
Employing Clustering for Assisting Source Code

Maintainability Evaluation according to ISO/IEC-

9126
Panagiotis Antonellis1, Dimitris Antoniou1, Yiannis Kanellopoulos1, 2, Christos Makris1,

Evangelos Theodoridis1, Christos Tjortjis2, Nikos Tsirakis1

1 Universiry of Patras, Computer Engineering and Informatics Department, Greece
2
 The University Of Manchester, School Of Computer Science, U.K.

Abstract

This paper elaborates on how to use clustering for the

evaluation of a software system’s maintainability according to

the ISO/IEC-9126 quality standard. More specifically it

proposes a methodology that combines clustering and

multicriteria decision aid techniques for knowledge

acquisition by integrating groups of data from source code

with the expertise of a software system’s evaluators. A process

for the extraction of elements from source code and Analytical

Hierarchical Processing for assigning weights to these data

are provided; k-Attractors clustering algorithm is then

applied on these data, in order to produce system overviews

and deductions. The methodology is evaluated on Apache

Geronimo, a large Open Source Application Server; results

are discussed and conclusions are presented together with

directions for future work

1. Introduction

Software maintenance is considered as the most difficult

stage in software lifecycle. According to the National Institute
of Standards and Technology (NIST), it costs the U.S.
economy $60 billion per year [12]. Given this high cost,
maintenance processes can be considered as an area of
competitive advantage. There are several studies for
evaluating a system’s maintainability and controlling the
effort required to carry out maintenance activities [2], [14],
[18]. According to ISO/IEC-9126, maintainability is the
capability of a software product to be modified. Evaluating
such a characteristic is a difficult process as many
contradictory criteria must be considered in order to reach a
decision.
This paper presents a methodology that facilitates the

evaluation of a software product’s maintainability according
to the ISO/IEC-9126 software engineering quality standard.
The intuition of this methodology is to integrate groups of
measurement data extracted from source code’s elements with
the expertise of a system’s evaluators by providing them the
ability to define a number of attributes suitable for such
evaluation. For this reason:

• Metrics are extracted from elements of system’s source
code.

• Relative weights are assigned to these metrics by
employing the Analytical Hierarchy Process, reflecting
their importance on evaluating maintainability.

• The k-Attractors clustering algorithm [4] is then applied
on the derived ISO/IEC-9126’s maintainability values, in
order to provide the evaluator with a quick and rough
grasp of the system.
We attempt to evaluate the usefulness of this methodology

by employing as test-bed, Geronimo 1.0, an open source
application server used in real life industrial applications. The
remaining of this paper is organized as follows: Section 2
reviews existing work in the area of data mining and software
evaluation. Section 3 outlines the logic behind the main parts
of the proposed methodology. Section 4 assesses the accuracy
of the output of the proposed framework, analyses its results
and outlines deductions from its application. Finally,
conclusions and directions for future work are presented in
Section 5.

2. Background

Data mining [3], is the process which extracts implicit,
previously unknown, and potentially useful information from
data, by searching large volumes of them for patterns and by
employing techniques such as classification, association rules
mining, and clustering. It is a quite complex topic and has
links with multiple core fields such as computer science and
adds value to rich seminal computational techniques from
statistics, information retrieval, machine learning and pattern
recognition. Its ability to deal with vast amounts of data has
been considered a suitable solution in assisting software
maintenance, often resulting in remarkable results [1], [7],
[8]], [10], [20]. As previous studies have shown, data mining
is capable to obtain useful knowledge about the structure of
large systems.

Sartipi et al. used data mining for architectural design
recovery [16]. They proposed a model for the evaluation of
the architectural design of a system based on associations
among system components and used system modularity
measurement as an indication of design quality and its
decomposition into subsystems. Besides association rules, the
clustering data mining technique has been used to support
software maintenance and software systems knowledge
discovery [21], [15]. The work in [15] proposes a
methodology for grouping Java code elements together,
according to their similarity and focuses on achieving a high
level system understanding.

Understanding low/medium level concepts and
relationships among components at the function, paragraph or

even line of code level by mining C and COBOL legacy
systems source code was addressed in [19]. For C programs,
functions were used as entities, and attributes defined
according to the use and types of parameters and variables,
and the types of returned values. Then clustering was applied
to identify sub-sets of source code that were grouped together
according to custom-made similarity metrics [19]. An
approach for the evaluation of dynamic clustering is presented
in [22]. The scope of this solution is to evaluate the usefulness
of providing dynamic dependencies as input to software
clustering algorithms. Finally, Clustering over a Module
Dependency Graph (MDG) [9] uses a collection of algorithms
which facilitate the automatic recovery of the modular
structure of a software system from its source code. The
method creates a hierarchical view of system architecture into
subsystems, based on the components and the relationships
between components that can be detected in source code.

Recently, [8] presented an approach that examines the
evolution of code stored in source control repositories. This
technique identifies Change Clusters, which can help
managers to classify different code change activities as either
software maintenance or a new development. On the other
hand [20] analyzes whether some change coupling between
source code entities is significant or only minor textual
adjustments have been checked in, as reflect the changes to
the source code entities. An approach for analyzing and
classifying change types based on code revisions has been
developed. Finally, in [4] language processing techniques are
applied to extend human judgment into situations where
obtaining direct human judgment is impractical due to the
volume of information that must be considered.

The value of this work that differentiates it from what
presented above, is that we don’t cluster raw software
measurement data. Instead, we provide the evaluator the
ability to employ a Multicriteria Analysis (MA) method, the
Analytical Hierarchy Process (AHP), for assigning relative
weights to the extracted metrics in order to reflect their
importance on evaluating maintainability. This helps
incorporating the evaluator’s domain expertise with the
measurement data extracted from source code, which may
lead to more accurate and interesting clustering results.

3. Description of the Methodology
The proposed methodology is supported by the

Code4Thought tool [24]. Our main purpose when
implementing this tool was to use open source and portable
technologies. Thus, we decided to use the Java programming
language for implementing the main functionality of our tool,
the MySQL database for storing our data the PHP scripting
language for designing the user interface of our tool.
This section presents the logic behind the following

modules that constitute the Code4Thought tool:

• Data extraction and preparation

• Weights assignment

• Data analysis

3.1. Data Extraction and Preparation
The objective of data extraction and preparation is two-

fold:

• At first to collect appropriate elements that
describe the software architecture and its
characteristics. These elements include native
source code attributes and metrics.

• Then to analyze the collected elements, choose
a refinement subset of them and store them in a
relational database system for further analysis.

Native attributes include Definition files, classes, Structure
blocks etc. Metrics, on the other hand, provide additional
system information and describe more effectively the
system’s characteristics and behaviour.

All the metrics are associated with a native source code
attribute, e.g. the lack of cohesion is associated with a class
member method. All of the above collected attributes and
metrics are stored into appropriate structured XML files. We
have chosen XML because of its interoperability and its wide
acceptance as a de facto standard for data representation and
exchange. Storing the metrics in XML files enables further
processing and analysis with a variety of tools.

For simplicity, we chose to analyse a refinement subset of
the most important collected elements. This subset should be
small enough in order to be easily analyzed and large enough
to contain all the necessary system information. Based on this
requirement, we stored and further analyzed only the metrics
and their associated native attributes.

The elements chosen need to be extracted from the XML
files and stored permanently in a relational database. For this
reason we used tools that map XML elements and nodes into
any relational database, keeping the extraction method
transparent from the underlying database.

Figure 1 depicts the general architecture of data extraction
and preparation module.

3.2 Weights Assignment
As mentioned above, we have adopted the analytic

hierarchy process (AHP) for the weights assignment. AHP is a
decision making technique that allows consideration of both
qualitative and quantitative aspects of decisions [25]. It
reduces complex decisions to a series of one-on-one
comparisons and then synthesizes the results. Compared to
other techniques, like ranking or rating techniques, AHP
emulates the human ability to compare single properties of
alternatives. It not only helps decision makers choose the best
alternative, but also provides a clear rationale for the choice.

In a systematic way AHP compares a list of objectives or
alternatives. When used in the systems engineering process,
AHP can be a powerful tool for comparing alternative design
concepts. Assuming that a set of objectives has been
established; and that we are trying to establish a normalized
set of weights to be used when comparing alternatives using
these objectives. AHP forms a pairwise comparison matrix A,
where the number in the i-th row and j-th column gives the
relative importance of objective O(i) as compared with O(j).
Values that usually are used are in a 1–9 scale, with a(i,j) = 1
if the two objectives are equal in importance, a(i,j) = 3 if O(i)
is weakly more important than O(j), a(i,j) = 5 if O(i) is
strongly more important than O(j), a(i,j) = 7 if O(i) is very
strongly more important than O(j), and a(i,j) = 9 if O(i) is
absolutely more important than O(j). After this procedure the
comparison matrix is normalized and its eighenvalues are

Figure 1Figure 1Figure 1Figure 1. Architecture of data extraction and preparation module. Architecture of data extraction and preparation module. Architecture of data extraction and preparation module. Architecture of data extraction and preparation module

Figure 2: Weights Assignment Hierarchy

Figure Figure Figure Figure 3333. Data analysis module. Data analysis module. Data analysis module. Data analysis module

computed. These eighenvalues play the role of
coefficients/weights when someone wants to evaluate the
alternatives for the examined objectives.

In our case when we aim at evaluate maintainability (see
Figure 2) from a set of employed metrics, we apply AHP
procedure in each level of the maintainability metrics
hierarchy. At the first level we evaluate the characteristics
(analyzability, changeability, etc) from the extracted metrics
and at the second level we evaluate maintainability from the
characteristics applying AHP procedure again. So at first
level we construct a pairwise comparison table for each one
of the characteristics reflecting the expert’s knowledge of
how much each metric influences each characteristic. Then
by applying the normalization and extraction of eighenvalues
upon each matrix we find the weight of each metric for
calculating a score for each characteristic. At the higher level
a pairwise comparison table is constructed too reflecting the
expert’s knowledge of how much each characteristic
influences maintainability; and the weights are calculated by
normalization and eighenvalues extraction.

3.3. Data Analysis
As depicted in the Figure 3, the k-Attractors algorithm,
accepts data from the source code analyzer, by performing
queries on the database, wherethe data reside. The outcome
of the analysis is stored in XML files, in order to be
visualized by the corresponding module.

In the case of software maintainability evaluation,
clustering produces overviews of systems by creating
mutually exclusive groups of classes, member data or
methods, according to their similarities in terms of technical
(source code) measurements [16]. This helps reducing the
time required to understand and evaluate the overall system.
Another contribution of clustering is that it helps discovering
programming patterns and “unusual” or outlier cases which
may require attention.

For this purpose the k-Attractors algorithm was
employed which is tailored for numerical data such as
measurements from source code Error! Reference source
not found.. The main characteristics of k- Attractors are:

o It defines the desired number of clusters (i.e. the
number of k), without user intervention.

o It locates the initial attractors of cluster centers
with great precision.

o It measures similarity based on a composite metric
that combines the Hamming distance and the inner product of
transactions and clusters’ attractors.

The k-Attractors algorithm employs the maximal
frequent itemset discovery and partitioning in order to define
the number of desired clusters and the initial attractors of the
centers of these clusters. The intuition is that a frequent
itemset in the case of software metrics is a set of
measurements that occur together in a minimum part of a
software system’s classes. Classes with similar
measurements are expected to be on the same cluster. The
term attractor is used instead of centroid, as it is not
determined randomly, but by its frequency in the whole
population of a software system’s classes.

4. Application - Results Evaluation
The evaluation of Apache Geronimo’s maintainability

according to ISO/IEC-9126, involved the study of 1440
classes. Figure 3 depicts the clusters derived from clustering
the maintainability values of Geronimo’s classes. The higher
the values on axis X the less maintainable the classes are.
Table 1 presents statistics for the derived clusters.

Figure Figure Figure Figure 3333: Apache Geronimo ISO/IEC: Apache Geronimo ISO/IEC: Apache Geronimo ISO/IEC: Apache Geronimo ISO/IEC----9126 9126 9126 9126

Maintainability ClustersMaintainability ClustersMaintainability ClustersMaintainability Clusters

Table Table Table Table 1111: Cluste: Cluste: Cluste: Clusters Statisticsrs Statisticsrs Statisticsrs Statistics
S/N

Population Percentage Mean
Standard
Deviation

0 419 29% 1.10 0.29

1 130 9% 2.45 0.60

2 7 0.004% 13.75 2.27

3 856 59% 0.39 0.16

4 28 1.996% 5.02 1.55

Cluster 3, which has the biggest population, contains

classes that their maintainability values range between 0 and
0.9. This shows that the vast majority of Geronimo’s classes
are highly maintainable. Furthermore, clusters 0, 1 and 4
contain classes that their maintainability values range from
0.9 – 2, 2 - 4 and 4 – 9.2 respectively, which can be
considered good in terms of maintainability.
However, outliers are detected in cluster 2, which consists

of only seven (7) classes that have the lowest maintainability
values. These classes are:
1. KernelManagementHelper.java, a class of 1024

Lines Of Code (LOC).
2. TradeDirect.java, a class of 2312 LOC.
3. ClientApp.java, a class of 1633 LOC.
4. CdrInputStream.java, a class of 1569 LOC.
5. CdrOutputStream.java, a class of 1241 LOC.
6. ASN1Encodable.java, a class of only 62 LOC.

7. DERobject.java, a class of only 38 LOC.
Table 2 presents the metric values for the classes in

cluster 2. A further study on these values indicates that the
classes in cluster 2 are grouped in two categories:

• The first category includes the first five classes that
have the following characteristics:

• They don’t follow the principle of low
coupling/high cohesion. On the contrary they exhibit
low cohesion and high coupling.

• They are highly complex.

• All of them have polymorphic methods; which
indicates that encapsulation is not applied in these
classes.

• The second category includes the classes
ASN1Encodable and DERObject that are difficult to
maintain for different reasons. More specifically
these two classes have the following characteristics:

o Interestingly they are not complex, and
their size is very small unlike the classes
on the first category. They also follow the
principle of low coupling/high cohesion.

o They have an excessive number of
children. This indicates probably that these
classes are fundamental elements of
Apache Geronimo’s structure.

o The number of classes depending on them
(Ca) is big.

Table 3 presents statistics for the metrics of Apache
Geronimo’s classes in clusters 0, 1, 3 and 4.
This table indicates that:

• The lower the metric values the higher the probability
of low maintainability.

• There is limited use of inheritance as shown by the low
DIT and NOC values.

• The majority of the classes follow the low
coupling/high cohesion principle.

• Most of the classes exhibit low complexity.

• The design property of encapsulation is applied to most
of the classes.

5. Conclusions and Future Work

The application of the proposed methodology has been

proved to be time and performance efficient. The extraction
process, which is the most time-consuming part of this
methodology, analyzed the 1440 classes of Apache
Geronimo 1.0 and stored the corresponding metrics and
elements in a limited amount of time. A domain expert
previewed the stored metrics and assigned easily and
efficiently the corresponding weights, according to his
priorities and concernings. After clustering application, the
resulted clusters proved to be representative of the code
artifacts, helping the domain expert to identify relations
between specific metrics and global maintainability as well
as spot individual outlier classes that may need
reconsideration.
As future work, we intend to enhance our extraction

method by calculating metrics from other languages like
C++, C and COBOL which were used for the development of
the majority of legacy systems, a category of software
systems which is very interesting in terms of program
comprehension and maintainability evaluation.

Acknowledgements
This research work has been partially supported by the Greek
General Secretariat for Research and Technology (GSRT)
and Dynacomp S.A. within the program “P.E.P. of Western
Greece Act 3.4”

Table Table Table Table 2222: Cluster 2 Metrics: Cluster 2 Metrics: Cluster 2 Metrics: Cluster 2 Metrics

S/N WMC NPM DAM CBO POM DIT NOC LCOM Ca

1 9.15 11.13 1.62 17.40 40.00 0.72 0.00 42.69 0.00

2 11.58 4.52 1.62 35.65 30.00 0.72 0.00 45.21 0.51

3 10.68 0.32 1.62 2.99 2.50 0.72 0.00 81.97 2.53

4 18.38 11.45 1.62 14.37 20.00 0.72 0.00 64.96 9.61

5 14.77 11.29 1.62 13.14 12.50 0.72 0.00 47.82 9.61

6 0.42 0.81 0.00 0.33 0.00 0.72 149.49 0.27 26.30

7 0.28 0.48 0.00 0.00 0.00 1.44 76.27 0.18 52.10

Table 3Table 3Table 3Table 3: Cluster 0, 1: Cluster 0, 1: Cluster 0, 1: Cluster 0, 1, 3 and 4 Metrics Statistics, 3 and 4 Metrics Statistics, 3 and 4 Metrics Statistics, 3 and 4 Metrics Statistics

 Min. Max. Mean Median Stand. Dev.

WMC 0.07 12.55 0.96 0.55 1.20

NPM 0.00 8.71 0.98 0.65 1.17

DAM 0.00 1.62 1.00 1.62 0.76

CBO 0.00 16.54 0.95 0.41 1.54

POM 0.00 37.50 0.93 0.00 2.88

DIT 0.72 3.60 1.00 0.72 0.49

NOC 0.00 70.17 0.85 0.00 3.87

LCOM 0.00 26.84 0.81 0.11 2.43

Ca 0.00 81.94 0.93 0.00 3.28

References
[1] N. Anquetil and T. C. Lethbridge, “Experiments with Clustering

as a Software Remodularization method”, Proc. 6th Working
Conf. Reverse Engineering (WCRE 99), IEEE Comp. Soc.
Press, (1999) 235-255.

[2] Erik Arisholm, Lionel C. Briand, Audun Foyen, “Dynamic
Coupling Measurement for Object-Oriented Software”, IEEE
Transactions on Software Engineering, vol. 30, No. 8, August
2004, pp. 491-506.

[3] Dunham, M. H. Data Mining: Introductory and Advanced
Topics. Prentice Hall PTR, 2002.

[4] Kanellopoulos Y., Antonellis P. Tjortjis C., Makris C., “k-
Attractors, A Clustering Algorithm for Software Measurement
Data Analysis”, In Proceedings of IEEE 19th International
Conference on Tools for Artificial Intelligence (ICTAI 2007),
IEEE Computer Society Press 2007

[5] Kan, S. H. Metrics and Models in Software Quality Engineering.
Addison-Wesley. Second Edition. 2002.

[6] Jay Kothari, Ali Shokoufandeh, Spiros Mancoridis, Ahmed E.
Hassan, "Studying the 1Evolution of Software Systems Using
Change Clusters," ICPC, pp. 46-55, 14th IEEE International
Conference on Program Comprehension (ICPC'06), 2006.

[7] T. Kunz and J. P. Black, “Using Automatic Process Clustering
for Design Recovery and Distributed Debugging”, IEEE
Transactions on Software Engineering, 21(6), (1995) 515-527.

[8] Dawn J. Lawrie, Henry Feild, David Binkley, "Leveraged
Quality Assessment using Information Retrieval Techniques,"
ICPC, pp. 149-158, 14th IEEE International Conference on
Program Comprehension (ICPC'06), 2006.

[9] S. Mancoridis, B.S. Mitchell, Y. Chen and E.R. Gansner,
“Bunch: A Clustering Tool for the Recovery and Maintenance of
Software System Structures”, Proc. Int'l Conf. Software
Maintenance (ICSM 99), IEEE Comp. Soc. Press, (1998) 50-59.

[10] O. Maqbool, H.A. Babri, A. Karim, and M. Sarwar, “Metarule-
guided association rule mining for program understanding,
Software”, IEEE Proceedings, 152(6) (2005) 281- 296.

[11] Storey Margaret-Anne: “Theories, Methods and Tools in
Program Comprehension: Past, Present and Future”, Proc. IEEE
13th Int’l Workshop Program Comprehension (IWPC 2005),
2005.

[12] National Institute of Standards and Technology (NIST), “The
Economic Impacts of Inadequate Infrastructure for Software
Testing.”, Washington D.C. 2002.

[13] C. M. de Oca and D. L. Carver, “Identification of Data Cohesive
Subsystems Using Data Mining Techniques”, Proc. Int'l Conf.
Software Maintenance (ICSM 98), IEEE Comp. Soc. Press,
(1998) 16-23.

[14] Rajendra K. Bandi, Vijay K. Vaishnavi, Daniel E. Turk,
“Predicting Maintenance Performance Using Object Oriented
Design Complexity Metrics”, IEEE Transactions on Software
Engineering, vol. 29, No. 1, January 2003, pp. 77-87.

[15] D. Rousidis and C. Tjortjis, “Clustering Data Retrieved from
Java Source Code to Support Software Maintenance: A Case
Study”, Proc IEEE 9th European Conf. Software Maintenance
and Reengineering (CSMR 05), IEEE Comp. Soc. Press,
(2005) 276-279.

[16] K. Sartipi, K. Kontogiannis and F. Mavaddat, “Architectural
Design Recovery Using Data Mining Techniques”, Proc. 2nd
European Working Conf. Software Maintenance

Reengineering (CSMR 00), IEEE Comp. Soc. Press, (2000)
129-140.

[17] Spinellis D: “Code Quality: The Open Source Perspective“,
Addison-Wesley, 2006.

[18] Yong Tan, Vijay S. Mookerjee, “Comparing Uniform and
Flexible Policies for Software Maintenance and
Replacement”, IEEE Transactions on Software Engineering,
vol. 31, No. 3, March 2005, pp. 238-255.

[19] C. Tjortjis, N. Gold, P.J. Layzell and K. Bennett, ”From
System Comprehension to Program Comprehension”, Proc.
IEEE 26th Int’l Computer Software Applications Conf.

(COMPSAC 02), IEEE Comp. Soc. Press, (2002) 427-432.
[20] C. Tjortjis C., L. Sinos and Layzell P.J., “Facilitating Program

Comprehension by Mining Association Rules from Source
Code”, Proc. IEEE 11th Int’l Workshop Program

Comprehension (IWPC 03), IEEE Comp. Soc. Press, (2003)
125-132.

[21] V. Tzerpos and R. Holt, “Software Botryology: Automatic
Clustering of Software Systems”, Proc. 9th Int'l Workshop
Database Expert Systems Applications (DEXA 98), IEEE
Comp. Soc. Press, (1998) 811-818.

[22] C. Xiao and V. Tzerpos, “Software Clustering on Dynamic
Dependencies”, Proc. IEEE 9th European Conf. Software
Maintenance and Reengineering (CSMR 05), IEEE Comp.
Soc. Press, (2005) 124-133.

[23] http://geronimo.apache.org/downloads.htm

[24] http://www.code4thought.org
[25] Saaty T.. Multicriteria Decision Making: The Analytic

Hierarchy Process, Vol. 1, AHP Series, RWS Publications,
502 pp., 1990

