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Abstract 
 

This paper elaborates on how to use clustering for the 

evaluation of a software system’s maintainability according to 

the ISO/IEC-9126 quality standard. More specifically it 

proposes a methodology that combines clustering and 

multicriteria decision aid techniques for knowledge 

acquisition by integrating groups of data from source code 

with the expertise of a software system’s evaluators. A process 

for the extraction of elements from source code and Analytical 

Hierarchical Processing for assigning weights to these data 

are provided; k-Attractors clustering algorithm is then 

applied on these data, in order to produce system overviews 

and deductions. The methodology is evaluated on Apache 

Geronimo, a large Open Source Application Server; results 

are discussed and conclusions are presented together with 

directions for future work 

 

1. Introduction 
 
Software maintenance is considered as the most difficult 

stage in software lifecycle. According to the National Institute 
of Standards and Technology (NIST), it costs the U.S. 
economy $60 billion per year [12]. Given this high cost, 
maintenance processes can be considered as an area of 
competitive advantage. There are several studies for 
evaluating a system’s maintainability and controlling the 
effort required to carry out maintenance activities [2], [14], 
[18]. According to ISO/IEC-9126, maintainability is the 
capability of a software product to be modified. Evaluating 
such a characteristic is a difficult process as many 
contradictory criteria must be considered in order to reach a 
decision. 
This paper presents a methodology that facilitates the 

evaluation of a software product’s maintainability according 
to the ISO/IEC-9126 software engineering quality standard. 
The intuition of this methodology is to integrate groups of 
measurement data extracted from source code’s elements with 
the expertise of a system’s evaluators by providing them the 
ability to define a number of attributes suitable for such 
evaluation. For this reason: 

•  Metrics are extracted from elements of system’s source 
code. 

•  Relative weights are assigned to these metrics by 
employing the Analytical Hierarchy Process, reflecting 
their importance on evaluating maintainability. 

•  The k-Attractors clustering algorithm [4] is then applied 
on the derived ISO/IEC-9126’s maintainability values, in 
order to provide the evaluator with a quick and rough 
grasp of the system. 
We attempt to evaluate the usefulness of this methodology 

by employing as test-bed, Geronimo 1.0, an open source 
application server used in real life industrial applications. The 
remaining of this paper is organized as follows: Section 2 
reviews existing work in the area of data mining and software 
evaluation. Section 3 outlines the logic behind the main parts 
of the proposed methodology. Section 4 assesses the accuracy 
of the output of the proposed framework, analyses its results 
and outlines deductions from its application. Finally, 
conclusions and directions for future work are presented in 
Section 5. 
 

2. Background 
 

Data mining [3], is the process which extracts implicit, 
previously unknown, and potentially useful information from 
data, by searching large volumes of them for patterns and by 
employing techniques such as classification, association rules 
mining, and clustering. It is a quite complex topic and has 
links with multiple core fields such as computer science and 
adds value to rich seminal computational techniques from 
statistics, information retrieval, machine learning and pattern 
recognition. Its ability to deal with vast amounts of data has 
been considered a suitable solution in assisting software 
maintenance, often resulting in remarkable results [1], [7], 
[8]], [10], [20]. As previous studies have shown, data mining 
is capable to obtain useful knowledge about the structure of 
large systems. 

Sartipi et al. used data mining for architectural design 
recovery [16]. They proposed a model for the evaluation of 
the architectural design of a system based on associations 
among system components and used system modularity 
measurement as an indication of design quality and its 
decomposition into subsystems. Besides association rules, the 
clustering data mining technique has been used to support 
software maintenance and software systems knowledge 
discovery [21], [15]. The work in [15] proposes a 
methodology for grouping Java code elements together, 
according to their similarity and focuses on achieving a high 
level system understanding. 

Understanding low/medium level concepts and 
relationships among components at the function, paragraph or 



even line of code level by mining C and COBOL legacy 
systems source code was addressed in [19]. For C programs, 
functions were used as entities, and attributes defined 
according to the use and types of parameters and variables, 
and the types of returned values. Then clustering was applied 
to identify sub-sets of source code that were grouped together 
according to custom-made similarity metrics [19]. An 
approach for the evaluation of dynamic clustering is presented 
in [22]. The scope of this solution is to evaluate the usefulness 
of providing dynamic dependencies as input to software 
clustering algorithms. Finally, Clustering over a Module 
Dependency Graph (MDG) [9] uses a collection of algorithms 
which facilitate the automatic recovery of the modular 
structure of a software system from its source code. The 
method creates a hierarchical view of system architecture into 
subsystems, based on the components and the relationships 
between components that can be detected in source code. 

Recently, [8] presented an approach that examines the 
evolution of code stored in source control repositories. This 
technique identifies Change Clusters, which can help 
managers to classify different code change activities as either 
software maintenance or a new development. On the other 
hand [20] analyzes whether some change coupling between 
source code entities is significant or only minor textual 
adjustments have been checked in, as reflect the changes to 
the source code entities. An approach for analyzing and 
classifying change types based on code revisions has been 
developed. Finally, in [4] language processing techniques are 
applied to extend human judgment into situations where 
obtaining direct human judgment is impractical due to the 
volume of information that must be considered. 

The value of this work that differentiates it from what 
presented above, is that we don’t cluster raw software 
measurement data. Instead, we provide the evaluator the 
ability to employ a Multicriteria Analysis (MA) method, the 
Analytical Hierarchy Process (AHP), for assigning relative 
weights to the extracted metrics in order to reflect their 
importance on evaluating maintainability. This helps 
incorporating the evaluator’s domain expertise with the 
measurement data extracted from source code, which may 
lead to more accurate and interesting clustering results. 
 

3. Description of the Methodology 
The proposed methodology is supported by the 

Code4Thought tool [24]. Our main purpose when 
implementing this tool was to use open source and portable 
technologies. Thus, we decided to use the Java programming 
language for implementing the main functionality of our tool, 
the MySQL database for storing our data the PHP scripting 
language for designing the user interface of our tool. 
This section presents the logic behind the following 

modules that constitute the Code4Thought tool: 

•  Data extraction and preparation 

•  Weights assignment 

•  Data analysis 
 

3.1. Data Extraction and Preparation 
The objective of data extraction and preparation is two-

fold: 

•  At first to collect appropriate elements that 
describe the software architecture and its 
characteristics. These elements include native 
source code attributes and metrics. 

• Then to analyze the collected elements, choose 
a refinement subset of them and store them in a 
relational database system for further analysis. 

Native attributes include Definition files, classes, Structure 
blocks etc. Metrics, on the other hand, provide additional 
system information and describe more effectively the 
system’s characteristics and behaviour. 

All the metrics are associated with a native source code 
attribute, e.g. the lack of cohesion is associated with a class 
member method. All of the above collected attributes and 
metrics are stored into appropriate structured XML files. We 
have chosen XML because of its interoperability and its wide 
acceptance as a de facto standard for data representation and 
exchange. Storing the metrics in XML files enables further 
processing and analysis with a variety of tools. 

For simplicity, we chose to analyse a refinement subset of 
the most important collected elements. This subset should be 
small enough in order to be easily analyzed and large enough 
to contain all the necessary system information. Based on this 
requirement, we stored and further analyzed only the metrics 
and their associated native attributes. 

The elements chosen need to be extracted from the XML 
files and stored permanently in a relational database. For this 
reason we used tools that map XML elements and nodes into 
any relational database, keeping the extraction method 
transparent from the underlying database. 

Figure 1 depicts the general architecture of data extraction 
and preparation module. 

 

3.2 Weights Assignment 
As mentioned above, we have adopted the analytic 

hierarchy process (AHP) for the weights assignment. AHP is a 
decision making technique that allows consideration of both 
qualitative and quantitative aspects of decisions [25]. It 
reduces complex decisions to a series of one-on-one 
comparisons and then synthesizes the results. Compared to 
other techniques, like ranking or rating techniques, AHP 
emulates the human ability to compare single properties of 
alternatives. It not only helps decision makers choose the best 
alternative, but also provides a clear rationale for the choice. 

In a systematic way AHP compares a list of objectives or 
alternatives. When used in the systems engineering process, 
AHP can be a powerful tool for comparing alternative design 
concepts. Assuming that a set of objectives has been 
established; and that we are trying to establish a normalized 
set of weights to be used when comparing alternatives using 
these objectives. AHP forms a pairwise comparison matrix A, 
where the number in the i-th row and j-th column gives the 
relative importance of objective O(i) as compared with O(j). 
Values that usually are used are in a 1–9 scale, with a(i,j) = 1 
if the two objectives are equal in importance,  a(i,j) = 3 if O(i) 
is weakly more important than O(j),  a(i,j) = 5 if O(i) is 
strongly more important than O(j),  a(i,j) = 7 if O(i) is very 
strongly more important than O(j), and  a(i,j) = 9 if O(i) is 
absolutely more important than O(j). After this procedure the 
comparison matrix is normalized and its eighenvalues are  
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Figure 2: Weights Assignment Hierarchy 
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computed. These eighenvalues play the role of 
coefficients/weights when someone wants to evaluate the 
alternatives for the examined objectives. 

In our case when we aim at evaluate maintainability (see 
Figure 2) from a set of employed metrics, we apply AHP 
procedure in each level of the maintainability metrics 
hierarchy. At the first level we evaluate the characteristics 
(analyzability, changeability, etc) from the extracted metrics 
and at the second level we evaluate maintainability from the 
characteristics applying AHP procedure again. So at first 
level we construct a pairwise comparison table for each one 
of the characteristics reflecting the expert’s knowledge of 
how much each metric influences each characteristic. Then 
by applying the normalization and extraction of eighenvalues 
upon each  matrix we find the weight of each metric for 
calculating a score for each characteristic. At the higher level 
a pairwise comparison table is constructed too reflecting the 
expert’s knowledge of how much each characteristic 
influences maintainability; and the weights are calculated by 
normalization and eighenvalues extraction. 

3.3. Data Analysis 
As depicted in the Figure 3, the k-Attractors algorithm, 
accepts data from the source code analyzer, by performing 
queries on the database, wherethe data reside. The outcome 
of the analysis is stored in XML files, in order to be 
visualized by the corresponding module. 

In the case of software maintainability evaluation, 
clustering produces overviews of systems by creating 
mutually exclusive groups of classes, member data or 
methods, according to their similarities in terms of technical 
(source code) measurements [16]. This helps reducing the 
time required to understand and evaluate the overall system. 
Another contribution of clustering is that it helps discovering 
programming patterns and “unusual” or outlier cases which 
may require attention. 

For this purpose the k-Attractors algorithm was 
employed which is tailored for numerical data such as 
measurements from source code Error! Reference source 
not found.. The main characteristics of k- Attractors are: 



o  It defines the desired number of clusters (i.e. the 
number of k), without user intervention. 

o  It locates the initial attractors of cluster centers 
with great precision. 

o  It measures similarity based on a composite metric 
that combines the Hamming distance and the inner product of 
transactions and clusters’ attractors. 

The k-Attractors algorithm employs the maximal 
frequent itemset discovery and partitioning in order to define 
the number of desired clusters and the initial attractors of the 
centers of these clusters. The intuition is that a frequent 
itemset in the case of software metrics is a set of 
measurements that occur together in a minimum part of a 
software system’s classes. Classes with similar 
measurements are expected to be on the same cluster. The 
term attractor is used instead of centroid, as it is not 
determined randomly, but by its frequency in the whole 
population of a software system’s classes. 
 

4. Application - Results Evaluation 
The evaluation of Apache Geronimo’s maintainability 

according to ISO/IEC-9126, involved the study of 1440 
classes. Figure 3 depicts the clusters derived from clustering 
the maintainability values of Geronimo’s classes. The higher 
the values on axis X the less maintainable the classes are. 
Table 1 presents statistics for the derived clusters. 
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Table Table Table Table 1111: Cluste: Cluste: Cluste: Clusters Statisticsrs Statisticsrs Statisticsrs Statistics    
S/N 

Population Percentage Mean 
Standard 
Deviation 

0 419 29% 1.10 0.29 

1 130 9% 2.45 0.60 

2 7 0.004% 13.75 2.27 

3 856 59% 0.39 0.16 

4 28 1.996% 5.02 1.55 

 
Cluster 3, which has the biggest population, contains 

classes that their maintainability values range between 0 and 
0.9. This shows that the vast majority of Geronimo’s classes 
are highly maintainable. Furthermore, clusters 0, 1 and 4 
contain classes that their maintainability values range from 
0.9 – 2, 2 - 4 and 4 – 9.2 respectively, which can be 
considered good in terms of maintainability. 
However, outliers are detected in cluster 2, which consists 

of only seven (7) classes that have the lowest maintainability 
values. These classes are: 
1.  KernelManagementHelper.java, a class of 1024 

Lines Of Code (LOC). 
2.  TradeDirect.java, a class of 2312 LOC. 
3.  ClientApp.java, a class of 1633 LOC. 
4.  CdrInputStream.java, a class of 1569 LOC. 
5.  CdrOutputStream.java, a class of 1241 LOC. 
6.  ASN1Encodable.java, a class of only 62 LOC. 

7.  DERobject.java, a class of only 38 LOC. 
Table 2 presents the metric values for the classes in 

cluster 2. A further study on these values indicates that the 
classes in cluster 2 are grouped in two categories: 

•  The first category includes the first five classes that 
have the following characteristics: 

•  They don’t follow the principle of low 
coupling/high cohesion. On the contrary they exhibit 
low cohesion and high coupling. 

•  They are highly complex. 

•  All of them have polymorphic methods; which 
indicates that encapsulation is not applied in these 
classes. 

•  The second category includes the classes 
ASN1Encodable and DERObject that are difficult to 
maintain for different reasons. More specifically 
these two classes have the following characteristics: 

o  Interestingly they are not complex, and 
their size is very small unlike the classes 
on the first category. They also follow the 
principle of low coupling/high cohesion. 

o  They have an excessive number of 
children. This indicates probably that these 
classes are fundamental elements of 
Apache Geronimo’s structure. 

o  The number of classes depending on them 
(Ca) is big. 

Table 3 presents statistics for the metrics of Apache 
Geronimo’s classes in clusters 0, 1, 3 and 4. 
This table indicates that: 

•  The lower the metric values the higher the probability 
of low maintainability. 

•  There is limited use of inheritance as shown by the low 
DIT and NOC values. 

•  The majority of the classes follow the low 
coupling/high cohesion principle. 

•  Most of the classes exhibit low complexity. 

•  The design property of encapsulation is applied to most 
of the classes. 

 

5. Conclusions and Future Work 
 
The application of the proposed methodology has been 

proved to be time and performance efficient. The extraction 
process, which is the most time-consuming part of this 
methodology, analyzed the 1440 classes of Apache 
Geronimo 1.0 and stored the corresponding metrics and 
elements in a limited amount of time. A domain expert 
previewed the stored metrics and assigned easily and 
efficiently the corresponding weights, according to his 
priorities and concernings. After clustering application, the 
resulted clusters proved to be representative of the code 
artifacts, helping the domain expert to identify relations 
between specific metrics and global maintainability as well 
as spot individual outlier classes that may need 
reconsideration. 
As future work, we intend to enhance our extraction 

method by calculating metrics from other languages like 
C++, C and COBOL which were used for the development of 
the majority of legacy systems, a category of software 
systems which is very interesting in terms of program 
comprehension and maintainability evaluation. 
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Table Table Table Table 2222: Cluster 2 Metrics: Cluster 2 Metrics: Cluster 2 Metrics: Cluster 2 Metrics    

S/N WMC NPM DAM CBO POM DIT NOC LCOM Ca 

1 9.15 11.13 1.62 17.40 40.00 0.72 0.00 42.69 0.00 

2 11.58 4.52 1.62 35.65 30.00 0.72 0.00 45.21 0.51 

3 10.68 0.32 1.62 2.99 2.50 0.72 0.00 81.97 2.53 

4 18.38 11.45 1.62 14.37 20.00 0.72 0.00 64.96 9.61 

5 14.77 11.29 1.62 13.14 12.50 0.72 0.00 47.82 9.61 

6 0.42 0.81 0.00 0.33 0.00 0.72 149.49 0.27 26.30 

7 0.28 0.48 0.00 0.00 0.00 1.44 76.27 0.18 52.10 

    
Table 3Table 3Table 3Table 3: Cluster 0, 1: Cluster 0, 1: Cluster 0, 1: Cluster 0, 1, 3 and 4 Metrics Statistics, 3 and 4 Metrics Statistics, 3 and 4 Metrics Statistics, 3 and 4 Metrics Statistics    

 Min. Max. Mean Median Stand. Dev. 

WMC 0.07 12.55 0.96 0.55 1.20 

NPM 0.00 8.71 0.98 0.65 1.17 

DAM 0.00 1.62 1.00 1.62 0.76 

CBO 0.00 16.54 0.95 0.41 1.54 

POM 0.00 37.50 0.93 0.00 2.88 

DIT 0.72 3.60 1.00 0.72 0.49 

NOC 0.00 70.17 0.85 0.00 3.87 

LCOM 0.00 26.84 0.81 0.11 2.43 

Ca 0.00 81.94 0.93 0.00 3.28 
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