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Abstract 
 

Program comprehension is an important part of 
software maintenance, especially when program structure 
is complex and documentation is unavailable or outdated.  
Data mining can produce structural views of source code 
thus facilitating legacy systems understanding.  

This paper presents a method for mining association 
rules from code aiming at capturing program structure 
and achieving better system understanding. A tool was 
implemented to assess this method. It inputs data 
extracted from code and derives association rules. Rules 
are then processed to abstract programs into groups 
containing interrelated entities.  Entities are grouped 
together if their attributes participate in common rules. 
The abstraction is performed at the function level, in 
contrast to other approaches, that work at the program 
level.  

The method was evaluated using real, working 
programs. Programs are fed into a code analyser which 
produces the input needed for the mining tool. Results 
show that the method facilitates program comprehension 
by only using source code where domain knowledge and 
reliable documentation are not available or reliable.  
 
 
1. Introduction 

 
The purpose of this work is to facilitate program 

comprehension during software maintenance, by 
producing groupings of program entities according to their 
similarities, such as the use of variables, procedure calls 
and so on. 

Software maintenance is the last and most difficult 
stage in the software lifecycle [17], and is often performed 
with limited understanding of the design and the overall 
structure of a system because of commercial pressures and 
time limitations. Fast, unplanned modifications, based on 

partial understanding of a system, give rise to increased 
code complexity and deteriorated modularity [21], thus 
resulting in 50%-90% of the maintainers’ time to be spent 
on program comprehension [9], [14], [15]. 

Understanding how a program is implemented and 
how it functions is a major factor when maintaining a 
computer program. Syntactic and semantic knowledge can 
be described in models (chunks) that explicitly represent 
different dependency relationships between various 
software artefacts [10]. However it is recognised that there 
are no explicit guidelines given a program understanding 
task, nor are there good criteria to decide how to represent 
knowledge derived by and used for it [4].  

There are many types of tools available to help with 
software comprehension, emphasizing different aspects of 
systems and modules, and usually creating new 
representations for them [6], [19].  Some tools perform 
deductive or algorithmic analysis of program properties or 
structure, e.g. program slicers [18] or dominance tree 
analysers [5].  

Creating a decomposition of a program into a set of 
subsystems and grouping them according to their 
interrelationships is of great significance for any 
maintenance attempt [3], [8], [12], [13], [16], [19], [20], 
[23], [24]. 

The remainder of this paper presents data mining 
methods used for program comprehension in section 2; 
section 3 describes the proposed method, including the 
data model and the algorithm used. Section 4 introduces 
the design and implementation details of the tool used as a 
demonstrator. Section 5 discusses results.  Extensive 
conclusions and further work are respectively presented in 
sections 6 and 7. 

 
2. Background 

 
Data mining techniques can discover non-trivial and 

previously unknown relationships among records or 



attributes in large databases [11]. This observation 
highlights the capability of data mining to educe useful 
knowledge about the design of large legacy systems. Data 
mining has three fundamental features that make it a 
valuable tool for program comprehension and related 
maintenance tasks [8]: 
a) It can be applied to large volumes of data. This implies 

that data mining has the potential to analyse large 
legacy systems with complex structure.  

b) It can be used to expose previously unknown non-
trivial patterns and associations between items in 
databases. Therefore, it can be utilised in order to 
reveal hidden relationships between system or program 
components.  

c) Its techniques can extract information regardless of 
any previous domain knowledge. This feature is ideal 
for maintaining software with poor knowledge about 
its functionality or implementation details.  
Data mining has been previously used for clustering 

over a Module Dependency Graph (MDG) [13] and for 
identification of subsystems based on associations (ISA 
methodology) [8]. Both approaches provide a system 
abstraction up to the program level. The former creates a 
hierarchical view of system architecture into subsystems, 
based on the components and the relationships between 
components that can be detected in source code. This 
information is captured through an MDG, which is then 
analysed in order to extract the required structural view. 
The latter approach produces a decomposition of a system 
into data cohesive subsystems by detecting associations 
between programs sharing the same files. 

Both methods provide system decomposition at the 
program level where each subsystem consists of a number 
of programs or files. The approach proposed in this paper 
produces decompositions at a lower level where the 
subsystem components could be functions or even single 
statements. 

 
3. Proposed method 

 
Association rules constitute one of the prominent data 

mining methods. Several algorithms have been proposed 
for mining association rules from large databases. Most of 
them deal with sales data stored in transactional databases 
and produce rules used for marketing purposes [2], [22], 
[24], [25]. 

The method proposed here analyses source code and 
produces useful rules derived from program entities, 
facilitating program structure comprehension. The method 
aims at producing a system abstraction at a level lower 
than previous approaches.  

A tool utilising the Apriori algorithm [1] was built in 
order to extract association rules from source code 
elements. Programs can then be decomposed into groups 

containing entities which participate in common rules. 
The proposed method considers two key issues: modelling 
the input data and selecting an appropriate algorithm to be 
tailored and applied to these data. Both issues are 
discussed in the following subsections. 

 
3.1 Data Model 

 
Algorithms for mining association rules are 

traditionally used for market basket analysis. This work 
addresses a different application domain: that of source 
code analysis, thus a suitable data model is needed. This 
model should comply with formatting requirements 
imposed by existing algorithms. 

Market basket analysis employs the <transaction, 
items> model, where each transaction consists of a 
number of items purchased. For source code analysis, we 
use blocks of code instead of transactions; thus blocks 
correspond to the entities of the model. The blocks of 
code may contain low-level code elements such as 
variables, data types and calls to other blocks. These 
elements correspond to attributes of the model. Table 1 
summarises the proposed data model, which is of the form 
<code entity, attributes of this entity>. 

Attributes need to be qualitative, that is boolean, so as 
to apply existing algorithms without major changes in 
their reasoning. A table where each row stands for a block 
of code and each column stands for an attribute represents 
the model. The value of the attribute is “1” when the 
corresponding code element is used in the relevant block 
otherwise it has a null value. 

 
Table 1: Data models in Market Basket Analysis 

and Source Code Analysis 

DATA 
MODEL 

MARKET BASKET 
ANALYSIS 

SOURCE CODE 
ANALYSIS 

ENTITIES Transactions Blocks of code 

ATTRIBUTES Market Items Variables, data types, 
calls to blocks of code 

 
It is important to define blocks of code in such a way 

that the majority of the source code is contained within a 
block. When defining entities, as blocks of code, in most 
programming languages there are two alternatives: using 
individual statements or modules. The former would 
result in analysing a program to its entirety. However, this 
analysis would be very detailed and the results extremely 
complex, difficult and time consuming to understand. 
Furthermore, many statements cannot be considered in 
isolation, especially if they participate in a compound 
statement such as <if … else>, <switch> and so on. 



Representing these statements as single entities may 
produce misleading information about the program.  

This is the reason why we chose to use modules 
(functions, classes, procedures) for defining blocks. 
Modules are defined in several programming languages 
and can be easily identified within a program as their start 
and end follow specific conventions. This facilitates 
automated input model extraction from the source code. 
Modules have the advantage of including a significant 
amount of code that consists of several statements such as 
variable declarations and assignments. As a result, 
modules may contain a large number of attributes. 
Furthermore this choice facilitates grouping of related 
modules, as it is much easier to identify commonalties on 
the large range of attributes. More attributes in common 
imply better quality of association rules and of consequent 
groups.  

 In summary, a data motel with program modules for 
entities is more suitable for the purposes of the proposed 
method. Nevertheless, adopting a single statement model 
can always be considered as a complementary one, in case 
a more detailed decomposition of a program is required. 

 
3.2 Algorithm description 

 
As discussed previously, the data model used as input 

consists of blocks of code and code elements 
corresponding to entities and attributes respectively. Each 
entity is represented by a record in a database table. The 
algorithm inputs a table and produces a set of block 
groups. The blocks in each group have attributes in 
common, which occur in the same association rules. The 
number of common association rules indicates how strong 
the relationship among the blocks is. Analysing programs 
into such block groups results in a view of the program 
structure. 

The algorithm we used is decomposed into three 
phases: 
1. Creation of large itemsets.  
 By means of the user-defined minimum support, find 

all the sets of items with support equal to or greater 
than this minimum, where support is the percentage of 
block entities that contain the itemset. 

2. Creation of association rules.  
 Use the large itemsets to generate the required 

association rules. Only rules with confidence equal to 
or greater than a user-specified minimum must be 
produced. For a rule of the form BA ⇒ , confidence 
is defined as support( BA ∪ ) / support(A). 

3. Generation of block groups.  
 Find all block entities that contain common attributes 

participating in the same association rules. Create 

groups of blocks according to the number of common 
association rules. 
The first two phases are based on the Apriori 

algorithm [2]. The last one involves producing groups 
containing block entities with attributes that belong to the 
same association rules. Compared to the ISA methodology 
which uses the same algorithm, the proposed method does 
not terminate when large itemsets are created. It also 
extracts important association rules between source code 
components and, based on these associations, reveals 
related blocks of code. Thus, it provides two-level 
information about the program under examination: related 
blocks of code and associated program attributes. 

 
4. Tool Design and Implementation 
 

To illustrate the scope and assess the applicability of 
the method a tool was designed and implemented. It 
consists of three subsystems, each one of which performs 
a specific operation: 
•  Database Management Subsystem  
 This is responsible for managing the data either 

provided by the user (input data) or created during the 
mining process (tables of rules and groups). It handles 
all database operations and ensures the integrity of 
stored data. It also determines the way of 
communication between the tool and the database. 

•  Processing Subsystem 
  It is the heart of the system, responsible for executing 

the algorithm for mining association rules, as described 
earlier. It inputs data from the Database Management 
Subsystem, performs the three processing phases 
(creation of itemsets, creation of rules, generation of 
block groups) and sends results to the Input/Output 
Subsystem for display. 

•  Input / Output Subsystem 
 It is responsible for communication with the end-user. It 

reads values for minimum support and confidence, 
informs the user of the processing progress, and displays 
results. 

The main application window (Fig. 1) displays 
information during all processing phases. It contains three 
grids for displaying the created itemsets, rules and block 
groups respectively. It also contains two read-only text 
boxes for displaying the current minimum support and 
confidence, and buttons for triggering the creation of rules 
and groups. Through two combo boxes, the user can select 
groups to display, according to their size and the number 
of common rules.  

 



 
Fig. 1: Main Window 

 
5. Results 
 

The method was tested using real programs which 
were inputted to the tool. For evaluation we used parts of 
a software system implemented in COBOL that manages 
student accommodation. It consists of a number of small 
programs of average size of 1000 lines of code which 
implement various functions. We will briefly discuss the 
results achieved by applying the method to one of these 
programs, ‘Register’, as a case study. Similar results were 
acquired when other programs were used. 

The data model used for COBOL involves procedures 
as entities, and binary attributes depending on the 
presence of user-defined and language-defined identifiers. 
More detailed description of the model can be found at 
[7]. Minimum support and confidence were set to 5% to 
90% respectively in order to produce a considerable 
amount of rules, enough for allowing their grouping. 

Table 2 displays the groups of procedures produced. 
Figure 2 shows a graphical representation of the results. 
Each procedure is represented by a box with a number in 
it corresponding to the relevant procedure. Edges connect 
procedures with common rules. The number of common 
rules is shown at the intersection of the edges. Groups of 
procedures are used to form “collections” indicated by 
polygons.  

As depicted in Figure 2, some procedures (like 19, 24 
and 36) participate in many groups. When placing 
procedures in collections, two criteria were used: a) 
groups with more common rules get priority over groups 
with less common rules and b) the number of common 
rules being equal, then the number of procedures the 
current procedure is connected to, determines the 
collection it belongs to. If these criteria fail to determine 
the collection a procedure belongs, a larger set of 
association rules is produced for disambiguation. 

For example, procedure 24 belongs to collection C 
instead of B, because it has more common rules with 
procedures in collection C (9 common rules with 
procedure 15) than with objects of collection B (4 
common rules with procedure 36). Procedure 36 has the 
same number of common rules (2) with procedure 27 in 
collection A and procedures 17, 21 and 26 in collection B. 
However, according to the second criterion, it belongs to 
collection B, because it is connected to more procedures 
from this collection. Procedure 19 has 9 common rules 
with two procedures from collection A and two from 
collection C. Thus an experiment with lower confidence 
(20%) was needed to realise that it is more related to 
procedure 27, so it belongs to collection A. 

 
Table 2: Produced Groups 

ID Group 
Members IDs 

Group 
Size 

Common 
Rules Common Rules IDs 

47 15, 19, 24 3 9 2, 3, 5, 6, 14, 15, 16, 17, 18 
64 19, 27, 44 3 9 7, 8, 9, 10, 22, 23, 24, 25, 26 
30 24, 36 2 4 1, 11, 12, 20 
93 17, 21, 24, 36 4 2 1, 11 
77 23, 45, 46 3 2 4, 21 
81 24, 26, 36 3 2 1, 12 
3 8, 15 2 2 13, 19 

37 27, 36 2 2 19, 20 
155 17, 21, 24, 25, 

26, 36, 43 
7 1 1 

90 8, 15, 27, 36 4 1 19 
121 23, 36, 45, 46 4 1 4 
43 4, 8, 15 3 1 13 
83 24, 27, 36 3 1 20 

 
Results were assessed by referring to the source code 

of the program. For example, collection D consists of 
procedures do-letter(23), screen-down(45) and screen-
up(46). These procedures have two common rules: 4 (2 � 
119) and 21 (2, 17 � 119). These rules contain the 
following items: 2 (ring-bell), 17 (reg-screen-no) and 119 
(pr_show-reg-screen1). As shown in Fig. 3, the three 
procedures use all these items (shown in bold characters) 
and actually perform similar operations. Thus, collection 
D gives a potential subsystem of the initial program. All 
produced collections were checked against the source 
code, and it was found that they indeed contain related 
procedures. 

Another method for testing the validity of results is by 
comparing them to a mental model that humans modulate 
about the program structure. For the tested program, one 
of the original developers of the system who is responsible 
for its maintenance was requested to produce a mental 

                                                 
1 Prefix “pr” indicates a procedure call. Item pr_show-reg-screen is a 
call to procedure show-reg-screen. 



model for it, by distributing its procedures into subsystems 
according to their functionality. This model consists of ten 
subsystems shown in Table 3 (control, interface and 
students being the most important). Comparing the model 
to the produced program decomposition, the following 
results were obtained: 
•  Collection A: all procedures belong to the students 

subsystem (100% success). 
•  Collection B: half of the procedures belong to the 

control subsystem and the remaining to the students 
subsystem (50% success). However, all control 
procedures were placed on the same collection. 

•  Collection C: three procedures belong to the students 
subsystem and one to the help subsystem (75% success). 

•  Collection D: two procedures belong to the interface 
subsystem and one to the students subsystem (success 
66%). However, procedure do-letter handles printing 
operation, which can be considered as an interface to the 
user. 
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COLLECTION A
19: clear-master-record
27: execute-save-register
44: save-register

COLLECTION B
17: check-job-end
21: conditional-register-clear
25: end-master-update
26: execute-register-clear
36: main-processing
43: save-master-change

COLLECTION C
4: call-change-priority
8: call-helplist
15: call-res-in
24: do-print-register

COLLECTION D
23: do-letter
45: screen-down
46: screen-up

 
Fig. 2: Visual Representation of Produced 

Groups 
 
Summarising, 72.75% of the produced abstraction is 

consistent to the mental model, a relatively good result 
considering the following facts: a) the mental model does 
not capture the interconnections between procedures from 

different subsystems, although these connections play an 
important role in the system operation, and b) mental 
models tend to be subjective, depending on the mental 
processes of the human brain. 

 
6. Conclusions 

 
An empirical evaluation of the results revealed the 

ability of the method to produce meaningful results that 
can be utilised in order to generate a structural view of the 
examined program. The method can reveal important 
associations in two levels: a) between blocks of code and 
b) among source code components (variables, procedure 
calls) inside these blocks. Evaluation of the proposed 
method highlighted certain issues regarding the approach 
and interpretation of results, which will be discussed in 
the following paragraphs. 

 
 screen-up.

IF reg-screen-no > 1

SUBTRACT 1 FROM reg-screen-no

CALL "clearx"

CANCEL "clearx"

PERFORM show-reg-screen

PERFORM set-cur-pos

ELSE

CALL ring-bell

END-IF.

***********************************************

screen-down.

IF reg-screen-no < 5

ADD 1 TO reg-screen-no

CALL "clearx"

CANCEL "clearx"

PERFORM show-reg-screen

PERFORM set-cur-pos

ELSE

CALL ring-bell

END-IF.

***********************************************

do-letter.

IF reg-screen-no = 4

PERFORM set-new-classification

PERFORM show-reg-screen

ELSE

CALL ring-bell

END-IF.

Fig. 3: Code Extract from ‘Register’ 

 



Table 3: Mental Model for ‘Register’ 
Subsystem Procedure 
booking type call-bkdef 

Control 
 
 

check-job-end, conditional-register-clear, conditional-
register-exit, goto-reject, goto-transfer, initialisation, 
main-control, main-processing, termination 

dates call-daterels 

errors call-error 

event history call-res-history, register-event-history 

help system call-helplist 
Interface 

 
 

call-caps, call-left-caps, call-left-upper, call-moveleft, 
call-upper, clear-error, clear-upper-lower, inc-line-col, 
screen-down, screen-up, set-cur-pos 

log file put-day 

students 
 
 
 
 
 

execute-save-register, get-next-free-entry,  
save-register, accept-reg-screen, call-res-in, get-note-
indicator, set-night-text, show-reg-screen, do-letter, do-
print-register, print-register-conditionally, call-change-
priority, call-details, call-i-request, call-request, clear-
master-record, end-master-update, execute-register-
clear, issue-register-letter, prepare-register-details, 
prepare-resident-open-room, read-master, save-
master-change, set-classify-status, set-new-
classification 

user validation valid-user-processing 
 
Input tables produced for source code analysis tend to 

be sparse. This can be explained by the fact that a 
program usually contains variables used for specific 
reasons, by specific procedures. Only some global 
variables are spread across several procedures. As a 
matter of fact, any procedure can only use a limited 
number of variables. Thus, records in the input table for 
each procedure have very few non-null fields 
corresponding to variables used. On the contrary, in 
transactional databases, each transaction may contain any 
item with the same probability as any user can potentially 
buy any product. 

Based on the previous observation, it can be deducted 
that very small support values should be set in order to 
produce a number of large itemsets. By decreasing 
support, more items pass the support threshold, more large 
itemsets are created, and thus, more information about 
block groups can be retrieved.  

The groups produced may not contain all the 
procedures. Excluded procedures normally contain items 
with very low support, below the user specified minimum. 
These procedures may perform special operations and 
normally do not appear in any group. However, if 
minimum support is not low enough, important 
information may be omitted and several ‘interesting’ 
procedures may not be present in the results. Thus it is 

important to keep low support values to ensure that only 
‘isolated’ procedures of limited interest are excluded from 
results. 

High confidence values produce strong rules between 
items. For example, a rule of the form <varA�varB> 
with 100% confidence implies that variable B is always 
present when variable A is present. Such rules reveal 
possible participation of variables in very specific tasks. 
These rules should be used in order to produce groups of 
interconnected procedures that deal with specific tasks. 

Some procedures possibly participate in many groups. 
These procedures are likely to contain a larger number of 
items than others. For example, in the test presented in the 
previous section, procedure 36 is present in eight groups 
out of a total of thirteen. As expected, this procedure is 
the main procedure of the program that contains 32 items 
(variables and calls to other procedures), when all the 
other procedures do not contain more than 10 items. 
Generally, such procedures can be considered as 
communication links between different groups. 

Generated results need to be summarised and 
interpreted, in order to create meaningful collections of 
program entities. The creation of such collections is based 
on the result groups. Procedures that participate in a group 
having a large number of common rules undoubtedly 
belong to the same group. However, the number of 
common rules is not the only criterion. The occurrence of 
the common rules among the groups may also indicate a 
relation between some procedures. For example, in the 
test presented in the previous section, procedures 4, 8 and 
15 share only one common rule (13). This rule does not 
appear in any other group. Although it has a low 
occurrence among the groups, its presence indicates a 
relationship among the procedures that share it. For 
procedures that participate in several groups, two criteria 
were identified, so as to decide in which collection they 
should be placed: the number of common rules in each 
group and the number of related procedures. 

The produced results were verified by referring to the 
source code of the programs. This method can be applied 
to small programs up to some thousand lines of code, but 
it is very difficult to be used in much larger programs. In 
such cases, one could rely on the program’s mental model, 
which represents the program structure from the software 
engineer’s point if view. However, this method is not 
reliable enough because different people may have a 
different mental model about the same program, according 
to their mental processes. 

 
7. Further Work 

 
As mentioned earlier, the suggested approach for 

mining association rules from source code is new. This 
section provides a number of possible enhancements to 



the approach and the tool in particular, that should be 
performed in order to achieve a complete solution to the 
problem of source code analysis. These improvements 
include: 
•  Testing other algorithms for mining association 

rules. 
Apriori was selected to be the base algorithm for 

designing the tool. However, it would be challenging to 
use other algorithms for mining association rules that may 
perform equally well or even better than Apriori, 
especially in cases with very large databases. This 
comparative assessment could result in a toolset for 
mining rules.  
•  Formation of a quantitative input model. 

The data model proposed in this method is qualitative. 
A possible enhancement would be the formation of a 
quantitative data model. Such a model would be richer as 
it could capture information not only for the 
existence/absence of code items in blocks, but also for the 
number of item occurrences inside blocks. For example a 
rule of the form <itemA: 3 � itemB: [2 … 5]> would 
mean: “if itemA occurs 3 times then itemB occurs 2 up to 
5 times”. We should note that adoption of a quantitative 
data model requires an algorithm that can produce and 
process quantitative association rules. 
•  Automatic derivation of input data. 

The proposed method assumes the existence of input 
data from source code, which can be extracted either 
manually or automatically. However, in real conditions, it 
is impossible to manually create input data from programs 
consisting of thousands LOC. Even for smaller programs, 
this task is time consuming. Thus, in order to provide an 
integrated solution to source code analysis, the automatic 
creation of input data should be incorporated in the 
methodology. The present prototype tool is equipped with 
a source code analyser which can extract data from source 
code or even the outcome of a parser. 
•  Further testing on larger programs. 

Validation tests were executed on programs containing 
up to 1000 lines of code. In order to achieve a better 
evaluation of the produced results, more tests should be 
performed on larger programs. However, in order to 
proceed to these tests, the previous enhancement should 
be implemented first, so as to get the input data from these 
programs automatically. 
•  Source code analysis at the statement level. 

As previously mentioned block entities can be either 
modules (functions, classes, procedures) or single 
statements. Up to now, the suggested approach 
concentrated on a model consisting of modules and the 
ultimate aim was to create program decomposition in 
groups containing interconnected modules. On the other 
hand, the tool can also be used in order to perform a 
source code analysis in the statement level. To do so, the 

input data should consist of records representing 
statements and the final results will produce groups of 
related statements. This kind of analysis is useful, when 
local parts of a program need to be understood. 
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