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25Abstract: Molecular dynamics simulations provide a sample of a molecule’s
conformational space. Experiments on the ms time scale, resulting in large
amounts of data, are nowadays routine. Data mining techniques such as

classification provide a way to analyse such data. In this work, we
evaluate and compare several classification algorithms using three data

30sets which resulted from computer simulations, of a potential enzyme

mimetic biomolecule. We evaluated 65 classifiers available in the
well-known data mining toolkit Weka, using ‘classification’ errors to
assess algorithmic performance. Results suggest that: (i) ‘meta’ classifiers
perform better than the other groups, when applied to molecular

35dynamics data sets; (ii) Random Forest and Rotation Forest are the best
classifiers for all three data sets; and (iii) classification via clustering
yields the highest classification error. Our findings are consistent with

bibliographic evidence, suggesting a ‘roadmap’ for dealing with such data.
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1 Introduction

Data mining was introduced in the 1990s as a means for recovering knowledge from
70large databases (Fayyad et al., 1996). Its usage has since been extended to many

different types of data, and it is being currently used as a tool for extracting
knowledge from numerous types of large data sets (text, web, code, time series,
graph, multimedia and biological data) (Denaxas and Tjortjis, 2008; Han and
Kamber, 2006; Kanellopoulos et al., 2007).

75A ‘side effect’ of this success is the plethora of algorithms and methods available
for data mining. Arguably, one needs to go through an ‘algorithm mining’ phase
first, before being able to mine the data. ‘‘The challenge is to choose a suitable
algorithm from the toolbox, since each algorithm will produce different results’’
(Andreopoulos et al., 2009). In other words, experts in various fields need to

80establish which of the algorithms are likely to be more suitable for their scientific
domain.

We identified this problem when we had to deal with data sets which resulted from
biomolecular simulations. Given that clustering has been found to yield unsatisfactory
results in similar domains (Rao and Karplus, 2010), we decided to use classification, a

85well-established technique (Browne et al., 2004; Haoudi and Bensmail, 2006;
Lancashire et al., 2009; Pei, et al., 2010; Chung and Kim, 2011). Yet, the
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well-known data mining toolkit Weka alone offers 65 different classification
algorithms, each equipped with different configuration options (Hall et al., 2009).
Facing the challenge of selecting a few algorithms with the potential for yielding

90good results, we decided to conduct a comprehensive set of experiments to evaluate
algorithmic performance and construct a roadmap for selecting suitable
classification algorithms for computer simulation data sets.

Computer simulation offers the possibility to study biomolecules and their
dynamic behaviour in great detail, thereby complementing information that is

95accessible by experiment (Fersht and Daggett, 2002; van der Kamp et al., 2008).
One of the most widely used simulation techniques is Molecular Dynamics (MD).
It is a widely applied and well-developed method that provides valuable insight
into the structure, dynamics, and interactions of biological macromolecules
(Adcock and McCammon, 2006; Karplus and Kuriyan, 2005). Recent increases in

100computer power and enhancements in algorithms have enabled the execution of
simulations of proteins on a large scale, resulting in huge amounts of data. One
very useful way to analyse these data and extract important patterns is to cluster
or classify molecular conformations into groups, according to the similarity of
their conformations (as measured by an appropriate metric, for example the

105Root-Mean-Squared Distance (RMSD)) (Feher and Schmidt, 2001; Yona and
Kedem, 2005).

In this work, we apply several classification algorithms, including trees learning,
nearest neighbour, Bayesian classification and neural networks to three different
data sets, collected from MD trajectories of a cyclic and branched oligopeptide

110(Stavrakoudis, et al., 2003; Tatsis, et al., 2008). The MD trajectories commence
from three different initial peptide conformations, characterised as ‘good’,
‘intermediate’ and ‘poor’ according to their geometric resemblance to the natural
enzyme (a -chymotrypsin). Our goal is to evaluate the performance of these
algorithms when applied to these data. This is important because classification can

115expose hidden correlations among molecular conformations that can be hidden in
the complexity of data (Jain et al., 2010). To the best of our knowledge, this is the
first attempt to design a roadmap for applying classification algorithms to
molecular simulation data sets in the literature.

The paper is organised as follows: in Background and Algorithms (Section 2) we
120present the basic classification algorithms and in Section 3 we describe how the MD

trajectories were collected and the procedure we followed to rank the classification
algorithms. In Section 4, we report the results of these algorithms, when applied to
the three data sets. We review and discuss results and present related work on
algorithmic performance in Section 5. Concluding remarks and perspectives are

125given in Section 6.

2 Background and algorithms

There are many kinds of classification algorithms; based on collective experience in
the field of data mining and the maturity of the techniques, 65 prominent
classification algorithms were selected to be included and made accessible to a

130wider audience via Weka. These are grouped into Bayesian classifiers, functions,
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Lazy algorithms, meta algorithms, meta nested dichotomies, rules, trees and
miscellaneous algorithms.

Bayesian Classifiers. These are statistical classifiers that predict class membership by
probabilities. Several Bayes’ algorithms have been developed, such as Bayesian

135networks and naı̈ve Bayes. Naı̈ve Bayes algorithms assume that the effect that an
attribute plays on a given class is independent of the values of other attributes. In
practice, dependencies often exist among attributes; hence Bayesian networks are
graphical models, which, unlike naı̈ve Bayesian classifiers, can describe joint
conditional probability distributions. Bayesian classifiers have exhibited high

140accuracy and speed when applied to large databases, and are especially popular in
the biochemical and medical domains, for example, which use Bayesian networks
to analyse DNA hybridisation arrays, and in medical diagnosis; related material
can be found in Fayyad and Irani, (1993); John and Langley, (1995); Kononenko,
(1993).

145Functions. The functions group includes classifiers that can be written as
mathematical equations in a reasonably natural way. SimpleLogistic builds logistic
regression models fitting them using LogitBoost with simple regression functions
as base learners (Landwehr et al., 2005). Logistic is an alternative implementation
for designing and using a multinomial logistic regression model with a ridge

150estimator to guard against overfitting by penalising large coefficients (Lecessie and
Vanhouwelingen, 1992). MultilayerPerceptron (MLP) is a feed forward Artificial
Neural Network model that maps sets of input data onto a set of appropriate
outputs. It consists of multiple layers of nodes in a directed graph which is fully
connected from one layer to the next. RBFNetwork implements a Gaussian

155Radial Basis Function Network, deriving the centres and widths of hidden units
using K-means and combining the outputs obtained from the hidden layer using
logistic regression if the class is nominal and linear regression if it is numeric.
SMO implements the Sequential Minimal Optimisation algorithm for training a
Support Vector classifier, using polynomial or Gaussian kernels (Keerthi et al.,

1602001).

Lazy classifiers. Lazy learners store the training instances and do no real work until
classification time. IB1 is a basic instance-based learner which finds the training
instance closest in Euclidean distance to the given test instance and predicts the
same class as this training instance (Aha et al., 1991). IBk is a k-nearest-neighbour

165classifier that uses the same distance metric. The number of nearest neighbours
(default k¼ 1) can be specified explicitly in the object editor or determined
automatically using leave-one-out cross-validation, subject to an upper limit given
by the specified value. KStar is a nearest neighbour algorithm with a generalised
distance function based on transformations (Witten and Frank, 2005). LWL is a

170general algorithm for Locally Weighted Learning, and it assigns weights using an
instance-based method and builds a classifier from the weighted instances.

Meta algorithms. Meta algorithms take classifiers and convert them into more
powerful learners. Bagging bags a classifier to reduce variance (Breiman, 1996). It
works for both classification and regression, depending on the base learner. In the

175case of classification, predictions are generated by averaging probability estimates,
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not by voting. With Classification via Clustering, a user-defined cluster algorithm is
built with the training data presented to the meta-classifier and then the mapping
between classes and clusters is determined. This mapping is then used for predicting
class labels of unseen instances and with the algorithm Classification via Regression,

180classification is performed using regression methods. END is a meta classifier for
handling multi-class datasets with 2-class classifiers by building an ensemble of
nested dichotomies (Dong et al., 2005). Ensemble Selection classifier combines
several classifiers using the ensemble selection method. Ordinal Class is a meta
classifier that allows standard classification algorithms to be applied to ordinal

185class problems. Random Committee builds an ensemble of base classifiers and
averages their predictions (Witten and Frank, 2005). Each one is based on the same
data, but uses a different random number seed. Rotation Forest is an ensemble
method which generates classifier ensembles using the whole data set to
independently train decision trees. Diversity between trees is promoted via feature

190extraction (Rodriguez et al., 2006).

Meta Nested Dichotomies. This group contains three classifiers: Class Balanced ND,
Data Near Balanced ND and ND for handling multi-class datasets with 2-class
classifiers by building a random class-balanced tree structure (Dong et al., 2005).

Misc. This group contains three classifiers: The Fuzzy Lattice Reasoning (FLR)
195classifier is presented for inducing descriptive, decision-making knowledge (rules) in

a mathematical lattice data domain, including space RN (Kaburlasos et al., 2007).
Hyperpipes, for discrete classification problems, records the range of values
observed in the training data for each attribute and category and works out which
ranges contain the attribute values of a test instance, choosing the category with

200the largest number of correct ranges (Witten and Frank, 2005). VFI (Voting
Feature Intervals) constructs intervals around each class by discretising numeric
attributes and using point intervals for nominal ones, records class counts for each
interval on each attribute, and classifies test instances by voting (Demiroz and
Guvenir, 1997).

205Rules. Weka includes nine algorithms for generating rules. DecisionTable constructs a
decision table majority classifier (Kohavi, 1995). It evaluates feature subsets using
best-first search and can use cross-validation for evaluation. JRip implements
RIPPER, including heuristic global optimisation of the rule set (Witten and Frank,
2005). NNge is a Nearest-neighbour method for generating rules using non-nested

210generalised exemplars. OneR is the 1R classifier with one parameter: the minimum
bucket size for discretisation (Holte, 1993). Part obtains rules from partial decision
trees. It builds the tree using C4.5’s heuristics with the same user-defined
parameters as J4.8 (Witten, 2005). Ridor implements the RIpple-DOwn Rule
learner (Witten and Frank, 2005). It generates the default rule first and then the

215exceptions for the default rule with the least (weighted) error rate. Then it
generates the ‘best’ exceptions for each exception and iterates until pure. ZeroR
predicts the test data’s majority class (if nominal) or average value (if numeric)
(Witten and Frank, 2005).

Trees. A decision tree is a tree-like structure, which starts from root attributes, and
220ends with leaf nodes. Generally, a decision tree has several branches consisting of
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different attributes, the leaf node on each branch representing a class or a kind of class
distribution. Decision tree algorithms describe the relationship among attributes, and
the relative importance of attributes. Both the learning and classification steps of
decision tree induction are generally fast. Algorithms like J48 for generating a

225pruned or unpruned C4.5 decision tree, FT which is a first-decision tree classifier
and Cart which implements minimal cost-complexity pruning, are included in this
group. RandomTree, also a member of this group, chooses a test based on a given
number of random features at each node, performing no pruning. RandomForest
constructs random forests by bagging ensembles of random trees.

2303 Methods

3.1 The data sets

Three data sets were used in this work, namely Ala54, Ala26 and Ala5, all produced
by a bioinformatics application called Lysine based Trypsin Active Site (LysTAS)
(Tatsis et al., 2006). LysTAS is an automated computer procedure that constructs

235peptidomimetic molecules satisfying a particular design, shown in Figure 1, and
grades them against the active site’s topology. Three initial conformations were
subjected to MD simulations for 10 ns (following a 1 ns equilibration period), with
a time step of 1 fs. Further computational details about the MD runs can be found
in Tatsis et al. (2008). Structures were saved every 10 ps, so that 1000

240conformations were stored and the last 900 were used for analysis.

As a measure of resemblance to the natural trypsin active site, we measured the Root
Mean Square Distances (RMSD) between the heavy atoms of the side chains of the
catalytic triad residues (Asp102, His57, Ser195) of the enzyme and the
corresponding side chain heavy atoms of the peptide to assign a similarity score.

RMSDt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

xmi � xti
� �2þ ymi � yti

� �2þ zmi � zti
� �2

vuut : ð1Þ

The RMS distance between the atoms of the peptide (Figure 1) and the corresponding
atoms of the enzyme (2ptn) is given by equation (1), where xm, ym, zm are the
Cartesian coordinates of the heavy atoms of the amino acids which comprise the

Figure 1 Peptides modelled as serine protease mimetics. Active site residues Ser, His and Asp
are in bold. Yi denotes the D=L chirality. Xaa2 and Xaa6 accommodate the amino
acids selected by the user. In this study, Xaa2 and Xaa6 were substituted with Ala
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250active site of the natural enzyme, and xt, yt, zt are the Cartesian coordinates of the
corresponding heavy atoms of the peptide.

The criterion (equation (2)) for a frame i of the trajectory to be counted as one
with a favourable topology is (Wallace et al., 1996):

2 A
�
� RMSDi ¼ RMSD ½frameimplicit solvation

i � TEMPLATE�: ð2Þ
255

We have, also, calculated the Cartesian distances (d1¼His:HD1 – Asp:OD1,
d2¼His:HD1 – Asp:OD2 and d3¼ Ser:HG – His:NE2) between the atoms of the
residues that are responsible for the formation of the hydrogen bond network in
the active centre of the enzyme as an additional criterion of similarity. The

260distances between the Ca atoms of the active site’s residues, d4 (His:Ca– Asp:Ca) ,
d5 (His:Ca– Ser:Ca) and d6 (Ser:Ca– Asp: Ca) show how close are the three residues
that form the trypsin’s active site.

3.2 Data pre-processing

Each data set contains 900 entries (instances), comprised eight attributes: the RMSD,
265the distances d1–d6 and the total potential energy of the MD trajectory’s frames.

More specifically, the RMSD was used as a class attribute, discretised to 1, 2, 3
and 4, according to whether its values ranged from: 0.5 to 1.0, 1.0 to 2.0, 2.0 to 5.0
or 5.0 to 10.0 respectively. The three data sets differ in the distribution of their
values. For Ala54, the values of its attributes are more concentrated and the

270distribution is narrower, with smaller standard deviation (rT). For Ala26 and Ala5,
the values distributions are wider and sparser, with larger standard deviation (rT).
Based on this characteristic, Ala54 can be considered as ‘good’, Ala26 as
‘intermediate’ and Ala5 as ‘poor’. These data sets were analysed using all the
classification algorithms provided by the Weka 3.4.13 Data Mining toolkit, which

275was installed on a Windows machine equipped with 4 Intel Xeon 3.40GHz
processors and 8 GB RAM. We used 10-fold cross validation and the default Weka
configuration settings. Using default settings was done for two reasons. Firstly, a
classification scheme in Weka normally gets the default settings as described in the
publication underlying that particular scheme. Secondly, there are no ‘templates’

280for certain domains available, and changing the parameters, apart from presenting
a ‘combinatorial explosion’ type of problem, would only produce a set of
parameter values that optimise performance for the specific data sets at hand,
rather than producing generic guidelines. A similar approach was followed in
Janssen and Furnkranz (2011).

2853.3 Ranking procedure

To assess the classification algorithms and their groups in Weka, we applied a simple
ranking method. For every data set, the classifiers were sorted, in descending order,
according to their classification error. Their ranking index for every data set was
then summed and aggregated, resulting in the final ranks shown in Table 2.

Evaluating data mining algorithms using molecular dynamics trajectories 7



2904 Results

4.1 Overview

We used all 65 classification algorithms available in Weka, categorised in 8 groups,
as shown in Table 1. Running NNge and BFTree algorithms on the Ala5 data set
caused the system to run out of memory, even without using 10-fold cross-validation

295and after changing default memory usage to 1 GB, thus we exclude them from further
discussion. We analysed statistically the classification error that these algorithms
yielded, when the three data sets were used as input, and calculated the minimum,
maximum and average classification error for each of the eight groups of algorithms.
The results are summarised in Table 1 and detailed in Table 2. This subsection

300presents results in terms of groups of classification algorithms, as shown in Table 1.

We applied four Bayesian classification algorithms to the Ala54 data set resulting
to classification error ranging from 0.24% to 0.42%, with an average of 0.36%. For the
Ala26 data set, the average classification error is 16.74%, ranging from 11.47% to
25.94%. The classification error for the Ala5 data set ranges from 14.32% to

30532.31%, and its average is 19.64%.
We employed six algorithms from the functions group of classifiers. More

specifically, for the Ala54 data set, the lower and upper boundaries of the
classification error are 0.09% and 0.26%, respectively, and the average is 0.13%. The
classification error for the Ala26 data set fluctuates between 7.77% and 10.91%, and

310its average is 8.70%. The Ala5 data set’s classification error minimum approximates
the Ala26 maximum and reaches a maximum at 15.17%. Its average is 13.80%.

The four Lazy classification algorithms behave quite similarly to the functions
group. More specifically, for the Ala54 data set, the average classification error is
0.16%, whilst the minimum and maximum is 0.09% and 0.36%, respectively. The

315classification error for Ala26 ranges from 6.04% to 15.54%, and its average is

Table 1 The minimum (min), maximum (max) and average (avg) classification error for the
eight groups of classifiers in Weka, when applied to the three data sets. The
minimum value for the average classification error for each of the three data sets is in

bold

Classification Error (%)

Group of classifiers Rank

Ala54 Ala26 Ala5

min max avg min max avg min max avg

Bayes 7 0.24 0.42 0.36 11.48 25.94 16.74 14.32 32.21 19.64
Functions 2 0.09 0.26 0.13 7.77 10.91 8.70 10.99 15.17 13.81

Lazy 2 0.09 0.36 0.16 6.04 15.54 8.43 11.65 15.20 13.04
Meta 5 0.07 42.35 1.97 5.37 44.91 15.12 9.42 32.21 17.31
Meta nested

Dichotomies

1 0.10 0.12 0.11 6.68 6.93 6.79 10.42 10.43 10.42

Misc 8 0.14 0.27 0.21 15.85 41.56 27.28 21.31 41.92 31.39
Rules 5 0.10 0.36 0.20 6.76 25.94 13.38 10.61 32.21 15.26

Trees 2 0.06 0.36 0.15 5.34 25.94 9.96 9.63 32.21 13.00

8 V.A. Tatsis et al.



Table 2 Total ranking and classification error for the three data sets Ala54, Ala26 and Ala5,
for all 65 Weka classifiers

Classific. error (%)

Group Classifier Rank Ala54 Ala26 Ala5

Bayes BayesNet 41 0.24 11.48 14.32
DMNBtext 54 0.36 25.94 32.21

NaiveBayes 49 0.42 14.79 16.02
NaiveBayesUpdateable 47 0.42 14.76 16.02

Functions Logistic 37 0.10 8.14 15.17

MultilayerPerceptron 27 0.09 7.77 10.99
RBFNetwork 40 0.26 10.91 14.24
SimpleLogistic 32 0.09 7.98 14.02
SMO 36 0.11 8.72 14.62

Lazy IB1 14 0.09 6.04 12.65
IBk 14 0.09 6.04 12.65
KStar 13 0.10 6.11 11.65

LWL 44 0.36 15.54 15.20
Meta AdaBoostM1 43 0.22 25.94 15.00

AttributeSelectedClassifier 25 0.12 6.58 13.21

Bagging 4 0.10 5.68 9.42

ClassificationViaClustering 63 42.35 44.91 18.11
ClassificationViaRegression 5 0.08 6.01 9.81

CVParameterSelection 54 0.36 25.94 32.21

Dagging 42 0.29 13.14 14.70
Decorate 25 0.44 5.99 11.73
END 8 0.10 6.26 10.41

EnsembleSelection 6 0.09 6.22 9.64

FilteredClassifier 28 0.14 7.94 11.58
Grading 54 0.36 25.94 32.21

LogitBoost 31 0.09 8.00 13.56
MultiBoostAB 51 0.36 25.94 15.21
MultiClassClassifier 39 0.11 11.28 15.16

MultiScheme 54 0.36 25.94 32.21
OrdinalClassClassifier 9 0.10 6.58 10.41

RacedIncrementalLogitBoost 37 0.25 9.15 13.76
RandomCommittee 3 0.07 5.64 9.62

RandomSubSpace 18 0.13 6.68 11.46
RotationForest 2 0.08 5.37 9.47

Stacking 54 0.36 25.94 32.21

StackingC 54 0.36 25.94 32.21
Vote 54 0.36 25.94 32.21

Meta nested

Dichotomies

ClassBalancedND 12 0.10 6.68 10.42

DataNearBalancedND 17 0.10 6.75 10.43
ND 19 0.12 6.93 10.42

Misc FLR 53 0.27 15.85 41.92

HyperPipes 44 0.14 24.42 30.93
VFI 47 0.20 41.56 21.31

Rules ConjunctiveRule 46 0.36 25.94 15.10
DecisionTable 34 0.13 10.09 12.78

DTNB 33 0.12 9.67 12.79

Evaluating data mining algorithms using molecular dynamics trajectories 9



8.43%. The corresponding values for the Ala5 data set are 11.65%, 15.20% and 13.6%,
respectively.

We used 26 classification algorithms of the Meta group and their range of
classification error was broad. For the first data set (Ala54) the maximum is 42.35%

320and the minimum is 0.07%, whilst the average is closer to the minimum and equal to
1.97%. The minimum error for the Ala26 data set is 5.37%, it reaches a maximum of
44.91% and its average is 15.12%. For the Ala5, the classification error fluctuates in
narrower amplitude, between 9.42% and 32.21%, and it averages at 17.3%.

Three algorithms from the Meta nestedDichotomies group were evaluated in
325classifying the three data sets. For the first data set (Ala54), the minimum and

maximum classification error is 0.10% and 0.12%, respectively. The same applies to
the other two data sets (Ala26 and Ala5). More specifically, for the Ala26, the
classification error varies from 6.68% to 6.93% and for the Ala5 from 10.42% to
10.43%.

330The FLR, HyperPipes and VFI classifiers, members of the Misc groups, were also
evaluated. For the first data set (Ala54), the minimum classification error is equal to
0.14%, and it reaches a maximum of 0.27%; its average is 0.21%. The minimum
classification error for the Ala26 is 15.85%, the maximum 41.56% and its average
27.27%. For the Ala5 data set these statistical measures are increased, as expected

335and noticed in the previous algorithms. The average value of the classification error
is 31.3% and it varies between 21.31% and 41.92%.

The nine classification algorithms of the Rules group were also assessed on how
well they can classify data sets resulting from MD studies of a biomolecule. For the

Table 2 Total ranking and classification error for the three data sets Ala54, Ala26 and Ala5,
for all 65 Weka classifiers (continued)

Classific. error (%)

Group Classifier Rank Ala54 Ala26 Ala5

JRip 19 0.11 6.76 10.61

NNge 0.13 6.99
OneR 49 0.33 20.57 15.55
PART 21 0.10 7.10 10.75

Ridor 29 0.14 7.40 12.28
ZeroR 54 0.36 25.94 32.21

Trees BFTree 0.14 7.17

DecisionStump 51 0.36 25.94 15.21
FT 9 0.08 6.73 9.83

J48 14 0.09 6.78 10.38

J48graft 9 0.14 6.52 10.28

LADTree 35 0.11 9.91 13.85
LMT 7 0.12 6.32 9.69
NBTree 23 0.12 6.89 10.82

RandomForest 1 0.06 5.34 9.63

RandomTree 30 0.12 7.30 13.24
REPTree 23 0.12 7.29 10.53

SimpleCart 21 0.14 7.36 10.33
UserClassifier 54 0.36 25.94 32.21

10 V.A. Tatsis et al.



first data set (Ala54), the minimum error is 0.10%, the maximum is 0.36% and its
340average value is equal to 0.20%. For the Ala26 data set, the upper and lower

boundaries of the classification error are 25.94% and 6.76%, respectively. The
average value of the classification error is 13.38%. The classification error for the
third data set (Ala5) ranges from 10.61% to 32.21%, and its average is 15.2%.

Trees was the last group of classifiers that was evaluated. This group comprises 15
345algorithms, available in Weka. For the first data set (Ala54) the lowest value of the

classification error is 0.06%, which is the ‘global’ minimum for all classification
algorithms that have been used. The maximum error of this algorithm is 0.36% and
it averages at 0.15%. For the second data set the minimum and maximum are
5.34% and 25.94%, respectively. The trees classification algorithms when applied to

350the third data set (Ala5) showed the average of the classification error as equal to
13.00%.

It appears that the Lazy classification algorithms behave quite similarly to the
functions algorithms. We noticed that the classification error for the Meta
nestedDichotomies group fluctuates in a narrow amplitude (�0.10%). All in all,

355Bayesian classifiers performed worse than the other algorithms, in contrast with the
meta group which exhibited the best performance, when applied to MD data sets.
Furthermore, the classification algorithms’ performance is consistent with the
profile of the data sets, with regards to the shape of the distribution (standard
deviation, rT) of their attributes’ values. More specifically, the classifiers’ error is

360lower for the ‘good’ data set (Ala54) and it increases for the next two datasets,
‘intermediate’ (Ala26) and ‘poor’ (Ala5).

4.2 Results evaluation

In this subsection, we present results for all 65 Weka classifiers, when applied to the
three MD data sets, and focus on the best algorithms. Specifically, we consider here as

365‘best’ classifiers these which resulted in a classification error lower than the best group
average error, for all three data sets shown in Table 1. In other words, we identify and
review all the algorithms that yielded lower classification error than 0.11% for Ala54,
6.79% for Ala26 and 10.42% for Ala5 (produced by the Meta nestedDichotomies
group). The classification error for all 65 Weka classifiers is shown in Table 2, and

370the best classifiers are indicated in bold font.
All in all, there are eleven (11) classification algorithms that, for all the data

sets, result in classification error rate lower than 0.11%, 6.79% and 10.42%,
respectively (see Table 2). These are: Bagging, ClassificationViaRegression, END,
EnsembleSelection, OrdinalClassClassifier, RandomCommittee, RotationForest

375from the meta group, ClassBalancedND from the Meta nestedDichotomies group,
FT, J48 and RandomForest from the trees group. We discuss these algorithms in
their respective groups.

Moreover, we have implemented a simple method for ranking the classification
algorithms, which is described in Section 3.3. These rankings are also shown in

380Table 2. We note that 8 out of the top 10 ranking algorithms are also amongst the
‘best’ classifiers, as discussed above. LMT and J48graft, ranking seventh and ninth
respectively, are not amongst the ‘best’ classifiers. On the other hand, two
classifiers belonging to the 11 best ones, did not make the top 10 in terms of
rankings: ClassBalancedND and J48, in 12th and 14th place respectively.
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385None of the algorithms in the bayes group yield lower classification error than the
lowest average group values (0.11%, 6.79% and 10.42%, respectively for the three data
sets). The BayesNet classifier results in the lowest classification error for all three data
sets, and is positioned in the 41st place, in the overall ranking (see Table 2).

None of the algorithms in the functions group yields lower classification error than
390the lowest average group values. MultilayerPerceptron is the best performing classifier

in the group, holding the 27th position in the overall ranking.
None of the algorithms in the lazy group yields lower classification error than the

lowest average group values. KStar scores the lowest classification error for this
group, occupying the 13th place in the overall ranking.

395Seven of the twenty-four classification algorithms of the meta group yield a
classification error rate lower than the average error rate of the Meta
nestedDichotomies group. These algorithms are the following: Bagging, Classification
via Regression, END, Ensemble Selection, Ordinal Class Classifier, Random
Committee and Rotation Forest. Rotation Forest and Random Committee succeed

400in classifying the data sets with the lowest error rate, in this group, and they are
positioned in the second and third place, respectively.

The Class Balanced ND, from the Meta nestedDichotomies, results in a
classification error rate lower than the average error rate of this group. Its error is
lower than the group’s average for Ala54 and Ala26, and equal to the group’s

405average (10.42%) for Ala5, and it ranks in the 12th position.
Hyperpipes, the top algorithm for the misc group, is in the 44th place in the overall

ranking. Its error is however higher than the Meta nestedDichotomies average error.
JRip and PART algorithms classified the three data sets with an error rate lower

than the average of their group (rules), but higher than that of the Meta
410nestedDichotomies. They are ranked in the 19th and 21st place, respectively.

From the group of trees classifiers, the classification error rate of FT, J48 and
RandomForest is lower than the average classification error of the meta
nestedDichotomies group. RandomForest had the best performance compared to
the other 62 classifiers, and is ranked first in the overall ranking. It results in the

415lowest classification error when applied to any of the three data sets (0.06%, 5.34%
and 9.63% for the Ala54, Ala26 and Ala5, respectively).

In summary, seven meta classifiers performed better than the Meta
nestedDichotomies average error, with all 7 of them being in the top ten of the
overall ranking. One Meta nestedDichotomies and three tree classifiers performed

420better than the Meta nestedDichotomies average error, but only two tree classifiers
made the top ten, with Random Forest topping the ranks. In total, there are nine
classifiers (7 meta and 2 tree classifiers) which achieved both ‘best’ (i.e., better than
the Meta nestedDichotomies average error) and ‘top ten’ status.

5 Discussion

4255.1 Classification algorithms’ comparison

In this work, we evaluated 65 classification algorithms available in Weka, using three
computer simulation data sets. These data sets represent the time series of geometric
and energetic characteristics of a cyclic-branched peptide, with potential enzyme
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mimetic activity. The performance of the classifiers was assessed according to their
430classification error, when applied to these data sets.

The algorithms are categorised by Weka in 8 groups. Following our ranking
procedure, explained in Section 3 and shown in Table 1, the Meta
nestedDichotomies group qualifies for the first place. The Functions, Lazy and Trees
groups share the second place. Seven out of the top eleven algorithms belong to the

435meta group of classifiers, whilst the other four top 11 classifiers are members of the
Trees group. ClassBalanceND, which belongs to the Meta nested Dichotomies
group, holds the 12th position.

If one was to choose from the 65 algorithms available in Weka for classifying MD
simulations data, meta and tree classifiers would be a good place to start. In

440particular, our experiments indicated that the leading performers are those
algorithms which featured in both the top ten and the list of 11 ‘best’ algorithms
that, for all the data sets, result in classification error rate lower than the average
classification error of the Meta nestedDichotomies group. This leaves 7 meta and 2
tree classifiers with the potential for excellent performance.

445This is not very surprising, given that meta and ensemble classifiers, combining
more than one individual classifier, have been shown to produce high accuracy at
the expense of potentially higher computational burden, especially for classifier
training. We review related work in the following subsection. In addition, the
selection of base classifiers influences the performance of ensemble algorithms

450greatly (Das and Sengur, 2010). Depending on the choice of base classifiers, an
ensemble algorithm can outperform a single classifier.

Nine out of the top ten algorithms result in smaller classification error than the
lowest average classification error of the meta nested Dichotomies group. LMT
and J48.graft do not satisfy this criterion.

455We also note that the classification error for the algorithms used increases from the
Ala54 data set to Ala26. The main difference amongst these data sets is their values’
distribution. The Ala54 data set has a smaller standard deviation (rT) than the other
data sets, and its values’ distribution is narrow. Ala5’ values exhibit a sparser and
wider distribution. The properties of the Ala26 data set are in between of those of

460Ala5 and Ala54.
All in all, Random Forest, a member of the trees group, is the best classifier,

achieving for the first two data sets (Ala54 and Ala26) lower error than Rotation
Forest, the second best classifier, whilst for the last data set (Ala5) it achieves
higher error.

465BFTree and NNge did not produce results for Ala54, whilst Classification via
Clustering resulted in the highest classification error for the three data sets. The
average classification error for the three data sets (Ala5, Ala26 and Ala54) was
0.84%, 13.22% and 16.17%, respectively.

5.2 Related work

470Rodriguez et al. (2006) compared the Rotation Forest with the standard
implementations of J48, Bagging, AdaBoost, and Random Forest available in
Weka. The experimental results with 33 data sets from the UCI Machine Learning
Repository showed that Rotation Forest outperformed all the other four
algorithms by a large margin (Rodriguez et al., 2006). It has been found that
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475Rotation Forest has a similar diversity-accuracy pattern to Bagging, but is more
accurate and slightly more diverse than Bagging.

Random Forest classifier, on the other hand, yields results competitive with
boosting and adaptive bagging (Breiman, 2001).

A comparison of eight different classifiers on the problem of distinguishing all
480major protein subcellular location patterns in both 2D and 3D fluorescence

microscope images has been performed (Huang and Murphy, 2004). The
algorithms that were applied were: neural networks, support vector machines with
linear, polynomial, radial basis and exponential radial basis kernel functions, and
ensemble algorithms such as: AdaBoost, Bagging, and Mixtures-of-Experts. The

485highest accuracy (95.3%), for a specific data set, was achieved using neural networks.
A comparative study of four classification methods (Neural Networks, DMneural,

Regression and Decision Tree), for effective diagnosis of Parkinson’s disease, was
carried out recently by Das (2010). The neural network classifier yielded the best
score: 92.9% classification accuracy.

490A comparative study of three ensemble classification algorithms: bagging,
boosting and Random Subspace, was performed by using a data set containing 215
samples of valvular heart disease (Das and Sengur, 2010). Their main finding is
that boosting, with base classifier SVM, improves performance, achieving accuracy
of 98.4%.

495A study of the performance of 21 classification algorithms, including bagging,
Boosting and Random Forest, using seven gene expression data sets was carried
out (Lee et al., 2005). They found that aggregating classifiers such as bagging,
boosting and Random Forest improves the performance of the CART
(Classification and regression tree) significantly. Also, Random Forest is the best

500tree algorithm (Bagging, Boosting and Random Forest) when the number of classes
is moderate.

Naive Bayes, C4.5 and Random Forest were applied to galaxy classification
(de la Calleja and Fuentes, 2004). Experimental results indicate that Random
Forest results in higher accuracy, when considering three, five and seven galaxy types.

505Finally, Random Forest and Rotation Forest were shown to perform well with
Gene promoters data (Gupta et al., 2010) and the SCOP database (Dehzangi et al.,
2010). Table S1 summarises classification algorithms’ accuracy results reported in
the recent literature.

6 Conclusions

510This paper presented a comprehensive, comparative empirical study on the
performance of all 65 classification algorithms available in Weka when applied to
three MD data sets. Our aim was to explore the pros and cons of the classifiers
and design a suitable ‘roadmap’ for applying classification to data sets that result
from MD simulations of biomolecules.

515We focused on classification error and excluded speed and memory requirement
considerations from our evaluation, given that only classification error is
technology independent; speed and memory requirements depend on the
implementation and the platform used and are likely to improve along with
improving hardware availability. We used default settings not only because these
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520are expected to be the best candidates for producing higher accuracy but mainly
because ‘over-engineering’ settings could make results harder to generalise to other
data sets. We found that Random Forest and Rotation Forest perform favourably,
amongst the other algorithms, in terms of classification error.

Seven out of the leading nine classification algorithms are members of the meta
525group, whilst the other two belong to the trees group. These are, in ascending

order of average error: Random Forest, Rotation Forest, Random Committee,
Bagging, Classification via Regression, Ensemble Selection, END, Ordinal Class
Classifier, and FT. Our findings are partly consistent with the literature. Notably,
experiments reported elsewhere have also shown superior performance for Random

530Forest, Bagging, Rotation Forest (Lee et al., 2005; de la Calleja and Fuentes, 2004;
Gupta et al., 2010; Dehzangi et al., 2010). However, SVM, NN, boosting, and Mix
of Experts, reported to have demonstrated superior performance in the literature,
did not do as well when applied to MD simulations data (Das and Sengur, 2010;
Das, 2010; Huang and Murphy, 2004).

535These results allow for an initial comparison amongst classification techniques
when applied to MD data sets. In addition, the results provide insight into selecting
the most appropriate classification algorithm for data sets that were derived from
computer simulations. Having comprehensively evaluated classification algorithms
in Weka, a promising area for future research would be to compare the

540performance of clustering algorithms, using a similar approach, on data sets with
the same ‘texture’.

As for the roadmap for selecting suitable classification algorithms for computer
simulation data sets, one can consider algorithms which not only performed very
well in this evaluation, but also demonstrated top performance in the literature,

545such as Random Forest, Bagging, and Rotation Forest. Algorithms with poor
performance either in this evaluation or in similar evaluations in the literature do
not make suitable candidates for selection.

We also note that groupings used in Weka do not lead to safe conclusions
regarding algorithmic performance; for instance, both the top six and the bottom

550six algorithms are grouped in the meta team.
In the future, we plan to take in consideration metrics like scalability (runtime and

memory requirements should not explode on large, high dimensional datasets),
robustness (ability to detect outliers that are distant from the rest of the samples),
and mixed data types.
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