Experiences of Using a Quantitative Approach for
Mining Association Rules

Liang Dong and Christos Tjortjis

Department of Computation, UMIST, PO Box 88, Manchester, M60 1QD, UK
christos@co.umist.ac.uk

Abstract. In recent years interest has grown in “mining” large databases to
extract novel and interesting information. Knowledge Discovery in Databases
(KDD) has been recognised as an emerging research area. Association rules
discovery is an important KDD technique for better data understanding. This
paper proposes an enhancement with a memory efficient data structure of a
quantitative approach to mine association rules from data. The best features of
the three algorithms (the Quantitative Approach, DHP, and Apriori) were
combined to constitute our proposed approach. The obtained results accurately
reflected knowledge hidden in the datasets under examination. Scale-up
experiments indicated that the proposed algorithm scales linearly as the size of
the dataset increases.

1 Introduction

Progress in data acquisition and storage facilitated the explosive growth in the amount
of data collected by businesses. The impetus to effectively harness the increased
volumes of data now available has lead to the need for new data analysis techniques
to build data characterisations and extract useful patterns and models. Consequently,
the research field of KDD, also known as data mining, has arisen with mining
association rules becoming one of the most prominent techniques within the context
of extracting relationships among items hidden within datasets.

A promising algorithm for mining association rules in terms of accuracy and
performance is the Quantitative Approach [9]. It generates the set of frequent itemsets
by first partitioning the values of quantitative attributes and then using an interesting
measure to prune any uninteresting candidate itemset.

In this paper, we present a combined approach which consists of various parts from
existing algorithms, such as the Quantitative Approach, the hash-based technique
from DHP (Direct Hashing and Pruning) algorithm [5], and the methodology for
generating association rules from Apriori algorithm [2]. We present experimental
results showing that the proposed approach precisely reflects the information hidden
in the datasets. As the size of the dataset increases, the proposed approach scales-up
linearly in terms processing time and memory usage. In section 2, some algorithms
used within the framework of association rules are investigated. Encouraging results
obtained by comparing the Quantitative Approach to other association rule algorithms
are outlined in Section 3. The experimental results are analysed in Section 4.
Conclusions and future work are discussed in Section 5.

J. Liu et al. (Eds.): IDEAL 2003, LNCS 2690, pp. 693-700, 2003.
© Springer-Verlag Berlin Heidelberg 2003

694 L. Dong and C. Tjortjis

2 Related Work

This section aims at investigating six prominent algorithms for mining association
rules: the AIS[1], SETM [2], Apriori [2], AprioriTid [2], Quantitative Approach [7],
and Boolean Algorithm [10]. Advantages and disadvantages for each of them are
discussed in terms of speed, accuracy, and suitability.

e Speed

Finding all frequent itemsets greatly affects the speed of algorithms, because it
requires one or more database scans, which result in a time overhead for I/O
connections to a database stored in a secondary storage device. Such overhead is
much greater than that because of computation in the CPU [2].

In both AIS and SETM algorithms, candidate itemsets are generated “on-the-fly”
during the first pass as data are being read. This results in unnecessarily generating
and counting a lot of invalid candidate itemsets thus wasting a lot of time. In general,
Apriori, AprioriTid and Quantitative Approach consider the itemsets found to be
frequent in the previous pass, with no need to access the database again.
Consequently, fewer candidate itemsets are generated. Taking the above statements
into consideration, the Apriori, AprioriTid, and Quantitative Approach are superior to
AlSand SETM for all problem sizes.

Although Apriori counts too many small sets in the second pass, this wastage
decreases dramatically from the third pass onwards [2]. However, each iteration in
Apriori requires a pass of scanning the database, incurring a severe performance
penalty. The Quantitative Approach is similar to the Apriori algorithm, in this respect.
In the AprioriTid algorithm a pass over the database is replaced by a pass over the set
of candidate itemsets associated with TIDs! after the first pass. Hence, AprioriTid is
more effective in later passes when the size of this encoding can become much
smaller than that of the database. When the sets of this encoding fit in memory,
AprioriTid is superior to Apriori; otherwise, Apriori beats AprioriTid.

The Boolean algorithm produces frequent itemsets without constructing candidate
itemsets. In contrast, this construction of candidate itemsets is required by the
“Apriori family” algorithms (for example, AIS SETM, Apriori, Quantitative
Approach, and AprioriTid). As a result, the Boolean algorithm should outperform the
“Apriori family” algorithms for all problem sizes as reported on the literature [10].
However, when we applied this algorithm to mine quantitative association rules in a
large dataset, it was found to be unsuitable for solving such problems (see Section 3).
e Accuracy

The AIS SETM, Apriori, AprioriTid, and Boolean algorithms can only deal with
Boolean Association Rules problems, while the Quantitative Approach can also deal
with Quantitative problems. Since a transactional database often has richer attribute
types like quantitative and categorical attributes, taking into account only Boolean
attributes should result in a heavy loss of valuable information. Thus the Quantitative
Approach is expected to be more accurate than the other algorithms discussed here.

e Suitability

Different algorithms suit different domains. The AlS and SETM are only effective in
small databases [2]. As descendants of the AISand SETM, the Apriori and AprioriTid

11t stands for Transaction Identifier, which is unique for each transaction in a dataset.

Experiences of Using a Quantitative Approach for Mining Association Rules 695

not only perform well in small databases, but also more efficiently in medium size
databases [2]. The Quantitative Approach [7] is tailored to large databases.

Another important factor seldom mentioned in the literature is the memory usage,
when different algorithms are applied to the same dataset [2, 7]. We investigate the
scaling-up property of our approach on memory usage and discuss experimental
results in Section 4.3.

3 Approach

We considered the following requirements to select a suitable algorithm.

e The algorithm should generate as many interesting? association rules as possible.
All frequent itemsets must be identified based on the minimum support threshold
specified by the end-users.

e The algorithm must have the ability to deal with quantitative and categorical values
in addition to Boolean ones.

o The algorithm must perform well in medium or large databases.
Based on these requirements and the characteristics of the algorithms discussed in
section 2, we decided to keep the advantage of Quantitative Approach in dealing with
multiple data types and enhance this by using the Boolean algorithm to create the
frequent itemsets.
However, a major shift on the initial selection and design of this approach arose. After
investigation of the storage pattern involved in the Boolean algorithm, it was
concluded that memory resources are wasted when the algorithm stores the
quantitative and categorical values in the form of a truth table.
For example, suppose we have a table with three attributes that have a, b, and ¢
possible values, respectively. As the Boolean algorithm stores the table content in the
form of truth tables, ax bx ¢ truth tables are needed for all possible combinations of
values for each attribute. This wastes memory resources especially as the datasets size
grows. High performance achieved by the Boolean algorithm is offset by this
deficiency. Consequently, the Boolean algorithm was abandoned in order to achieve
better memory utilisation at the expense of processing speed.
Our final approach, therefore, can be decomposed into three parts (the first two parts
are similar with the respective phase of the Quantitative Approach): a) Pre-processing
the input dataset (such as the partition operation), b) creating frequent itemsets (the
hash-based technique proposed by the DHP algorithm was introduced into this phase
to reduce the number of the candidate k-itemsets examined), and c) generating
association rules (this phase can be found in the Apriori algorithm). This approach
was the most appropriate to satisfy all the requirements stated above. Nevertheless,
the Boolean and Quantitative Approaches can be treated as a complementary
alternative, in cases when the number of different attribute values is quite small.

2 An association rule is interesting if it is unexpected and/or actionable [6].

696 L. Dong and C. Tjortjis

3.1 Approach Decomposition

Let | = {i},ip,...,in} be a set of attributes. Let P express the set of positive integers.

Let |, express the set |x P. Let |g express the set {<x,l,u> ¢ IxPxP I1l<u, if X is
quantitative; I=u, if X is categorical} [7].

As a result, a triple <X,l,u>e Igrepresents an item which refers to either a quantitative
attribute X with a value in the range [l,u] or a categorical attribute X with a value 1.

For any Xc I attributes (X) expresses the set {Xl<x,|,u>e X}.).(is defined as a

generalisation of X, if attributes (X)=attributes ().() and VX e attributes(X)

[<xl,u>e XAx,'\U>e x =1 <l<usu’].
As mentioned above, this approach can be decomposed into three major phases: data
pre-processing, creating frequent itemsets, and generating association rules.

3.1.1 Data Pre-processing

This can be divided into two tasks.

1) Decide the number of partitions for each quantitative attribute.
Assuming equi-depth partitioning [7], we get:

2xn ey

Number of Intervals = —————
minsupX (K —1)

where K refers to partial completeness level which gives a handle on the amount
of information lost by partitioning, minsup is the user supplied minimum support,
and n means the number of quantitative attributes participating in the partition
activity.
When K increases, there are fewer intervals (candidates for frequent itemsets) for
the quantitative attributes. As a result, the number of frequent itemsets decreases.
The number of rules based on those frequent itemsets decreases accordingly.
For categorical attributes, map the values to a set of consecutive integers. For
quantitative attributes partitioned into intervals, the ranges are mapped to
consecutive integers; otherwise the values of quantitative attributes are simply
mapped to consecutive integers. In both cases, the order of ranges or values is
preserved. The set of mapping rules, which are used throughout the rest of the
algorithm, is then established.

2) Calculate the support for each value or range of the attributes.
In addition, adjacent values of quantitative attributes are combined as long as
their support is less than the user-specified maximum support. All corresponding
mapping rules are updated immediately to reflect the current state.

3.1.2 Creating Frequent Itemsets
This phase is similar to that of the Apriori algorithm except that the interesting
measure is adopted at the end of the first database scan to prune all candidate 1-

itemsets whose support is greater than % in the partitioned quantitative attributes,

Experiences of Using a Quantitative Approach for Mining Association Rules 697

where R refers to the interesting measure supplied by the user [7]. The frequent 1-
itemsets are then identified as long as their support values are greater than, or equal
to, the user-specified minimum support threshold and they pass through the
examination of the interesting measure.

The subsequent join-prune procedure is composed of two steps: Join and Subset
Prune. First, candidate itemsets are generated on the basis of the frequent itemsets
found during the previous database scan. Let Cy represent the set of candidate k-
itemsets and Ly the set of frequent k-itemsets. Cy is produced by joining any two
different L.1) as long as their first lexicographically ordered (k-2) items are identical.
Then, all candidate itemsets in Cy that have at least one (k-1)-subset not in L. are
removed. Next, a database scan calculates the support for each candidate itemset in
C«. Any candidate itemsets with support below the minimum support value are
pruned, yielding the set of frequent itemsets Ly. Such set is stored into a hash tree in
order to be used during the generation process of Cgyu1). This procedure terminates
when Ly becomes empty.

3.1.3 Generation of Association Rules

In this last phase, all strong association rules are created from frequent itemsets. The
general idea can be expressed as follows:

First, generate all non-empty subsets for each frequent itemset |. Then, for every non-
empty subset of |, the rule “s= (I-s)” holds if the ratio of

sup port _ count(l) . min_conf @)
K

sup port _count(s) B

in which min_conf is the minimum confidence supplied by the user. The confidence
for those rules can be easily obtained by accessing the hash tree established in earlier
stages.

4 Experimental Results

To evaluate the effectiveness of our approach, we performed several experiments on a
personal computer with CPU clock rate 800 MHz, 128MB of main memory, and
running Microsoft Windows 2000. The performance of our approach was assessed in
terms of parameter testing, scale-up testing, and memory usage testing. All the testing
datasets used here were obtained from the UCI repository [9].

4.1 Parameter Testing

In order to assess the results of this approach in the case of some critical parameters
varying, a public dataset, called Abalone, was used. It has eleven attributes: eight
quantitative and three categorical. There are 5,000 records in this dataset with no
missing values for any of the attributes.

698 L. Dong and C. Tjortjis

Figure 1 shows the results obtained after performing twelve tests, in each of which the
minimum support was set to 10%, maximum support to 20%, and minimum
confidence to 30%. As expected in Section 3.1.1, the number of rules decreases as the
partial completeness level increases.

0

o

é 100 —&— Interesting Measure

5ol T 11

g l='l=l=l —Il— Interesting Measure

£ O ‘ ‘ ‘ 2.6

=]

=z 1.1 1.5 25 4 —— Interesting Measure
3.0

Partial Completeness Level

Fig. 1. Parameter Testing

4.2 Scale-up Testing

In order to evaluate the scale-up property of this approach, fifteen tests were
performed using datasets with different sizes but the same structure as Abalone for
comparison. In each of these tests, the partial completeness level was set to 1.1,
interesting measure to 1.5, maximum support to 3%, and minimum confidence to
20%. Figure 2 shows the results obtained.

g
® 2000
[} S % Mini
£ 1500 / —&— 4% Minimum Support
= 1000 / —l— 6% Minimum Support
% 500 M —&— 8% Minimum Support
e 0 - : :
i 5000 10000 20000 50000 100000

Dataset Size (records)

Fig. 2. Scale-up Testing

Increased minimum support prunes a number of frequent itemsets. Consequently,
fewer rules are generated and the time spent on each phase decreases accordingly.
Figure 2 confirms this by showing that the running time for this approach decreases as
the minimum support increases. Figure 2 also shows that the whole processing time
scales linearly as the size of the dataset increases from 5,000 records to 100,000
records by appending a number of different records to the same dataset.

Experiences of Using a Quantitative Approach for Mining Association Rules 699

4.3 Memory Usage Testing

Twelve tests used datasets with various sizes but the same structure as Abalone. That
was achieved but reproducing randomly parts of this dataset. In each test, partial
completeness was set to 1.1, maximum support to 8%, and interesting measure to 1.5.
As shown in Table 1, similar results were achieved by varying the minimum support
and confidence. Our approach uses memory when loading the dataset, saving the set
of mapping rules, saving the frequent itemsets, and saving the association rules. As
the dataset increases in size, the number of mapping rules, frequent itemsets, and
association rules does not necessarily increase. When the size of the dataset becomes
large enough, it will dominate the memory usage. Table 1 confirms this by showing
that the total amount of memory usage does not double when the size of the dataset
increases from 5.000 to 10.000 neither from 10.000 to 20.000 records.

Table 1. Memory Usage Testing (Minsup and minconf mean minimum support and confidence
respectively)

Dataset Total Memory Usage (MB)
Size Minsup=10% | Minsup=10% | Minsup=20%
Minconf=10% | Minconf=20% | Minconf=20%
5.000 7.55 7.57 7.54
10.000 12.98 11.916 13.03
15.000 15.98 15.964 16.00
20.000 21.81 22.01 22.02

5 Conclusions and Further Work

We proposed an effective approach for mining association rules in large transactional

databases. The main advantage of this approach over other prominent algorithms

(such as Apriori and AprioriTid) is that it can deal with both Quantitative and Boolean

Association Rule problems.

We also presented an alternative solution for the same problem: the enhancement of

the Quantitative Approach using the part of the Boolean algorithm which creates

frequent itemsets. This alternative was argued to be suitable for the cases when the
number of potential different values for each attribute is small.

We conducted several experiments using datasets with different sizes. The results

indicate that the performance of this approach can be regarded as satisfactory, as

compared to the performance of the Quantitative Approach. We also concluded that
the memory usage of this approach heavily depends on the size of the dataset.

A number of further improvements to the current approach are as follows:

e Incorporation of alternative data structures: The hash tree structure was chosen as
part of our approach. However, it would be interesting to test other data structures
used for mining association rules (for example, R'-tree [3]).

e Support for missing values: We assumed that the input dataset has no missing
values. However, this is not always the case in real life and missing values are also
worth of investigation [8].

700 L. Dong and C. Tjortjis

e Improving the partitioning method: the equi-depth partitioning method used
performs well on evenly-distributed datasets. However, in the case of highly-skewed
datasets, adjacent values whose behaviour would typically be similar might be split
into different intervals. Consequently, for such cases we could use the maximal
appropriate abstraction for partitioning numerical values into maximally extended
intervals whose similarity is measured by the interclass variance between interval
classes [4].

e Incorporation of an incremental approach: As our approach does not enable very
large datasets to be loaded into the main memory as a whole, incorporation of
incremental input could be beneficial.

e Locating the breakpoint of the scale-up property: Although the whole processing
time of our approach scales linearly with the size of the dataset ranging between
5,000 and 100,000 records, it is worth finding the point when processing time starts
to increase exponentially.

References

1. Agrawal, R., Imielinski, T., and Swami, A., “Mining association rules between sets of
items in large databases”. Proc. ACM SSGMOD Conf. on Management of Data, 1993.

2. Agrawal, R., and Srikant, R., "Fast Algorithm for Mining Association Rules in Large
Databases", Proc. Int’'| Conf. on VLDB, pp. 487-499, 1994,

3. Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B., “The R'-tree: an efficient
and robust access method for points and rectangles”, Proc. of ACM S GMOD, pp. 322-
331, 1990.

4. Narita M., Haraguchi M., and Okubo Y., “Data Abstractions for Numerical Attributes in
Data Mining”, Proc. 3“ Int'| Conf. Intelligent Data Engineering Automated Learning,
2002.

5. Park, J. S., Chen, M. S., and Yu, P. S., "An Effective Hash Based Algorithm for Mining
Association Rules", Proc. of the ACM SGMOD, pp. 175-186, 1995.

6. Silberschatz A. and Tuzhilin A., “On Subjective Measures of Interestingness in
Knowledge Discovery”, Proc. Of the 1st Int’l Conf. on Knowledge Discovery and Data
Mining, 1995.

7. Srikant, R., and Agrawal, R., “Mining Quantitative Association Rules in Large Relational
Tables”, Proc. of the ACM SSGMOD Conf. on Management of Data, 1996.

8. Tjortjis C. and Keane J.A, “T3: an Improved Classification Algorithm for Data Mining”,
Proc. 3 Int'l Conf. Intelligent Data Engineering Automated Learning, 2002

9. UCI ML Repository, <http://www.ics.uci.edu/~mlearn/MLRepository.html>, last
accessed: 15 September 2002.

10. Waur, S.Y., and Leu, Y., “An Effective Boolean Algorithm for Mining Association Rules
in Large Databases”, Proc. 6th Int'l Conf. on Database Systems for Advanced
Applications, 1998.

	Introduction
	Related Work
	Approach
	Approach Decomposition

	Experimental Results
	Parameter Testing
	Scale-up Testing
	Memory Usage Testing

	Conclusions and Further Work
	References

