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Abstract 
 
This paper presents ongoing work on using data mining 
to discover knowledge about software systems thus 
facilitating program comprehension. We discuss how this 
work fits in the context of tool supported maintenance 
and comprehension and report on applying a new 
methodology on C++ programs. The overall framework 
can provide practical insights and guide the maintainer 
through the specifics of systems, assuming little 
familiarity with these. 
The contribution of this work is two-fold: it provides a 
model and associated method to extract data from C++ 
source code which is subsequently to be mined, and 
evaluates a proposed framework for clustering such data 
to obtain useful knowledge. The methodology is evaluated 
on three open source applications, results are assessed 
and conclusions are presented. This paper concludes with 
directions for future work. 
 
 
1. Introduction 

 
A well documented problem faced by maintainers 

when understanding a software system is the lack of 
familiarity with it, combined with the lack of accurate 
documentation [11]. Several techniques and methods have 
been proposed in order to facilitate this time consuming 
activity [3], [7], [9]. 

The work presented in this paper is part of a wider 
research effort investigating the applicability and 
suitability of using data mining to facilitate program 
comprehension and maintenance [4], [13], [15],[15]. This 
effort aims at developing a methodology for semi-
automated program comprehension incorporating data 
mining. A fundamental underlying assumption is that the 
maintainer may have little or no knowledge of the 
program which is analysed. 

The work presented here aims to help maintainers to 
recognise parts of C++ code that have common 

characteristics, facilitating program understanding. This 
work focuses on extracting data from C++ code which are 
clustered in order to identify logical, behavioural and 
structural correlations amongst program components. C++ 
was selected as it is widely used but is more complicated 
to comprehend, compared to other programming 
languages, like COBOL. As an object oriented language, 
it can be analyzed in either a more detailed, technical 
level (member data and member functions analysis), or in 
a more abstract level (class analysis). 

The objectives of this work are: 
i) to define the input model needed to extract data from 

C++ code and populate a database. This requires 
defining program entities and their attributes. 

ii) to propose a pre-processing method that extracts data 
from code using the input data model. 

iii) to assess the feasibility of the methodology in 
producing valid, useful and novel patterns and 
knowledge about a software system. 

The remaining of this paper is organised as follows. 
Section 2 reviews previous solutions in the domain of data 
mining for program comprehension. Section 3 outlines the 
proposed methodology for pre-processing C++ source 
code, the input data model and the steps of this 
methodology. Section 4 assesses the accuracy of the 
output of this method, analyses its results and outlines 
deductions from its application. Finally, conclusions and 
directions for future work are presented in section 5. 

 

2. Background 
 
Software maintenance is the most difficult stage in 

software lifecycle, often performed with limited 
understanding of the design and the overall structure of a 
system because of commercial pressures [11]. Fast, 
unplanned modifications, based on partial understanding 
of a system, give rise to increased code complexity and 
deteriorated modularity, thus resulting in 50%-90% of the 
maintainers’ time to be spent on program comprehension 
[14]. Furthermore it is recognised that there are no 



explicit guidelines given a program understanding task, 
nor there are good criteria to decide how to represent 
knowledge derived by and used for it [2]. 

Data mining and its ability to deal with vast amounts 
of data, has been considered a suitable solution in 
assisting software maintenance often resulting in 
remarkable results [1], [6], [8], [10], [12], [17], [17]. Our 
approach similarly uses data mining to get insights into 
systems design and structure [4], [13], [15], [15]. 

The following paragraphs briefly review some of the 
most prominent solutions in the area of data mining for 
software maintenance and compare these to our approach. 

 
2.1 Using Clustering to Produce High-Level 
System Organisations of Code 

 
This solution proposes a collection of algorithms 

which facilitate the automatic recovery of the modular 
structure of a software system from its source code [8]. It 
creates a hierarchical view of the organisation of the 
system based mainly on the components and the 
relationships that exist in the source code. 

First it represents the system modules and the 
module-level relationships as a module - dependency 
graph. Then it partitions this graph so that the high - level 
subsystem structure can be derived from the component 
level relationships extracted from the source code. Based 
on the concepts of cohesion and coherence three 
parameters are introduced:  intra-connectivity, inter-
connectivity and modularisation quality.  

The basic goal of this modularisation technique is to 
automatically partition the components of a system into 
clusters (subsystems) so that the resultant organisation 
concurrently minimises inter-connectivity while 
maximising intra-connectivity. The underlying assumption 
is that a well-designed system is organised into cohesive 
clusters that are loosely interconnected. The main 
drawback of this solution is that as the number of files 
exceeds 20, calculation time is greatly increased. 

 
2.2 A Software Evaluation Model Using 
Component Association Views 

 
This solution proposes a model for the evaluation of 

the architectural design of a system based on the 
association between the components of the system [12]. It 
allows measurement of system modularity, as an 
indication of the design quality and its decomposition into 
subsystems. For this reason the following three 
association views of a system are generated: 
i) Control passing: It represents the correlation among 

the system components based on function invocation. 

ii) Data exchange: It epitomises the correlation among 
the system components based on aggregate data types 
(except integer, real, boolean and string) that are 
either passed as parameters between two functions or 
are referenced by a function. 

iii) Data sharing: It signifies the correlation among the 
system components based on sharing the global 
variables by the functions. 

In this approach the software system is modelled as an 
attributed relational graph with system entities as nodes 
and data-control-dependencies as edges. At this point, the 
application of data mining techniques, like association 
rules helps the decomposition of the graph into domains 
of entities based on the association property. The next 
step is to populate a database of these domains. This 
approach is based on the concept of the association 
between the components of a system. There are however 
other characteristics that play crucial role in grouping 
system components, such as the number of member data 
or functions in a class. These can be discovered by using 
other data mining techniques like clustering. 

 
2.3 A Method for Legacy Systems Maintenance 
by Mining Data Extracted from Code 

 
This approach used data mining to facilitate software 

maintenance and reliability assessment. It addressed 
C/C++ and COBOL legacy systems aiming at 
understanding low/medium level concepts and 
relationships involving components at the function, 
paragraph or even line of code level [4], [13], [16]. 

This approach consists of three distinct phases: a) 
data extraction, b) data mining application and c) result 
evaluation. There were different challenges in each phase. 
These involved the definition of an appropriate data 
model which captures as much information about the code 
as possible, the construction of a database suitable for 
data mining, the selection and customisation and 
application of data mining algorithms and the assessment 
of the outcomes by domain experts. The approach deals 
with both COBOL and C/C++ programs and varies 
according to the differences between these languages.  

For C programs, we used functions as entities, and 
attributes defined according to the use and types of 
parameters and variables, and the types of returned 
values. We then applied clustering to identify sub-sets of 
source code that are grouped together according to 
custom-made similarity metrics. 

For COBOL programs we used paragraphs as 
entities, and binary attributes depending on the presence 
of user-defined and language-defined identifiers. In this 
case we derived association rules in order to establish 
inter-group and intra-group relationships.  



Results represent the syntactic and semantic content 
of the source code. Code is represented by means of 
models or graphs, like variable relationship model, a 
variable-block relationship model or even models that 
convey a meaning similar to Data Flow Diagrams and 
flow charts. Programs are abstracted into groups 
containing interrelated entities and are grouped together. 

This solution addresses systems both at medium and 
at low level and confirms that data mining can produce 
structural views of source code thus facilitating legacy 
systems understanding. There were however issues that 
had to do with correlations across system components 
such as programs and files. This deficiency was dealt with 
by the methodology proposed in this paper. 

 

3. Description of the Proposed Framework 
 
The framework proposed here, was developed for 

pre-processing C++ source code at the program level and 
consists of the following parts: 
i) The input model, which involves the specification of 

program entities and their attributes. 
ii) The pre-processing method. 

This section outlines the main characteristics of the 
pre-processing and cluster analysis system. 

 
3.1 Input Model 

 
The definition of the input model requires the 

specification of program entities and their attributes. This 
facilitates clustering, a data mining technique, which 
imposes requirements on the type and number of 
attributes, the lack of a distinction between predictive and 
predicted attributes and so on [5]. 

Entities were selected to be applicable to all 
programs. That means that they need to be clearly named 
in a program. For instance, functions and classes are 
candidate entities as they exist in most C++ programs. 
Candidate entities also need to model a large proportion 
of the code, thus ensuring that any subsequent analysis 
covers a large part of a system. 

Moreover entities need to contain a common set of 
attributes in order to achieve homogeneity. This allows 
for entities’ comparison on the basis of their attributes, 
which is the main principle of clustering. The number of 
selected attributes need also be sufficient in order to avoid 
misleading comparisons or discovering accidental 
similarities. Selected attributes were both binary and 
qualitative, as they are predominant in a source code 
application domain [4].  

Four types of entities were eventually selected: 
Classes, member functions, parameters and member data. 
The following schema (Fig. 3.1) outlines the proposed 
input model in terms of entities and respective attributes. 

Each entity is described by attributes thus formulating 
database tables. 

 

 
Fig. 3.1:  The proposed input model 

 
3.2 Pre-Processing Methodology 

 
The pre-processing method extracts data from source 

code and stores these into appropriate tables. There were 
two major requirements for this: 
i) Output should be stored in way facilitating clustering 
ii) Data processing should be fast. 

We use a top-down approach by processing top-level 
program data first, such as class information, and then 
lower-level data such as member functions, their 
parameters, and member data. 

 
Fig. 3.2: Pre-processing methodology 

 
More specifically, we first extract information that 

describes the class entity, such as class handle, its super-
class name if it exists, and the number of the member data 
and functions. Then information that describes the 
member data of a class is extracted, including variable 
name, type and category, such as public, protected, 
private, as well information describing whether the 
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variable is static, a pointer or user-defined. After that, we 
extract information related to class member functions, 
such as name, return type and category (public, protected, 
private), as well as number of parameters if any. Finally 
information related to the parameters of class member 
functions is extracted including name, type and use (by 
value, by reference). An outline of this methodology is 
illustrated in Fig. 3.2. 

 
3.3 Aspects of the Proposed Framework 

 
Sections §3.1-.2 presented two fundamental concepts 

about the proposed framework: the input model and the 
pre-processing methodology. This section describes 
aspects of the framework regarding outcome utilisation. 
More specifically all the information required by the 
methodology, as defined by the input data model, can be 
found at the header files of standard C++ systems. We 
scan these files and populate relevant database tables. We 
then use IBM’s Intelligent Miner™ demographic 
clustering on these tables to identify patterns concerning 
the system structure and its components’ general 
characteristics. These characteristics can be qualitative 
like the name of the superclass that a class inherits from, 
the category (public protected, private) of a member 
function and so on. They can also be quantitative, such as 
the number of member function parameters. We have 
experimented using various clustering schemes in order to 
identify correlated entities such as classes, functions and 
member data, based on similarities on their attributes as 
defined by the input model. Results are briefly presented 
and discussed in section 4.  

 
3.4 Technical aspects of the Framework 

 
This section provides a description of the technical 

aspects of the framework and the system developed to 
implement it. The main parts of this system are: 
i) The Pre-processing Application that parses C++ 

code. This consists of a G.U.I front-end and a pre-
processing back-end that extracts data from code and 
stores them in a database. 

ii) The database management system that stores data to 
be mined. 

iii) The data mining clustering tool. 
Fig. 3.3 highlights the structure of this system. At 

first, the pre-processing application parses the C++ code 
in order to extract the data defined by the input model 
described in §3.1. The next step is using a data mining 
tool to perform clustering. The system also includes 
clustering results analysis. 

All in all, our approach used a customised process 
model widely used in Knowledge Discovery in Databases 

(KDD). The main difference is that the original data 

collection is made of source code rather than more 
“conventional” tuples [5]. Fig. 3.4 illustrates this process. 

Fig. 3.3: An overview of the system 
 
The first step of this process (Extraction) involves parsing 
the code to extract data modeling program entities and 
their attributes. The second step (Transformation) 
transforms the extracted data in order to store these in 
relational database tables suitable for clustering. The third 
step (Data Mining) applies clustering in search for 
patterns of interest. Patterns are then interpreted and 
analyzed. The process is an iterative one and interim 
results or findings can be feedback to a previous stage. 

 
Fig. 3.4: Knowledge discovery in source code 

 

4. Result Evaluation 
 

The proposed framework was evaluated in terms of 
accuracy and ability to capture knowledge relevant to 
software maintenance activities, using three open source 
applications. Two of the applications, CAccessReports 
and CompDB, are created with the help of Microsoft 
Foundation Classes (MFC) and can be downloaded from 
[19]. The other application, FlightGear Flight Simulator, 
is an open source flight simulator that can be downloaded 
from [19]. The actual structure of these applications is 
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compared to the outcome of the analysis of their 
respective input models. The output should be valid, 
novel and useful to the system maintainer. The following 
sub-sections discuss separately the outcomes of our 
empirical experimentation with these applications.  

 
4.1 The First Case Study 

 
CAccessReport is a small-medium size application 

with 53 public classes, and 2812 functions that have 1614 
parameters in total.  

 
4.1.1 Class Analysis. The classes of this application have 
many similarities as almost all of them (52 out of 53) 
inherit from one class:  COleDispatchDriver and have 
only public member functions. Therefore, only attributes 
describing the number of public functions and the class 
handle were of importance in formulating clusters. As a 
result clusters are characterised only by the number of 
their member functions. 

 
4.1.2 Member Functions Analysis. There are two 
significant characteristics of the member functions of this 
program: the first is that all of them are public and the 
second is that almost half of them contain parameters. 
They were grouped in three clusters. 

The first cluster, representing 45.82% of the 
population, consists of public functions with parameters. 
These functions either have no return type or they return 
void. Therefore, it can be concluded that this cluster 
includes the constructors of the system’ s classes and 
functions that usually set values to these. The second 
cluster, representing 34.12% of the population, consists of 
public functions that have no parameters. Half of these 
functions return the type CString, which encapsulates a 
character string. The third cluster, representing 20.06% of 
the population, consists of public functions, 11.17% of 
which have no parameters at all, while the remaining 
88.83% have. Almost half of these functions return the 
following types VARIANT, which is a self-described data 
type that facilitates data passing, and LPDISPATCH, 
which accesses the underlying pointer of the 
COleDispatchDriver object. 

 
4.1.3 Member Functions Parameters Analysis. Most of 
the member function parameters are passed by value. 
They were grouped in three clusters: 

The first cluster (42.44% of the population) consists of 
parameters that are passed by value and originate from the 
following types: LPCSTR, which is a constant pointer to 
a string, LPDISPATCH and pointers of type VARIANT. 
The second cluster (41.57%) also consists of parameters 
that are passed by value, most of which originate from the 
types bool, short and long. The third cluster (15.99%) 

consists of parameters that are passed by reference and 
they are constants of type VARIANT. Constants of this 
type are used by functions which aim to specify data that 
cannot be passed by reference in any other way. 

 
4.1.4 Conclusions. There are no major differences 
amongst components of this program. The majority of its 
classes inherits from the same superclass, has no member 
data and member functions are public. Differences are 
mainly quantitative, such as the number of public 
functions or parameters. The only differences that are 
qualitative rather than quantitative are attributed to the 
member functions return types of and their parameters’  
types. Interestingly, every parameter passed by reference 
is a constant of type VARIANT. Thus, it can be deducted 
that functions using such parameters are bound during 
run-time and that data are not known in advance. 

 
4.2 The Second Case Study 

 
CompDB is a small size application. It consists of 18 

public classes, 64 member data and 256 functions that 
have 235 parameters.  

 
4.2.1 Class Analysis. Entities extracted from this 
program formed three clusters. 

The first cluster represents 38.89% of the population, 
and consists of classes that all inherit from another class. 
Their respective superclasses are: 
i) CStatic, which encapsulates the static control. 
ii) CView, which a view class is derived from. 
iii) CMDIFrameWnd, which provides a main frame 

window for Multiple Document Interface (MDI) 
applications. 

iv) CMDIChildWnd, which provides child windows for 
an MDI application. 

Classes in this cluster are related logically, as they 
represent components of the document/view architecture 
implemented by this program. 

The second cluster, represents 33.33% of the 
population, and consists of classes, amongst which, two 
do not inherit and four do. The respective superclasses of 
those who inherit are: 
i) CStringArray, which is an array of the String type. 
ii) CListBox, which encapsulates the list box control. 
iii) CDocument, which is the class where the document 

of an MFC application (like CompDB) derives from. 
iv) CListCtrl, which displays a graphical list items. 

The classes in this cluster do not have a strong logical 
correlation. There is only one class representing a 
component included in the document/view architecture, 
two others represent control classes, and another 
represents a shape of the MFC collection. 



The third cluster represents 27.78% of the population, 
and consists of classes that all inherit. Their respective 
superclasses are: 
i)  CDialog, which implements Windows dialogs. 
ii)  CButton, which is a standard Windows pushbutton. 
iii) CWinApp, which represents the standard Windows 

Application. 
The classes in this cluster do not have a strong logical 

correlation. There are three classes representing dialog 
controls, one represents the Windows application and 
another represents a control. 

 
4.2.2 Member Data Analysis. The member data of this 
program’ s classes are either public or protected. Three 
clusters were formed. 

The first cluster represents 59.38% of the population 
and consists of protected members, none of which is a 
pointer. Almost half of the member data of this class (Fig. 
4.1) belong to two classes. The types of the member data 
vary. The more predominant are: 
i) int 
ii) CString, which encapsulates a character string. 
iii) CFont, which wraps the Windows font object and 

API functions for creating and managing fonts. 
iv) CGridCtrl, which is a control. 
 

 
Fig. 4.1: Member data classes of CompDB, 1st 

cluster  
 
The second cluster represents 32.81% of the 

population and consists of public members none of which 
is a pointer. Member data of this cluster mostly belong to 
three classes. There is a clear logical connection among 
member data of this cluster as the majority of it belongs to 
classes that are derived from the CDialog class. 

Types of the member data vary. The more 
predominant are: 
i) enum 
ii) CString, which encapsulates a character string. 
iii) CButton, which wraps a standard Windows 

pushbutton. 

The third cluster represents 7.81% of the population 
and consists of public and protected members which are 
all pointers. This is the most important logical relation 
between the member data of this cluster, which only 
belongs to two classes (Fig. 4.2).  

The types of the member data are different. The more 
predominant are: 
i) CPen, which wraps the Windows pen object and 

includes API functions for creating pens as member 
functions. 

ii) CBrush, which wraps the Windows brush object and 
API functions for creating brushes. 

 
4.2.3 Member Functions Analysis. Class member 

functions were grouped in three clusters. 
 

 
Fig. 4.2: Member data classes of CompDB, 3rd 

cluster 
 
The first cluster represents 34.38% of the population 

and consists of public and protected functions. The return 
types of these vary, the most predominant being afx_msg 
void and afx_msg int. Most of the member functions of 
this cluster belong to four classes. The second cluster 
represents 33.20% of the population. The return types of 
these vary, the most predominant being void and bool. 
Most of the member functions of this cluster belong to 
four classes, two of which are the same as in the first 
cluster. The third cluster represents 32.42% of the 
population. Almost half of the functions of this cluster do 
not have a return type. This indicates that they are either 
the constructors or the destructors of the classes they 
belong to. Among member functions that have a return 
type, the most predominant one is bool. Most of the 
member functions of this cluster belong to four classes, 
three of which are the same as in the second cluster and 
only one similar to these in the first cluster. 

 
4.2.4 Member Functions Parameters Analysis. 
Member function parameters of classes were grouped into 
three clusters: 



The first cluster represents 42.98% of the population 
and consists of parameters passed by value. The return 
types of these vary, the most predominant being pointers 
of type char, int and pointers of type CDC, which is a 
class that encapsulates device-context support. The 
second cluster represents 42.55% of the population and 
consists of parameters passed by value. The return types 
of these vary, the most predominant being char, UINT, 
which is an unsigned 32-bit integer and COLOREF, 
which is a 32-bit integer that holds a colour. The third 
cluster represents 14.47% of the population and consists 
of parameters passed by reference. The return types of 
these vary, the most predominant being 
CDUMPCONTEXT, which is a class that its objects 
provide several diagnostic messages and 
_CONNECTIONPTR, which is a class that its objects are 
pointers to a Connection Interface. 
 
4.2.5 Conclusions. We found the following logical 
correlations among classes of this program: first, there are 
four classes deriving from the class CView. These classes 
have also structural (member data) and behavioural 
(member functions) similarities. They have the same size 
as there are no significant differences between the number 
of their member data and functions. Their member data 
have also common data types. Their member functions 
have also common return types and similar parameter 
numbers. 

Another category of logically related classes are two 
classes that are derived from CWnd. They also have 
structural similarities, as their member data have common 
data types. However, their member functions seem to have 
similarities but in a lower rate than the member data. 

Three classes that are derived from the class CDialog 
are also logically related and present structural and 
behavioural similarities. Their member data and functions 
have many similarities, such as common data types (for 
the member data), number of parameters and return types 
(for the member functions). 

Overall we identified logical, structural and 
behavioural correlations involving 9 out of 18 classes of 
this program. This can be useful for maintenance 
purposes. For example, if changes in the data type of a 
member data of one class are to be made, then related 
classes should be looked at as well. We may also presume 
that by finding logical correlations amongst classes of a 
system, it is also likely to find structural and behavioural 
correlations. This can be useful for software 
understanding and maintenance purposes. Classes’  ability 
to inherit is an important factor affecting the logical 
correlation within a system. If some classes share the 
same superclass, then it is more likely to have similar 
structure and behaviour. 

At this point it has to be underlined that finding 
logical correlations between the classes of a system is not 
the only way for a maintainer to understand the system. 
There are classes that do not have any logical correlation, 
but they can have either structural or behavioural 
similarities. Examples of this are classes which have 
member data of the same type (structural similarity). 
Therefore, if one is to change the type of the member data 
of one, it is likely that a similar change will be needed for 
the other as well. 

 
4.3 The Third Case Study 

 
FlightGear Flight Simulator is a medium size 

application with 147 classes, 1450 member data and 2155 
functions that have 1614 parameters in total. 

 
4.3.1 Class Analysis. Entities extracted from this 
program formed 5 clusters. 

The first cluster represents 46.26% of the population, 
and consists of classes that do not inherit. By their handles 
we understand that there is a logical correlation among 
these, as most belong to the three system modules. The 
second cluster represents also 46.26% of the population 
and consists of classes that do inherit. Their respective 
superclasses are: FGSubSystem, which provides an 
interface that all subsystems should implement, 
FGInterface and instr_item, which represents an aircraft 
instrument. The third cluster represents 3.12% of the 
population and consists of classes that all inherit. Their 
respective superclasses are FGATC, which is the base 
class for the various actual classes, and fgCallback, which 
is a wrapper class that treats method and function pointers 
as objects. The fourth cluster represents 2.34% of the 
population and its basic characteristic is that the classes 
that belong to it do not have any protected members and 
most of them inherit from FGElectricalComponent, which 
is a base class for other electrical components. The last 
cluster represents 2.02% of the population and consists of 
classes that do not inherit and have more than 27 public 
function members. 

 
4.3.2 Member Data Analysis. Clustering member data 
entities formed three clusters. 

The first cluster represents 38.34% of the population 
and consists of private member dataone third of which are 
pointers. Most of them belong to class FGControls, which 
defines a standard interface to all flight simulation 
controls. The types of the member data vary. The more 
predominant are Bool, Int, SGPPropertyNode and Float. 

The second cluster represents 35.66% of the 
population and consists of private data members, almost 
none of which are pointers. Most of them belong to 
classes FGInterface, which defines shared flight model 



parameters and FGNavCom, which is a class that manages 
navigation communications instances. Member data types 
vary, the more predominant being Double, 
SGPPropertyNode and FG_VECTOR_3. 

The third cluster represents 26.00% of the population 
and consists of public and protected member data most of 
which belong to classes FGILS, FGDME, FGApproach 
and fgLIGHT. The types of data members also vary and 
the more predominant are Double, Bool and 
SGPPropertyNode. 

 
4.3.3 Member Functions Analysis. Class member 
functions were grouped in three clusters. 

The first cluster represents 54.48% of the population 
and consists of mostly public member functions without 
parameters. Return types of these vary, the most 
predominant being double and void. Most of the member 
functions of this cluster belong to seven classes. 

The second cluster represents 42.41% of the 
population. It consists of public classes that have 
parameters. Return types of these vary, the most 
predominant being void and bool. Most of the member 
functions of this cluster belong to two classes, 
FGInterface, which defines shared flight model 
parameters, and FGNavCom, which is a class that 
manages navigation communications instances. These 
classes are identical to these that class member data of the 
second cluster belong. This is depicted in Fig. 4.3-4.4.  

The third cluster represents 3.11% of the population 
and consists of private member functions that have 
parameters. That is why it represents such a small 
percentage of the population. Almost half of the functions 
of this cluster return void. Most of the member functions 
of this cluster belong to four classes. 

 
4.3.4 Analysis of the Parameters of Member 
Functions. Member function parameters of classes were 
grouped in three clusters: 

 

 
Fig. 4.3: Member function classes in the 2nd cluster 

 

 
Fig. 4.4: Member data classes in the 2nd cluster  
 
The first cluster represents 46.10% of the population 

and consists of parameters passed by value. The return 
types of these vary, the most predominant being double 
and bool. The second cluster represents 45.16% of the 
population and consists of parameters passed by value. 
The return types of these vary, the most predominant 
being Int, string and const WeatherPrecision, which is a 
user-defined type. The last cluster represents 8.74% of the 
population and consists of parameters passed by 
reference. The return types of these vary, the most 
predominant being Const String, Const Double and Int. 

 
4.3.5 FlightGear Flight Simulator: Conclusions. We 
found several types of correlations amongst classes of this 
program. The first correlation is among classes that 
belong to the same module. They have both structural 
(member data) and behavioural (member functions) 
similarities, as their member data have common data types 
and their member functions common return types and 
parameter numbers like the previous category. For 
example classes hud_card and HudLadder belong to the 
Cockpit module. There are also classes that present either 
structural or behavioural similarities. For example classes’  
FGNavCom and FGAD member data have similarities, 
such as common data types. On the other hand, their 
member functions are dissimilar as their number of 
parameters and return types differ. 

As mentioned in §4.2.5, class inheritance is also an 
important factor affecting logical correlations within a 
system. If some classes share the same superclass, then 
they are likely to have similar structure and behaviour. 
For example, classes FGInterface and FGNavCom, which 
inherit from class FGSubsystem, do not belong to the 
same module but present both structural and behavioural 
similarities, as their member data has common data types 
and their member functions have also common return 
types and similar parameter numbers. Figure (Fig. 4.5) 
depicting the system’ s base classes illustrates this point. 



Here, the most important base class is FGSubsystem as it 
has the largest number of sub-classes. Therefore, any 
change in this class may impact on large part of the 
system. 

 

 
Fig. 4.5: Superclasses of the FlightGear  

 
It is also clear (Fig. 4.5) that almost half of the system 

classes do not have a superclass, which indicates that 
finding logical correlations among system classes is not 
the only way for a maintainer to understand the system. 
There are classes that do not have any logical correlation, 
but they can have either structural or behavioural 
similarities or both as it was also presented in §4.2.5 
(conclusions section of CompDB application). All in all 
conclusions drawn on FlightGear Flight Simulator’ s 
classes confirm these presented in §4.2.5. 

 

5. Conclusions and Future Work 
 
This section presents conclusions drawn by evaluating 

the proposed methodology and comparing it to similar 
ones. Directions for future work are also discussed. 

 
5.1 Conclusions for the Framework 

 
Firstly, the proposed framework uses clustering and 

the respective input model that supports it to assist 
program comprehension. It is specifically designed for 
C++ code and was tested using various sizes of datasets. 
Three open source systems were used as case studies: the 
first with 53 files of 3600 LOC and 224KB in total, the 
second with 18 files of 500 LOC and 70KB in total, and 
the last with 147 files of 5000 LOC and 512 KB in total. 

The proposed solution, is semi automated unlike the 
one at §2.1. As soon as the pre-processing method 
terminates, a separate data mining clustering tool is used. 
The strength of this framework is that it is compatible to 
existing clustering tools making the customisation of 
clustering algorithms unnecessary. Data are stored in a 

database which can be easily connected with any data 
mining tool regardless of the technique to be used 
(clustering, association rules and so on). This framework 
uses only clustering unlike the solution in §2.2; what is 
more, low and medium level relations, such as among 
functions and classes respectively, can be identified, 
according to the level of detail that the user requires. 

 
5.2 Conclusions for the Pre-Processing 
Methodology 

 
An important part of the proposed framework consists 

of the input model and the pre-processing methodology. 
Various requirements were set and met, as indicated by 
the empirical evaluation. Data from source code, the 
header files in particular, are retrieved and stored in a way 
facilitating clustering. Suitable attributes were selected in 
order to avoid an unnecessary increase of records’  
similarity. For instance, the Category attribute of the 
Member Data and Classes entities was used in order to 
define the category of the data members and the classes. 
An earlier design catered for three binary attributes 
instead of a single one. 

The methodology can process a substantial number of 
files reasonably fast. For example it took less than 15 
minutes to process 53 header files, of a total size of 
224KB, of the CAccessReport application. Finally, 
clustering outputs indicated the validity of the approach. 
Patterns found reflect the structure of all three examined 
systems. Such patterns are also useful to a maintainer 
when attempting system understanding. For example, it is 
likely to observe structural and behavioural correlations 
by discovering logical correlations amongst classes. 
However, discovered patterns were not entirely novel. 
Some of them have been theoretically described before, 
but were verified by clustering nonetheless. A maintainer 
might have expected results like in the previous example. 
An unexpected, novel pattern identified was that either 
structural or behavioural similarities can be found in 
classes that are not logically correlated, perhaps reflecting 
programming styles. 
 
5.3 Future Work 

 
We consider the following various alternatives in 

order to enhance the proposed framework: 
Enriching the input model and improving the 

algorithm 
The proposed framework processes information 

derived from header files only. In order to achieve better 
understanding of a system, it might be better to process 
elements from the *.cpp files also, such as: 

i) The names of the included header files that are 
referenced at the beginning of each *.cpp file. It 



could be another way to discover logical correlations 
amongst the classes of a system, other than 
inheritance.  

ii) The definitions of the constants that are used in the 
*.cpp file. This can help to find more structural 
similarities among classes of a system, even in case 
they do not present any logical correlations. 
Integration of data mining algorithms 
The proposed methodology does not integrate any 

data mining algorithms. It pre-processes C++ code data 
and uses existing commercial tools to perform clustering. 
However it may be useful if custom data mining 
algorithms were integrated in this framework. This would 
result in a complete system for automated program and 
system comprehension. On the other hand that would 
deprive the framework of its current flexibility and 
adaptability. 

Using other data mining techniques for better 
program comprehension 

The input model is designed to facilitate clustering, 
which aims at grouping records together based on their 
similarity. However, using other data mining techniques, 
which can discover other types of patterns, may give a 
more complete picture of a program. For instance, 
association rules identify items in a record that imply the 
presence of other items in the same record. 
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