Product Quality Int’l Standard Quality Model,
Geneva 2003.

[6] A.K Jain, M.N. Murty, and P.J. Flynn, “Data
Clustering: A Review”, ACM Computing
Surveys, ACM, Vol. 31, No 3, September 1999,
pp. 264-323.

[7] S.H. Kan. “Metrics and Models in Software
Quality Engineering”. Addison-Wesley, 2003.

[8] Y. Kanellopoulos., P. Antonellis, C. Tjortjis, C.
Makris, “k-Attractors, A Clustering Algorithm
for Software Measurement Data Analysis”, In
Proc. IEEE 19th International Conference on
Tools for Artificial Intelligence (ICTAI 2007),
IEEE Computer Society Press 2007

[9] Tobias Kuipers, Joost Visser: A Tool-based
Methodology for Software Portfolio Monitoring.
Software Audit and Metrics 2004: 118-128

[10] S. Liang, C. Lien, “Selecting the Optimal ERP
Software by Combining the ISO 9126 Standard
and Fuzzy AHP Approach”, Journal of
Contemporary Management Research, Pages 23-
44, Vol. 3, No. 1, March 2007

[11] T.J. McCabe, “A complexity measure.” IEEE
Trans. Software Eng., vol. 2, no. 4, pp. 308–320,
1976.

[12] P. Oman and J. Hagemeister, “Metrics for
assessing a software system’s maintainability,”
in Proceedings of Conference on Software
Maintenance, 1992, Nov. 1992, pp. 337–344.

[13] P. Oman and J. R. Hagemeister, “Construction
and testing of polynomials predicting software
maintainability.” Journal of Systems and
Software, vol. 24, no. 3, pp. 251–266, 1994.

[14] R. Plösch, H. Gruber, A. Hentschel, Ch. Körner,
G. Pomberger, S. Schiffer, M. Saft, S. Storck:
The EMISQ Method - Expert Based Evaluation
of Internal Software Quality, Proc. 3rd IEEE
Systems and Software Week, 2007, Baltimore,
USA, IEEE Computer Society Press, 2007.

[15] T. Saaty Multicriteria Decision Making: The
Analytic Hierarchy Process, Vol. 1, AHP Series,
RWS Publications, 502 pp., 1990

[16] S. Svahnberg, C. Wohlin, “An Investigation of a
Method for Identifying a Software Architecture
Candidate with Respect to Quality Attributes”,
Journal of Empirical Software Engineering,
pages 140-181, Vol. 10, 2005

[17] S. Zhong, T.M. Khoshgoftaar, and N. Seliya,
“Analyzing Software Measurement Data with
Clustering Techniques”, IEEE Intelligent
Systems, Vol. 19, No. 2, 2004, pp. 20-27.

