

Facilitating Program Comprehension

by Mining Association Rules from Source Code

Christos Tjortjis, Loukas Sinos, Paul Layzell
Department of Computation, UMIST, PO Box 88, Manchester, M60 1QD, UK

Email: christos@co.umist.ac.uk

Abstract

Program comprehension is an important part of
software maintenance, especially when program structure
is complex and documentation is unavailable or outdated.
Data mining can produce structural views of source code
thus facilitating legacy systems understanding.

This paper presents a method for mining association
rules from code aiming at capturing program structure
and achieving better system understanding. A tool was
implemented to assess this method. It inputs data
extracted from code and derives association rules. Rules
are then processed to abstract programs into groups
containing interrelated entities. Entities are grouped
together if their attributes participate in common rules.
The abstraction is performed at the function level, in
contrast to other approaches, that work at the program
level.

The method was evaluated using real, working
programs. Programs are fed into a code analyser which
produces the input needed for the mining tool. Results
show that the method facilitates program comprehension
by only using source code where domain knowledge and
reliable documentation are not available or reliable.

1. Introduction

The purpose of this work is to facilitate program

comprehension during software maintenance, by
producing groupings of program entities according to their
similarities, such as the use of variables, procedure calls
and so on.

Software maintenance is the last and most difficult
stage in the software lifecycle [17], and is often performed
with limited understanding of the design and the overall
structure of a system because of commercial pressures and
time limitations. Fast, unplanned modifications, based on

partial understanding of a system, give rise to increased
code complexity and deteriorated modularity [21], thus
resulting in 50%-90% of the maintainers’ time to be spent
on program comprehension [9], [14], [15].

Understanding how a program is implemented and
how it functions is a major factor when maintaining a
computer program. Syntactic and semantic knowledge can
be described in models (chunks) that explicitly represent
different dependency relationships between various
software artefacts [10]. However it is recognised that there
are no explicit guidelines given a program understanding
task, nor are there good criteria to decide how to represent
knowledge derived by and used for it [4].

There are many types of tools available to help with
software comprehension, emphasizing different aspects of
systems and modules, and usually creating new
representations for them [6], [19]. Some tools perform
deductive or algorithmic analysis of program properties or
structure, e.g. program slicers [18] or dominance tree
analysers [5].

Creating a decomposition of a program into a set of
subsystems and grouping them according to their
interrelationships is of great significance for any
maintenance attempt [3], [8], [12], [13], [16], [19], [20],
[23], [24].

The remainder of this paper presents data mining
methods used for program comprehension in section 2;
section 3 describes the proposed method, including the
data model and the algorithm used. Section 4 introduces
the design and implementation details of the tool used as a
demonstrator. Section 5 discusses results. Extensive
conclusions and further work are respectively presented in
sections 6 and 7.

2. Background

Data mining techniques can discover non-trivial and

previously unknown relationships among records or

attributes in large databases [11]. This observation
highlights the capability of data mining to educe useful
knowledge about the design of large legacy systems. Data
mining has three fundamental features that make it a
valuable tool for program comprehension and related
maintenance tasks [8]:
a) It can be applied to large volumes of data. This implies

that data mining has the potential to analyse large
legacy systems with complex structure.

b) It can be used to expose previously unknown non-
trivial patterns and associations between items in
databases. Therefore, it can be utilised in order to
reveal hidden relationships between system or program
components.

c) Its techniques can extract information regardless of
any previous domain knowledge. This feature is ideal
for maintaining software with poor knowledge about
its functionality or implementation details.
Data mining has been previously used for clustering

over a Module Dependency Graph (MDG) [13] and for
identification of subsystems based on associations (ISA
methodology) [8]. Both approaches provide a system
abstraction up to the program level. The former creates a
hierarchical view of system architecture into subsystems,
based on the components and the relationships between
components that can be detected in source code. This
information is captured through an MDG, which is then
analysed in order to extract the required structural view.
The latter approach produces a decomposition of a system
into data cohesive subsystems by detecting associations
between programs sharing the same files.

Both methods provide system decomposition at the
program level where each subsystem consists of a number
of programs or files. The approach proposed in this paper
produces decompositions at a lower level where the
subsystem components could be functions or even single
statements.

3. Proposed method

Association rules constitute one of the prominent data

mining methods. Several algorithms have been proposed
for mining association rules from large databases. Most of
them deal with sales data stored in transactional databases
and produce rules used for marketing purposes [2], [22],
[24], [25].

The method proposed here analyses source code and
produces useful rules derived from program entities,
facilitating program structure comprehension. The method
aims at producing a system abstraction at a level lower
than previous approaches.

A tool utilising the Apriori algorithm [1] was built in
order to extract association rules from source code
elements. Programs can then be decomposed into groups

containing entities which participate in common rules.
The proposed method considers two key issues: modelling
the input data and selecting an appropriate algorithm to be
tailored and applied to these data. Both issues are
discussed in the following subsections.

3.1 Data Model

Algorithms for mining association rules are

traditionally used for market basket analysis. This work
addresses a different application domain: that of source
code analysis, thus a suitable data model is needed. This
model should comply with formatting requirements
imposed by existing algorithms.

Market basket analysis employs the <transaction,
items> model, where each transaction consists of a
number of items purchased. For source code analysis, we
use blocks of code instead of transactions; thus blocks
correspond to the entities of the model. The blocks of
code may contain low-level code elements such as
variables, data types and calls to other blocks. These
elements correspond to attributes of the model. Table 1
summarises the proposed data model, which is of the form
<code entity, attributes of this entity>.

Attributes need to be qualitative, that is boolean, so as
to apply existing algorithms without major changes in
their reasoning. A table where each row stands for a block
of code and each column stands for an attribute represents
the model. The value of the attribute is “1” when the
corresponding code element is used in the relevant block
otherwise it has a null value.

Table 1: Data models in Market Basket Analysis

and Source Code Analysis

DATA
MODEL

MARKET BASKET
ANALYSIS

SOURCE CODE
ANALYSIS

ENTITIES Transactions Blocks of code

ATTRIBUTES Market Items Variables, data types,
calls to blocks of code

It is important to define blocks of code in such a way

that the majority of the source code is contained within a
block. When defining entities, as blocks of code, in most
programming languages there are two alternatives: using
individual statements or modules. The former would
result in analysing a program to its entirety. However, this
analysis would be very detailed and the results extremely
complex, difficult and time consuming to understand.
Furthermore, many statements cannot be considered in
isolation, especially if they participate in a compound
statement such as <if … else>, <switch> and so on.

Representing these statements as single entities may
produce misleading information about the program.

This is the reason why we chose to use modules
(functions, classes, procedures) for defining blocks.
Modules are defined in several programming languages
and can be easily identified within a program as their start
and end follow specific conventions. This facilitates
automated input model extraction from the source code.
Modules have the advantage of including a significant
amount of code that consists of several statements such as
variable declarations and assignments. As a result,
modules may contain a large number of attributes.
Furthermore this choice facilitates grouping of related
modules, as it is much easier to identify commonalties on
the large range of attributes. More attributes in common
imply better quality of association rules and of consequent
groups.

 In summary, a data motel with program modules for
entities is more suitable for the purposes of the proposed
method. Nevertheless, adopting a single statement model
can always be considered as a complementary one, in case
a more detailed decomposition of a program is required.

3.2 Algorithm description

As discussed previously, the data model used as input

consists of blocks of code and code elements
corresponding to entities and attributes respectively. Each
entity is represented by a record in a database table. The
algorithm inputs a table and produces a set of block
groups. The blocks in each group have attributes in
common, which occur in the same association rules. The
number of common association rules indicates how strong
the relationship among the blocks is. Analysing programs
into such block groups results in a view of the program
structure.

The algorithm we used is decomposed into three
phases:
1. Creation of large itemsets.
 By means of the user-defined minimum support, find

all the sets of items with support equal to or greater
than this minimum, where support is the percentage of
block entities that contain the itemset.

2. Creation of association rules.
 Use the large itemsets to generate the required

association rules. Only rules with confidence equal to
or greater than a user-specified minimum must be
produced. For a rule of the form BA ⇒ , confidence
is defined as support(BA ∪) / support(A).

3. Generation of block groups.
 Find all block entities that contain common attributes

participating in the same association rules. Create

groups of blocks according to the number of common
association rules.
The first two phases are based on the Apriori

algorithm [2]. The last one involves producing groups
containing block entities with attributes that belong to the
same association rules. Compared to the ISA methodology
which uses the same algorithm, the proposed method does
not terminate when large itemsets are created. It also
extracts important association rules between source code
components and, based on these associations, reveals
related blocks of code. Thus, it provides two-level
information about the program under examination: related
blocks of code and associated program attributes.

4. Tool Design and Implementation

To illustrate the scope and assess the applicability of
the method a tool was designed and implemented. It
consists of three subsystems, each one of which performs
a specific operation:
• Database Management Subsystem
 This is responsible for managing the data either

provided by the user (input data) or created during the
mining process (tables of rules and groups). It handles
all database operations and ensures the integrity of
stored data. It also determines the way of
communication between the tool and the database.

• Processing Subsystem
 It is the heart of the system, responsible for executing

the algorithm for mining association rules, as described
earlier. It inputs data from the Database Management
Subsystem, performs the three processing phases
(creation of itemsets, creation of rules, generation of
block groups) and sends results to the Input/Output
Subsystem for display.

• Input / Output Subsystem
 It is responsible for communication with the end-user. It

reads values for minimum support and confidence,
informs the user of the processing progress, and displays
results.

The main application window (Fig. 1) displays
information during all processing phases. It contains three
grids for displaying the created itemsets, rules and block
groups respectively. It also contains two read-only text
boxes for displaying the current minimum support and
confidence, and buttons for triggering the creation of rules
and groups. Through two combo boxes, the user can select
groups to display, according to their size and the number
of common rules.

Fig. 1: Main Window

5. Results

The method was tested using real programs which
were inputted to the tool. For evaluation we used parts of
a software system implemented in COBOL that manages
student accommodation. It consists of a number of small
programs of average size of 1000 lines of code which
implement various functions. We will briefly discuss the
results achieved by applying the method to one of these
programs, ‘Register’, as a case study. Similar results were
acquired when other programs were used.

The data model used for COBOL involves procedures
as entities, and binary attributes depending on the
presence of user-defined and language-defined identifiers.
More detailed description of the model can be found at
[7]. Minimum support and confidence were set to 5% to
90% respectively in order to produce a considerable
amount of rules, enough for allowing their grouping.

Table 2 displays the groups of procedures produced.
Figure 2 shows a graphical representation of the results.
Each procedure is represented by a box with a number in
it corresponding to the relevant procedure. Edges connect
procedures with common rules. The number of common
rules is shown at the intersection of the edges. Groups of
procedures are used to form “collections” indicated by
polygons.

As depicted in Figure 2, some procedures (like 19, 24
and 36) participate in many groups. When placing
procedures in collections, two criteria were used: a)
groups with more common rules get priority over groups
with less common rules and b) the number of common
rules being equal, then the number of procedures the
current procedure is connected to, determines the
collection it belongs to. If these criteria fail to determine
the collection a procedure belongs, a larger set of
association rules is produced for disambiguation.

For example, procedure 24 belongs to collection C
instead of B, because it has more common rules with
procedures in collection C (9 common rules with
procedure 15) than with objects of collection B (4
common rules with procedure 36). Procedure 36 has the
same number of common rules (2) with procedure 27 in
collection A and procedures 17, 21 and 26 in collection B.
However, according to the second criterion, it belongs to
collection B, because it is connected to more procedures
from this collection. Procedure 19 has 9 common rules
with two procedures from collection A and two from
collection C. Thus an experiment with lower confidence
(20%) was needed to realise that it is more related to
procedure 27, so it belongs to collection A.

Table 2: Produced Groups

ID Group
Members IDs

Group
Size

Common
Rules Common Rules IDs

47 15, 19, 24 3 9 2, 3, 5, 6, 14, 15, 16, 17, 18
64 19, 27, 44 3 9 7, 8, 9, 10, 22, 23, 24, 25, 26
30 24, 36 2 4 1, 11, 12, 20
93 17, 21, 24, 36 4 2 1, 11
77 23, 45, 46 3 2 4, 21
81 24, 26, 36 3 2 1, 12
3 8, 15 2 2 13, 19

37 27, 36 2 2 19, 20
155 17, 21, 24, 25,

26, 36, 43
7 1 1

90 8, 15, 27, 36 4 1 19
121 23, 36, 45, 46 4 1 4
43 4, 8, 15 3 1 13
83 24, 27, 36 3 1 20

Results were assessed by referring to the source code

of the program. For example, collection D consists of
procedures do-letter(23), screen-down(45) and screen-
up(46). These procedures have two common rules: 4 (2 �
119) and 21 (2, 17 � 119). These rules contain the
following items: 2 (ring-bell), 17 (reg-screen-no) and 119
(pr_show-reg-screen1). As shown in Fig. 3, the three
procedures use all these items (shown in bold characters)
and actually perform similar operations. Thus, collection
D gives a potential subsystem of the initial program. All
produced collections were checked against the source
code, and it was found that they indeed contain related
procedures.

Another method for testing the validity of results is by
comparing them to a mental model that humans modulate
about the program structure. For the tested program, one
of the original developers of the system who is responsible
for its maintenance was requested to produce a mental

1 Prefix “pr” indicates a procedure call. Item pr_show-reg-screen is a
call to procedure show-reg-screen.

model for it, by distributing its procedures into subsystems
according to their functionality. This model consists of ten
subsystems shown in Table 3 (control, interface and
students being the most important). Comparing the model
to the produced program decomposition, the following
results were obtained:
• Collection A: all procedures belong to the students

subsystem (100% success).
• Collection B: half of the procedures belong to the

control subsystem and the remaining to the students
subsystem (50% success). However, all control
procedures were placed on the same collection.

• Collection C: three procedures belong to the students
subsystem and one to the help subsystem (75% success).

• Collection D: two procedures belong to the interface
subsystem and one to the students subsystem (success
66%). However, procedure do-letter handles printing
operation, which can be considered as an interface to the
user.

1545

44
21

23

27

8

24

26

17

1946

36

19

24

25 43

36

4

9

9

4 2

2

1

2

36

2

2

1

1 1

1
A

B

C

D

COLLECTION A
19: clear-master-record
27: execute-save-register
44: save-register

COLLECTION B
17: check-job-end
21: conditional-register-clear
25: end-master-update
26: execute-register-clear
36: main-processing
43: save-master-change

COLLECTION C
4: call-change-priority
8: call-helplist
15: call-res-in
24: do-print-register

COLLECTION D
23: do-letter
45: screen-down
46: screen-up

Fig. 2: Visual Representation of Produced

Groups

Summarising, 72.75% of the produced abstraction is

consistent to the mental model, a relatively good result
considering the following facts: a) the mental model does
not capture the interconnections between procedures from

different subsystems, although these connections play an
important role in the system operation, and b) mental
models tend to be subjective, depending on the mental
processes of the human brain.

6. Conclusions

An empirical evaluation of the results revealed the

ability of the method to produce meaningful results that
can be utilised in order to generate a structural view of the
examined program. The method can reveal important
associations in two levels: a) between blocks of code and
b) among source code components (variables, procedure
calls) inside these blocks. Evaluation of the proposed
method highlighted certain issues regarding the approach
and interpretation of results, which will be discussed in
the following paragraphs.

 screen-up.

IF reg-screen-no > 1

SUBTRACT 1 FROM reg-screen-no

CALL "clearx"

CANCEL "clearx"

PERFORM show-reg-screen

PERFORM set-cur-pos

ELSE

CALL ring-bell

END-IF.

screen-down.

IF reg-screen-no < 5

ADD 1 TO reg-screen-no

CALL "clearx"

CANCEL "clearx"

PERFORM show-reg-screen

PERFORM set-cur-pos

ELSE

CALL ring-bell

END-IF.

do-letter.

IF reg-screen-no = 4

PERFORM set-new-classification

PERFORM show-reg-screen

ELSE

CALL ring-bell

END-IF.

Fig. 3: Code Extract from ‘Register’

Table 3: Mental Model for ‘Register’
Subsystem Procedure
booking type call-bkdef

Control

check-job-end, conditional-register-clear, conditional-
register-exit, goto-reject, goto-transfer, initialisation,
main-control, main-processing, termination

dates call-daterels

errors call-error

event history call-res-history, register-event-history

help system call-helplist
Interface

call-caps, call-left-caps, call-left-upper, call-moveleft,
call-upper, clear-error, clear-upper-lower, inc-line-col,
screen-down, screen-up, set-cur-pos

log file put-day

students

execute-save-register, get-next-free-entry,
save-register, accept-reg-screen, call-res-in, get-note-
indicator, set-night-text, show-reg-screen, do-letter, do-
print-register, print-register-conditionally, call-change-
priority, call-details, call-i-request, call-request, clear-
master-record, end-master-update, execute-register-
clear, issue-register-letter, prepare-register-details,
prepare-resident-open-room, read-master, save-
master-change, set-classify-status, set-new-
classification

user validation valid-user-processing

Input tables produced for source code analysis tend to

be sparse. This can be explained by the fact that a
program usually contains variables used for specific
reasons, by specific procedures. Only some global
variables are spread across several procedures. As a
matter of fact, any procedure can only use a limited
number of variables. Thus, records in the input table for
each procedure have very few non-null fields
corresponding to variables used. On the contrary, in
transactional databases, each transaction may contain any
item with the same probability as any user can potentially
buy any product.

Based on the previous observation, it can be deducted
that very small support values should be set in order to
produce a number of large itemsets. By decreasing
support, more items pass the support threshold, more large
itemsets are created, and thus, more information about
block groups can be retrieved.

The groups produced may not contain all the
procedures. Excluded procedures normally contain items
with very low support, below the user specified minimum.
These procedures may perform special operations and
normally do not appear in any group. However, if
minimum support is not low enough, important
information may be omitted and several ‘interesting’
procedures may not be present in the results. Thus it is

important to keep low support values to ensure that only
‘isolated’ procedures of limited interest are excluded from
results.

High confidence values produce strong rules between
items. For example, a rule of the form <varA�varB>
with 100% confidence implies that variable B is always
present when variable A is present. Such rules reveal
possible participation of variables in very specific tasks.
These rules should be used in order to produce groups of
interconnected procedures that deal with specific tasks.

Some procedures possibly participate in many groups.
These procedures are likely to contain a larger number of
items than others. For example, in the test presented in the
previous section, procedure 36 is present in eight groups
out of a total of thirteen. As expected, this procedure is
the main procedure of the program that contains 32 items
(variables and calls to other procedures), when all the
other procedures do not contain more than 10 items.
Generally, such procedures can be considered as
communication links between different groups.

Generated results need to be summarised and
interpreted, in order to create meaningful collections of
program entities. The creation of such collections is based
on the result groups. Procedures that participate in a group
having a large number of common rules undoubtedly
belong to the same group. However, the number of
common rules is not the only criterion. The occurrence of
the common rules among the groups may also indicate a
relation between some procedures. For example, in the
test presented in the previous section, procedures 4, 8 and
15 share only one common rule (13). This rule does not
appear in any other group. Although it has a low
occurrence among the groups, its presence indicates a
relationship among the procedures that share it. For
procedures that participate in several groups, two criteria
were identified, so as to decide in which collection they
should be placed: the number of common rules in each
group and the number of related procedures.

The produced results were verified by referring to the
source code of the programs. This method can be applied
to small programs up to some thousand lines of code, but
it is very difficult to be used in much larger programs. In
such cases, one could rely on the program’s mental model,
which represents the program structure from the software
engineer’s point if view. However, this method is not
reliable enough because different people may have a
different mental model about the same program, according
to their mental processes.

7. Further Work

As mentioned earlier, the suggested approach for

mining association rules from source code is new. This
section provides a number of possible enhancements to

the approach and the tool in particular, that should be
performed in order to achieve a complete solution to the
problem of source code analysis. These improvements
include:
• Testing other algorithms for mining association

rules.
Apriori was selected to be the base algorithm for

designing the tool. However, it would be challenging to
use other algorithms for mining association rules that may
perform equally well or even better than Apriori,
especially in cases with very large databases. This
comparative assessment could result in a toolset for
mining rules.
• Formation of a quantitative input model.

The data model proposed in this method is qualitative.
A possible enhancement would be the formation of a
quantitative data model. Such a model would be richer as
it could capture information not only for the
existence/absence of code items in blocks, but also for the
number of item occurrences inside blocks. For example a
rule of the form <itemA: 3 � itemB: [2 … 5]> would
mean: “if itemA occurs 3 times then itemB occurs 2 up to
5 times”. We should note that adoption of a quantitative
data model requires an algorithm that can produce and
process quantitative association rules.
• Automatic derivation of input data.

The proposed method assumes the existence of input
data from source code, which can be extracted either
manually or automatically. However, in real conditions, it
is impossible to manually create input data from programs
consisting of thousands LOC. Even for smaller programs,
this task is time consuming. Thus, in order to provide an
integrated solution to source code analysis, the automatic
creation of input data should be incorporated in the
methodology. The present prototype tool is equipped with
a source code analyser which can extract data from source
code or even the outcome of a parser.
• Further testing on larger programs.

Validation tests were executed on programs containing
up to 1000 lines of code. In order to achieve a better
evaluation of the produced results, more tests should be
performed on larger programs. However, in order to
proceed to these tests, the previous enhancement should
be implemented first, so as to get the input data from these
programs automatically.
• Source code analysis at the statement level.

As previously mentioned block entities can be either
modules (functions, classes, procedures) or single
statements. Up to now, the suggested approach
concentrated on a model consisting of modules and the
ultimate aim was to create program decomposition in
groups containing interconnected modules. On the other
hand, the tool can also be used in order to perform a
source code analysis in the statement level. To do so, the

input data should consist of records representing
statements and the final results will produce groups of
related statements. This kind of analysis is useful, when
local parts of a program need to be understood.

References

[1] R. Agrawal, T. Imielinski and A. Swami, “Mining

Association Rules between Sets of Items in Large
Databases”, Proc. of the ACM SIGMOD Conference on
Management of Data, 1993, pp. 207-216.

[2] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules”, Proc. 20th Int’l Conf. Very Large
DataBases (VLDB 94), 1994, pp. 487-499.

[3] N. Anquetil and T. C. Lethbridge, “Experiments with
Clustering as a Software Remodularization method”, Proc.
6th Working Conf. Reverse Engineering (WCRE 99), IEEE
Comp. Soc. Press, Oct. 1999, pp. 235-255.

[4] F. Balmas, H. Wertz and J. Singer, "Understanding
Program Understanding", Proc. 8th Int'l Workshop
Program Comprehension (IWPC 00), IEEE Comp. Soc.
Press, 2000, pp. 256.

[5] E. Burd, M. Munro, "Evaluating the Use of Dominance
Trees for C and COBOL", Proceedings of the International
Conference on Software Maintenance, Oxford, England,
August 30-September 3, 1999, IEEE Computer Society
Press, 1999, ISBN 0769500161, pp. 401-410.

[6] G. Canfora, A. Cimitile, A. De Lucia, G.A. Di Lucca,
“Decomposing legacy systems into objects: an eclectic
approach”, Information and Software Technology, Vol.
43, 2001, pp 401-412.

[7] K. Chen, C. Tjortjis and P.J. Layzell, “A Method for
Legacy Systems Maintenance by Mining Data Extracted
from Source Code”, Case studies of IEEE 6th European
Conf. Software Maintenance and Reengineering (CSMR
2002), IEEE Comp. Soc. Press, 2002, pp. 54-60.

[8] C.M. De Oca and D.L Carver, “Identification of Data
Cohesive Subsystems Using Data Mining Techniques”,
Proc. Int'l Conf. Software Maintenance (ICSM 98), IEEE
Comp. Soc. Press, 1998, pp.16-23.

[9] K. Erdös and H.M. Sneed, “Partial Comprehension of
Complex Programs (enough to perform maintenance)”,
Proc 6th Int'l Workshop Program Comprehension (IWPC
98), IEEE Comp. Soc. Press, 1998, pp. 98-105.

[10] A.R. Fasolino and G. Visaggio, “Improving Software
Comprehension through an Automated Dependency
Tracer”, Proc. 7th Int'l Workshop Program Understanding
(IWPC 99), IEEE Comp. Soc. Press, 1999.

[11] U. M. Fayyad, G. Piatetsky-Shapiro and P. Smyth. “From
Data Mining to Knowledge Discovery: An Overview”, in
Advances in Knowledge Discovery and Data Mining,
AAAI Press, 1996.

[12] A. Lakhotia, “A Unified Framework For Expressing
Software Subsystem Classification Techniques”, Journal
of Systems and Software, Vol. 36, No 3, pages 211--231
1997.

[13] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen and E.
R. Gansner, “Using Automatic Clustering to Produce
High-Level System Organisations of Source Code”, Proc.
6th Int'l Workshop Program Understanding (IWPC 98),
IEEE Comp. Soc. Press, 1998, pp. 45-53.

[14] A. Von Mayrhauser and A.M. Vans, Program
Understanding – A Survey, Technical Report CS-94-120,
Dept. of Computer Science, Collorado State University,
August 1994.

[15] T.M. Pigoski, Practical Software Maintenance: Best
Practices for Managing your Software Investment, Wiley
Computer Publishing, 1996.

[16] K. Sartipi, K. Kontogiannis and F. Mavaddat,
‘Architectural Design Recovery Using Data Mining
Techniques’, Proc. 2nd European Working Conf.
Software Maintenance Reengineering (CSMR 2000),
IEEE Comp. Soc. Press, 2000, pp. 129-140.

[17] I. Sommerville, Software Engineering, 6th edition,
Harlow, Addison-Wesley, 2001.

[18] F. Tip, "A Survey of Program Slicing Techniques",
Technical Report CS-R9438, Centrum voor Wiskunde en
Informatica, Amsterdam, 1994.

[19] C. Tjortjis, N. Gold, P.J. Layzell and K. Bennett, “From
System Comprehension to Program Comprehension”,

Proc. IEEE 26th Int’l Computer Software Applications
Conf. (COMPSAC 02), IEEE Comp. Soc. Press, 2002, pp.
427-432.

[20] C. Tjortjis and P.J. Layzell, “Using Data Mining to Assess
Software Reliability”, Suppl. Proc. IEEE 12th Int’l
Symposium Software Reliability Engineering
(ISSRE2001), IEEE Comp. Soc. Press, 2001, pp. 221-223.

[21] C. Tjortjis and P.J. Layzell, “Expert Maintainers’
Strategies and Needs when Understanding Software: A
Qualitative Empirical Study”, Proc. IEEE 8th Asia-Pacific
Software Engineering Conf. (APSEC 2001), IEEE Comp.
Soc. Press, 2001, pp. 281-287.

[22] H. Toivonen, “Sampling Large Databases for Association
Rules”, Proc. 22nd Int’l Conf. Very Large Databases
(VLDB 96), 1996, pp. 134-145.

[23] V. Tzerpos and R. Holt, “Software Botryology: Automatic
Clustering of Software Systems”, Proc. 9th Int'l Workshop
Database Expert Systems Applications (DEXA 98), IEEE
Comp. Soc. Press, 1998, pp. 811-818.

[24] T. A. Wiggerts, “Using Clustering Algorithms in Legacy
Systems Remodularization”, Proc. 4th Working Conf.
Reverse Engineering (WCRE 97), IEEE Comp. Soc.
Press, 1997, pp. 33-43.

[25] M.J. Zaki, S. Parthasarathy, M. Ogihara and W. Li, “New
Algorithms for Fast Discovery of Association Rules”,
Proc. of the 3rd Int’l Conf. Knowledge Discovery
Databases and Data Mining, 1997, pp. 283-286.

