
Data Mining Source Code to Facilitate Program Comprehension:
Experiments on Clustering Data Retrieved from C++ Programs

Yiannis Kanellopoulos and Christos Tjortjis
Department of Computation, UMIST, PO Box 88, Manchester, M60 1QD, UK

Y.Kanellopoulos@postgrad.umist.ac.uk, christos@co.umist.ac.uk

Abstract

This paper presents ongoing work on using data mining
to discover knowledge about software systems thus
facilitating program comprehension. We discuss how this
work fits in the context of tool supported maintenance
and comprehension and report on applying a new
methodology on C++ programs. The overall framework
can provide practical insights and guide the maintainer
through the specifics of systems, assuming little
familiarity with these.
The contribution of this work is two-fold: it provides a
model and associated method to extract data from C++
source code which is subsequently to be mined, and
evaluates a proposed framework for clustering such data
to obtain useful knowledge. The methodology is evaluated
on three open source applications, results are assessed
and conclusions are presented. This paper concludes with
directions for future work.

1. Introduction

A well documented problem faced by maintainers

when understanding a software system is the lack of
familiarity with it, combined with the lack of accurate
documentation [11]. Several techniques and methods have
been proposed in order to facilitate this time consuming
activity [3], [7], [9].

The work presented in this paper is part of a wider
research effort investigating the applicability and
suitability of using data mining to facilitate program
comprehension and maintenance [4], [13], [15],[15]. This
effort aims at developing a methodology for semi-
automated program comprehension incorporating data
mining. A fundamental underlying assumption is that the
maintainer may have little or no knowledge of the
program which is analysed.

The work presented here aims to help maintainers to
recognise parts of C++ code that have common

characteristics, facilitating program understanding. This
work focuses on extracting data from C++ code which are
clustered in order to identify logical, behavioural and
structural correlations amongst program components. C++
was selected as it is widely used but is more complicated
to comprehend, compared to other programming
languages, like COBOL. As an object oriented language,
it can be analyzed in either a more detailed, technical
level (member data and member functions analysis), or in
a more abstract level (class analysis).

The objectives of this work are:
i) to define the input model needed to extract data from

C++ code and populate a database. This requires
defining program entities and their attributes.

ii) to propose a pre-processing method that extracts data
from code using the input data model.

iii) to assess the feasibility of the methodology in
producing valid, useful and novel patterns and
knowledge about a software system.

The remaining of this paper is organised as follows.
Section 2 reviews previous solutions in the domain of data
mining for program comprehension. Section 3 outlines the
proposed methodology for pre-processing C++ source
code, the input data model and the steps of this
methodology. Section 4 assesses the accuracy of the
output of this method, analyses its results and outlines
deductions from its application. Finally, conclusions and
directions for future work are presented in section 5.

2. Background

Software maintenance is the most difficult stage in

software lifecycle, often performed with limited
understanding of the design and the overall structure of a
system because of commercial pressures [11]. Fast,
unplanned modifications, based on partial understanding
of a system, give rise to increased code complexity and
deteriorated modularity, thus resulting in 50%-90% of the
maintainers’ time to be spent on program comprehension
[14]. Furthermore it is recognised that there are no

explicit guidelines given a program understanding task,
nor there are good criteria to decide how to represent
knowledge derived by and used for it [2].

Data mining and its ability to deal with vast amounts
of data, has been considered a suitable solution in
assisting software maintenance often resulting in
remarkable results [1], [6], [8], [10], [12], [17], [17]. Our
approach similarly uses data mining to get insights into
systems design and structure [4], [13], [15], [15].

The following paragraphs briefly review some of the
most prominent solutions in the area of data mining for
software maintenance and compare these to our approach.

2.1 Using Clustering to Produce High-Level
System Organisations of Code

This solution proposes a collection of algorithms

which facilitate the automatic recovery of the modular
structure of a software system from its source code [8]. It
creates a hierarchical view of the organisation of the
system based mainly on the components and the
relationships that exist in the source code.

First it represents the system modules and the
module-level relationships as a module - dependency
graph. Then it partitions this graph so that the high - level
subsystem structure can be derived from the component
level relationships extracted from the source code. Based
on the concepts of cohesion and coherence three
parameters are introduced: intra-connectivity, inter-
connectivity and modularisation quality.

The basic goal of this modularisation technique is to
automatically partition the components of a system into
clusters (subsystems) so that the resultant organisation
concurrently minimises inter-connectivity while
maximising intra-connectivity. The underlying assumption
is that a well-designed system is organised into cohesive
clusters that are loosely interconnected. The main
drawback of this solution is that as the number of files
exceeds 20, calculation time is greatly increased.

2.2 A Software Evaluation Model Using
Component Association Views

This solution proposes a model for the evaluation of

the architectural design of a system based on the
association between the components of the system [12]. It
allows measurement of system modularity, as an
indication of the design quality and its decomposition into
subsystems. For this reason the following three
association views of a system are generated:
i) Control passing: It represents the correlation among

the system components based on function invocation.

ii) Data exchange: It epitomises the correlation among
the system components based on aggregate data types
(except integer, real, boolean and string) that are
either passed as parameters between two functions or
are referenced by a function.

iii) Data sharing: It signifies the correlation among the
system components based on sharing the global
variables by the functions.

In this approach the software system is modelled as an
attributed relational graph with system entities as nodes
and data-control-dependencies as edges. At this point, the
application of data mining techniques, like association
rules helps the decomposition of the graph into domains
of entities based on the association property. The next
step is to populate a database of these domains. This
approach is based on the concept of the association
between the components of a system. There are however
other characteristics that play crucial role in grouping
system components, such as the number of member data
or functions in a class. These can be discovered by using
other data mining techniques like clustering.

2.3 A Method for Legacy Systems Maintenance
by Mining Data Extracted from Code

This approach used data mining to facilitate software

maintenance and reliability assessment. It addressed
C/C++ and COBOL legacy systems aiming at
understanding low/medium level concepts and
relationships involving components at the function,
paragraph or even line of code level [4], [13], [16].

This approach consists of three distinct phases: a)
data extraction, b) data mining application and c) result
evaluation. There were different challenges in each phase.
These involved the definition of an appropriate data
model which captures as much information about the code
as possible, the construction of a database suitable for
data mining, the selection and customisation and
application of data mining algorithms and the assessment
of the outcomes by domain experts. The approach deals
with both COBOL and C/C++ programs and varies
according to the differences between these languages.

For C programs, we used functions as entities, and
attributes defined according to the use and types of
parameters and variables, and the types of returned
values. We then applied clustering to identify sub-sets of
source code that are grouped together according to
custom-made similarity metrics.

For COBOL programs we used paragraphs as
entities, and binary attributes depending on the presence
of user-defined and language-defined identifiers. In this
case we derived association rules in order to establish
inter-group and intra-group relationships.

Results represent the syntactic and semantic content
of the source code. Code is represented by means of
models or graphs, like variable relationship model, a
variable-block relationship model or even models that
convey a meaning similar to Data Flow Diagrams and
flow charts. Programs are abstracted into groups
containing interrelated entities and are grouped together.

This solution addresses systems both at medium and
at low level and confirms that data mining can produce
structural views of source code thus facilitating legacy
systems understanding. There were however issues that
had to do with correlations across system components
such as programs and files. This deficiency was dealt with
by the methodology proposed in this paper.

3. Description of the Proposed Framework

The framework proposed here, was developed for

pre-processing C++ source code at the program level and
consists of the following parts:
i) The input model, which involves the specification of

program entities and their attributes.
ii) The pre-processing method.

This section outlines the main characteristics of the
pre-processing and cluster analysis system.

3.1 Input Model

The definition of the input model requires the

specification of program entities and their attributes. This
facilitates clustering, a data mining technique, which
imposes requirements on the type and number of
attributes, the lack of a distinction between predictive and
predicted attributes and so on [5].

Entities were selected to be applicable to all
programs. That means that they need to be clearly named
in a program. For instance, functions and classes are
candidate entities as they exist in most C++ programs.
Candidate entities also need to model a large proportion
of the code, thus ensuring that any subsequent analysis
covers a large part of a system.

Moreover entities need to contain a common set of
attributes in order to achieve homogeneity. This allows
for entities’ comparison on the basis of their attributes,
which is the main principle of clustering. The number of
selected attributes need also be sufficient in order to avoid
misleading comparisons or discovering accidental
similarities. Selected attributes were both binary and
qualitative, as they are predominant in a source code
application domain [4].

Four types of entities were eventually selected:
Classes, member functions, parameters and member data.
The following schema (Fig. 3.1) outlines the proposed
input model in terms of entities and respective attributes.

Each entity is described by attributes thus formulating
database tables.

Fig. 3.1: The proposed input model

3.2 Pre-Processing Methodology

The pre-processing method extracts data from source

code and stores these into appropriate tables. There were
two major requirements for this:
i) Output should be stored in way facilitating clustering
ii) Data processing should be fast.

We use a top-down approach by processing top-level
program data first, such as class information, and then
lower-level data such as member functions, their
parameters, and member data.

Fig. 3.2: Pre-processing methodology

More specifically, we first extract information that

describes the class entity, such as class handle, its super-
class name if it exists, and the number of the member data
and functions. Then information that describes the
member data of a class is extracted, including variable
name, type and category, such as public, protected,
private, as well information describing whether the

Preprocess Class Information

Preprocess Member Data Information

Preprocess Member Functions Information

Preprocess Functions Parameters Information

Member_Functions
Function_Handle
Class_Id
HasParam
ParamNum
ReturnType
Category
Function_Id

Classes
Class_Id
Class_Handle
Inherits
InheritsFrom
ProtMembers
ProtFunctions
PrivateMembers
PrivateFunctions
PublicMembers
PublicFunctions

Parameters

ParamId

FunctionId

ParamName

ParamType

ParamUse

Member_Data
Member_Data_Id
Class_Id
Member_Data_Type
Member_Data_Name
Category
IsStatic
IsUserDefined
IsPointer

1
1..n

1 1..n

1 1..n

variable is static, a pointer or user-defined. After that, we
extract information related to class member functions,
such as name, return type and category (public, protected,
private), as well as number of parameters if any. Finally
information related to the parameters of class member
functions is extracted including name, type and use (by
value, by reference). An outline of this methodology is
illustrated in Fig. 3.2.

3.3 Aspects of the Proposed Framework

Sections §3.1-.2 presented two fundamental concepts

about the proposed framework: the input model and the
pre-processing methodology. This section describes
aspects of the framework regarding outcome utilisation.
More specifically all the information required by the
methodology, as defined by the input data model, can be
found at the header files of standard C++ systems. We
scan these files and populate relevant database tables. We
then use IBM’s Intelligent Miner™ demographic
clustering on these tables to identify patterns concerning
the system structure and its components’ general
characteristics. These characteristics can be qualitative
like the name of the superclass that a class inherits from,
the category (public protected, private) of a member
function and so on. They can also be quantitative, such as
the number of member function parameters. We have
experimented using various clustering schemes in order to
identify correlated entities such as classes, functions and
member data, based on similarities on their attributes as
defined by the input model. Results are briefly presented
and discussed in section 4.

3.4 Technical aspects of the Framework

This section provides a description of the technical

aspects of the framework and the system developed to
implement it. The main parts of this system are:
i) The Pre-processing Application that parses C++

code. This consists of a G.U.I front-end and a pre-
processing back-end that extracts data from code and
stores them in a database.

ii) The database management system that stores data to
be mined.

iii) The data mining clustering tool.
Fig. 3.3 highlights the structure of this system. At

first, the pre-processing application parses the C++ code
in order to extract the data defined by the input model
described in §3.1. The next step is using a data mining
tool to perform clustering. The system also includes
clustering results analysis.

All in all, our approach used a customised process
model widely used in Knowledge Discovery in Databases

(KDD). The main difference is that the original data

collection is made of source code rather than more
“conventional” tuples [5]. Fig. 3.4 illustrates this process.

Fig. 3.3: An overview of the system

The first step of this process (Extraction) involves parsing
the code to extract data modeling program entities and
their attributes. The second step (Transformation)
transforms the extracted data in order to store these in
relational database tables suitable for clustering. The third
step (Data Mining) applies clustering in search for
patterns of interest. Patterns are then interpreted and
analyzed. The process is an iterative one and interim
results or findings can be feedback to a previous stage.

Fig. 3.4: Knowledge discovery in source code

4. Result Evaluation

The proposed framework was evaluated in terms of
accuracy and ability to capture knowledge relevant to
software maintenance activities, using three open source
applications. Two of the applications, CAccessReports
and CompDB, are created with the help of Microsoft
Foundation Classes (MFC) and can be downloaded from
[19]. The other application, FlightGear Flight Simulator,
is an open source flight simulator that can be downloaded
from [19]. The actual structure of these applications is

Front-End
Part

Database

C++
Source
Code

Data mining

Tool

Analysis
Results

Back-End
Part

Preprocessing
Application

System

OLEDB

 Transformed
Data

Patterns

Knowledge

Extraction

Trans
formation

Data
Minin

g

Analysis-
Interpretation

Evaluation

C++
Source
Code

Data

compared to the outcome of the analysis of their
respective input models. The output should be valid,
novel and useful to the system maintainer. The following
sub-sections discuss separately the outcomes of our
empirical experimentation with these applications.

4.1 The First Case Study

CAccessReport is a small-medium size application

with 53 public classes, and 2812 functions that have 1614
parameters in total.

4.1.1 Class Analysis. The classes of this application have
many similarities as almost all of them (52 out of 53)
inherit from one class: COleDispatchDriver and have
only public member functions. Therefore, only attributes
describing the number of public functions and the class
handle were of importance in formulating clusters. As a
result clusters are characterised only by the number of
their member functions.

4.1.2 Member Functions Analysis. There are two
significant characteristics of the member functions of this
program: the first is that all of them are public and the
second is that almost half of them contain parameters.
They were grouped in three clusters.

The first cluster, representing 45.82% of the
population, consists of public functions with parameters.
These functions either have no return type or they return
void. Therefore, it can be concluded that this cluster
includes the constructors of the system’ s classes and
functions that usually set values to these. The second
cluster, representing 34.12% of the population, consists of
public functions that have no parameters. Half of these
functions return the type CString, which encapsulates a
character string. The third cluster, representing 20.06% of
the population, consists of public functions, 11.17% of
which have no parameters at all, while the remaining
88.83% have. Almost half of these functions return the
following types VARIANT, which is a self-described data
type that facilitates data passing, and LPDISPATCH,
which accesses the underlying pointer of the
COleDispatchDriver object.

4.1.3 Member Functions Parameters Analysis. Most of
the member function parameters are passed by value.
They were grouped in three clusters:

The first cluster (42.44% of the population) consists of
parameters that are passed by value and originate from the
following types: LPCSTR, which is a constant pointer to
a string, LPDISPATCH and pointers of type VARIANT.
The second cluster (41.57%) also consists of parameters
that are passed by value, most of which originate from the
types bool, short and long. The third cluster (15.99%)

consists of parameters that are passed by reference and
they are constants of type VARIANT. Constants of this
type are used by functions which aim to specify data that
cannot be passed by reference in any other way.

4.1.4 Conclusions. There are no major differences
amongst components of this program. The majority of its
classes inherits from the same superclass, has no member
data and member functions are public. Differences are
mainly quantitative, such as the number of public
functions or parameters. The only differences that are
qualitative rather than quantitative are attributed to the
member functions return types of and their parameters’
types. Interestingly, every parameter passed by reference
is a constant of type VARIANT. Thus, it can be deducted
that functions using such parameters are bound during
run-time and that data are not known in advance.

4.2 The Second Case Study

CompDB is a small size application. It consists of 18

public classes, 64 member data and 256 functions that
have 235 parameters.

4.2.1 Class Analysis. Entities extracted from this
program formed three clusters.

The first cluster represents 38.89% of the population,
and consists of classes that all inherit from another class.
Their respective superclasses are:
i) CStatic, which encapsulates the static control.
ii) CView, which a view class is derived from.
iii) CMDIFrameWnd, which provides a main frame

window for Multiple Document Interface (MDI)
applications.

iv) CMDIChildWnd, which provides child windows for
an MDI application.

Classes in this cluster are related logically, as they
represent components of the document/view architecture
implemented by this program.

The second cluster, represents 33.33% of the
population, and consists of classes, amongst which, two
do not inherit and four do. The respective superclasses of
those who inherit are:
i) CStringArray, which is an array of the String type.
ii) CListBox, which encapsulates the list box control.
iii) CDocument, which is the class where the document

of an MFC application (like CompDB) derives from.
iv) CListCtrl, which displays a graphical list items.

The classes in this cluster do not have a strong logical
correlation. There is only one class representing a
component included in the document/view architecture,
two others represent control classes, and another
represents a shape of the MFC collection.

The third cluster represents 27.78% of the population,
and consists of classes that all inherit. Their respective
superclasses are:
i) CDialog, which implements Windows dialogs.
ii) CButton, which is a standard Windows pushbutton.
iii) CWinApp, which represents the standard Windows

Application.
The classes in this cluster do not have a strong logical

correlation. There are three classes representing dialog
controls, one represents the Windows application and
another represents a control.

4.2.2 Member Data Analysis. The member data of this
program’ s classes are either public or protected. Three
clusters were formed.

The first cluster represents 59.38% of the population
and consists of protected members, none of which is a
pointer. Almost half of the member data of this class (Fig.
4.1) belong to two classes. The types of the member data
vary. The more predominant are:
i) int
ii) CString, which encapsulates a character string.
iii) CFont, which wraps the Windows font object and

API functions for creating and managing fonts.
iv) CGridCtrl, which is a control.

Fig. 4.1: Member data classes of CompDB, 1st

cluster

The second cluster represents 32.81% of the

population and consists of public members none of which
is a pointer. Member data of this cluster mostly belong to
three classes. There is a clear logical connection among
member data of this cluster as the majority of it belongs to
classes that are derived from the CDialog class.

Types of the member data vary. The more
predominant are:
i) enum
ii) CString, which encapsulates a character string.
iii) CButton, which wraps a standard Windows

pushbutton.

The third cluster represents 7.81% of the population
and consists of public and protected members which are
all pointers. This is the most important logical relation
between the member data of this cluster, which only
belongs to two classes (Fig. 4.2).

The types of the member data are different. The more
predominant are:
i) CPen, which wraps the Windows pen object and

includes API functions for creating pens as member
functions.

ii) CBrush, which wraps the Windows brush object and
API functions for creating brushes.

4.2.3 Member Functions Analysis. Class member

functions were grouped in three clusters.

Fig. 4.2: Member data classes of CompDB, 3rd

cluster

The first cluster represents 34.38% of the population

and consists of public and protected functions. The return
types of these vary, the most predominant being afx_msg
void and afx_msg int. Most of the member functions of
this cluster belong to four classes. The second cluster
represents 33.20% of the population. The return types of
these vary, the most predominant being void and bool.
Most of the member functions of this cluster belong to
four classes, two of which are the same as in the first
cluster. The third cluster represents 32.42% of the
population. Almost half of the functions of this cluster do
not have a return type. This indicates that they are either
the constructors or the destructors of the classes they
belong to. Among member functions that have a return
type, the most predominant one is bool. Most of the
member functions of this cluster belong to four classes,
three of which are the same as in the second cluster and
only one similar to these in the first cluster.

4.2.4 Member Functions Parameters Analysis.
Member function parameters of classes were grouped into
three clusters:

The first cluster represents 42.98% of the population
and consists of parameters passed by value. The return
types of these vary, the most predominant being pointers
of type char, int and pointers of type CDC, which is a
class that encapsulates device-context support. The
second cluster represents 42.55% of the population and
consists of parameters passed by value. The return types
of these vary, the most predominant being char, UINT,
which is an unsigned 32-bit integer and COLOREF,
which is a 32-bit integer that holds a colour. The third
cluster represents 14.47% of the population and consists
of parameters passed by reference. The return types of
these vary, the most predominant being
CDUMPCONTEXT, which is a class that its objects
provide several diagnostic messages and
_CONNECTIONPTR, which is a class that its objects are
pointers to a Connection Interface.

4.2.5 Conclusions. We found the following logical
correlations among classes of this program: first, there are
four classes deriving from the class CView. These classes
have also structural (member data) and behavioural
(member functions) similarities. They have the same size
as there are no significant differences between the number
of their member data and functions. Their member data
have also common data types. Their member functions
have also common return types and similar parameter
numbers.

Another category of logically related classes are two
classes that are derived from CWnd. They also have
structural similarities, as their member data have common
data types. However, their member functions seem to have
similarities but in a lower rate than the member data.

Three classes that are derived from the class CDialog
are also logically related and present structural and
behavioural similarities. Their member data and functions
have many similarities, such as common data types (for
the member data), number of parameters and return types
(for the member functions).

Overall we identified logical, structural and
behavioural correlations involving 9 out of 18 classes of
this program. This can be useful for maintenance
purposes. For example, if changes in the data type of a
member data of one class are to be made, then related
classes should be looked at as well. We may also presume
that by finding logical correlations amongst classes of a
system, it is also likely to find structural and behavioural
correlations. This can be useful for software
understanding and maintenance purposes. Classes’ ability
to inherit is an important factor affecting the logical
correlation within a system. If some classes share the
same superclass, then it is more likely to have similar
structure and behaviour.

At this point it has to be underlined that finding
logical correlations between the classes of a system is not
the only way for a maintainer to understand the system.
There are classes that do not have any logical correlation,
but they can have either structural or behavioural
similarities. Examples of this are classes which have
member data of the same type (structural similarity).
Therefore, if one is to change the type of the member data
of one, it is likely that a similar change will be needed for
the other as well.

4.3 The Third Case Study

FlightGear Flight Simulator is a medium size

application with 147 classes, 1450 member data and 2155
functions that have 1614 parameters in total.

4.3.1 Class Analysis. Entities extracted from this
program formed 5 clusters.

The first cluster represents 46.26% of the population,
and consists of classes that do not inherit. By their handles
we understand that there is a logical correlation among
these, as most belong to the three system modules. The
second cluster represents also 46.26% of the population
and consists of classes that do inherit. Their respective
superclasses are: FGSubSystem, which provides an
interface that all subsystems should implement,
FGInterface and instr_item, which represents an aircraft
instrument. The third cluster represents 3.12% of the
population and consists of classes that all inherit. Their
respective superclasses are FGATC, which is the base
class for the various actual classes, and fgCallback, which
is a wrapper class that treats method and function pointers
as objects. The fourth cluster represents 2.34% of the
population and its basic characteristic is that the classes
that belong to it do not have any protected members and
most of them inherit from FGElectricalComponent, which
is a base class for other electrical components. The last
cluster represents 2.02% of the population and consists of
classes that do not inherit and have more than 27 public
function members.

4.3.2 Member Data Analysis. Clustering member data
entities formed three clusters.

The first cluster represents 38.34% of the population
and consists of private member dataone third of which are
pointers. Most of them belong to class FGControls, which
defines a standard interface to all flight simulation
controls. The types of the member data vary. The more
predominant are Bool, Int, SGPPropertyNode and Float.

The second cluster represents 35.66% of the
population and consists of private data members, almost
none of which are pointers. Most of them belong to
classes FGInterface, which defines shared flight model

parameters and FGNavCom, which is a class that manages
navigation communications instances. Member data types
vary, the more predominant being Double,
SGPPropertyNode and FG_VECTOR_3.

The third cluster represents 26.00% of the population
and consists of public and protected member data most of
which belong to classes FGILS, FGDME, FGApproach
and fgLIGHT. The types of data members also vary and
the more predominant are Double, Bool and
SGPPropertyNode.

4.3.3 Member Functions Analysis. Class member
functions were grouped in three clusters.

The first cluster represents 54.48% of the population
and consists of mostly public member functions without
parameters. Return types of these vary, the most
predominant being double and void. Most of the member
functions of this cluster belong to seven classes.

The second cluster represents 42.41% of the
population. It consists of public classes that have
parameters. Return types of these vary, the most
predominant being void and bool. Most of the member
functions of this cluster belong to two classes,
FGInterface, which defines shared flight model
parameters, and FGNavCom, which is a class that
manages navigation communications instances. These
classes are identical to these that class member data of the
second cluster belong. This is depicted in Fig. 4.3-4.4.

The third cluster represents 3.11% of the population
and consists of private member functions that have
parameters. That is why it represents such a small
percentage of the population. Almost half of the functions
of this cluster return void. Most of the member functions
of this cluster belong to four classes.

4.3.4 Analysis of the Parameters of Member
Functions. Member function parameters of classes were
grouped in three clusters:

Fig. 4.3: Member function classes in the 2nd cluster

Fig. 4.4: Member data classes in the 2nd cluster

The first cluster represents 46.10% of the population

and consists of parameters passed by value. The return
types of these vary, the most predominant being double
and bool. The second cluster represents 45.16% of the
population and consists of parameters passed by value.
The return types of these vary, the most predominant
being Int, string and const WeatherPrecision, which is a
user-defined type. The last cluster represents 8.74% of the
population and consists of parameters passed by
reference. The return types of these vary, the most
predominant being Const String, Const Double and Int.

4.3.5 FlightGear Flight Simulator: Conclusions. We
found several types of correlations amongst classes of this
program. The first correlation is among classes that
belong to the same module. They have both structural
(member data) and behavioural (member functions)
similarities, as their member data have common data types
and their member functions common return types and
parameter numbers like the previous category. For
example classes hud_card and HudLadder belong to the
Cockpit module. There are also classes that present either
structural or behavioural similarities. For example classes’
FGNavCom and FGAD member data have similarities,
such as common data types. On the other hand, their
member functions are dissimilar as their number of
parameters and return types differ.

As mentioned in §4.2.5, class inheritance is also an
important factor affecting logical correlations within a
system. If some classes share the same superclass, then
they are likely to have similar structure and behaviour.
For example, classes FGInterface and FGNavCom, which
inherit from class FGSubsystem, do not belong to the
same module but present both structural and behavioural
similarities, as their member data has common data types
and their member functions have also common return
types and similar parameter numbers. Figure (Fig. 4.5)
depicting the system’ s base classes illustrates this point.

Here, the most important base class is FGSubsystem as it
has the largest number of sub-classes. Therefore, any
change in this class may impact on large part of the
system.

Fig. 4.5: Superclasses of the FlightGear

It is also clear (Fig. 4.5) that almost half of the system

classes do not have a superclass, which indicates that
finding logical correlations among system classes is not
the only way for a maintainer to understand the system.
There are classes that do not have any logical correlation,
but they can have either structural or behavioural
similarities or both as it was also presented in §4.2.5
(conclusions section of CompDB application). All in all
conclusions drawn on FlightGear Flight Simulator’ s
classes confirm these presented in §4.2.5.

5. Conclusions and Future Work

This section presents conclusions drawn by evaluating

the proposed methodology and comparing it to similar
ones. Directions for future work are also discussed.

5.1 Conclusions for the Framework

Firstly, the proposed framework uses clustering and

the respective input model that supports it to assist
program comprehension. It is specifically designed for
C++ code and was tested using various sizes of datasets.
Three open source systems were used as case studies: the
first with 53 files of 3600 LOC and 224KB in total, the
second with 18 files of 500 LOC and 70KB in total, and
the last with 147 files of 5000 LOC and 512 KB in total.

The proposed solution, is semi automated unlike the
one at §2.1. As soon as the pre-processing method
terminates, a separate data mining clustering tool is used.
The strength of this framework is that it is compatible to
existing clustering tools making the customisation of
clustering algorithms unnecessary. Data are stored in a

database which can be easily connected with any data
mining tool regardless of the technique to be used
(clustering, association rules and so on). This framework
uses only clustering unlike the solution in §2.2; what is
more, low and medium level relations, such as among
functions and classes respectively, can be identified,
according to the level of detail that the user requires.

5.2 Conclusions for the Pre-Processing
Methodology

An important part of the proposed framework consists

of the input model and the pre-processing methodology.
Various requirements were set and met, as indicated by
the empirical evaluation. Data from source code, the
header files in particular, are retrieved and stored in a way
facilitating clustering. Suitable attributes were selected in
order to avoid an unnecessary increase of records’
similarity. For instance, the Category attribute of the
Member Data and Classes entities was used in order to
define the category of the data members and the classes.
An earlier design catered for three binary attributes
instead of a single one.

The methodology can process a substantial number of
files reasonably fast. For example it took less than 15
minutes to process 53 header files, of a total size of
224KB, of the CAccessReport application. Finally,
clustering outputs indicated the validity of the approach.
Patterns found reflect the structure of all three examined
systems. Such patterns are also useful to a maintainer
when attempting system understanding. For example, it is
likely to observe structural and behavioural correlations
by discovering logical correlations amongst classes.
However, discovered patterns were not entirely novel.
Some of them have been theoretically described before,
but were verified by clustering nonetheless. A maintainer
might have expected results like in the previous example.
An unexpected, novel pattern identified was that either
structural or behavioural similarities can be found in
classes that are not logically correlated, perhaps reflecting
programming styles.

5.3 Future Work

We consider the following various alternatives in

order to enhance the proposed framework:
Enriching the input model and improving the

algorithm
The proposed framework processes information

derived from header files only. In order to achieve better
understanding of a system, it might be better to process
elements from the *.cpp files also, such as:

i) The names of the included header files that are
referenced at the beginning of each *.cpp file. It

could be another way to discover logical correlations
amongst the classes of a system, other than
inheritance.

ii) The definitions of the constants that are used in the
*.cpp file. This can help to find more structural
similarities among classes of a system, even in case
they do not present any logical correlations.
Integration of data mining algorithms
The proposed methodology does not integrate any

data mining algorithms. It pre-processes C++ code data
and uses existing commercial tools to perform clustering.
However it may be useful if custom data mining
algorithms were integrated in this framework. This would
result in a complete system for automated program and
system comprehension. On the other hand that would
deprive the framework of its current flexibility and
adaptability.

Using other data mining techniques for better
program comprehension

The input model is designed to facilitate clustering,
which aims at grouping records together based on their
similarity. However, using other data mining techniques,
which can discover other types of patterns, may give a
more complete picture of a program. For instance,
association rules identify items in a record that imply the
presence of other items in the same record.

References

[1] N. Anquetil and T. C. Lethbridge, “Experiments with
Clustering as a Software Remodularization method”, Proc.
6th Working Conf. Reverse Engineering (WCRE 99), IEEE
Comp. Soc. Press, Oct. 1999, pp. 235-255.

[2] F. Balmas, H. Wertz and J. Singer, “Understanding
Program Understanding”, Proc. 8th Int’l Workshop
Program Comprehension (IWPC 00), IEEE Comp. Soc.
Press, 2000, pp. 256.

[3] G. Canfora, L. Mancini, and M. Tortorella, ‘A Workbench
for Program Comprehension during Software
Maintenance’ , Proc. 4th Int’l Workshop on Program
Comprehension (IWPC 96), IEEE Comp. Soc. Press, 1996,
pp. 30-39.

[4] K. Chen, C. Tjortjis and P.J. Layzell, “ A Method for
Legacy Systems Maintenance by Mining Data Extracted
from Source Code” , Case studies of IEEE 6th European
Conf. Software Maintenance and Reengineering (CSMR
02), 2002, pp. 54-60.

[5] U. M. Fayyad, G. Piatetsky-Shapiro and P. Smyth. “ From
Data Mining to Knowledge Discovery: An Overview” , in
Advances in Knowledge Discovery and Data Mining,
AAAI Press, 1996.

[6] T. Kunz and J. P. Black, “ Using Automatic Process
Clustering for Design Recovery and Distributed
Debugging” , IEEE Transactions on Software Engineering,
vol. 21, no. 6, June 1995, pp. 515-527.

[7] P. Linos, Z. Chen, S. Berrier, and B. O'Rourke, “ A Tool For
Understanding Multi-Language Program Dependencies” ,

Proc. IEEE 11th Int’l Workshop Program Comprehension
(IWPC 03), IEEE Comp. Soc. Press, 2003, pp. 64-72.

[8] S. Mancoridis, B.S. Mitchell, Y. Chen and E.R. Gansner,
“ Bunch: A Clustering Tool for the Recovery and
Maintenance of Software System Structures” , Proc. Int’l
Conf. Software Maintenance (ICSM 99), IEEE Comp. Soc.
Press, 1998, pp. 50-59.

[9] A. Von Mayrhauser and A.M. Vans, ‘Program
Understanding Behavior During Adaptation of Large Scale
Software’ , Proc. 6th Int’l Workshop Program
Comprehension (IWPC 98), IEEE Comp. Soc. Press, 1998,
pp.164-172.

[10] C.M. de Oca and D.L Carver, “ Identification of Data
Cohesive Subsystems Using Data Mining Techniques” ,
Proc. Int’l Conf. Software Maintenance (ICSM 98), IEEE
Comp. Soc. Press, 1998, pp.16-23.

[11] T.M. Pigoski, Practical Software Maintenance: Best
Practices for Managing your Software Investment, Wiley
Computer Publishing, 1996.

[12] K. Sartipi, K. Kontogiannis and F. Mavaddat,
“ Architectural Design Recovery Using Data Mining
Techniques” , Proc. 2nd European Working Conf. Software
Maintenance Reengineering (CSMR 00), IEEE Comp. Soc.
Press, 2000, pp. 129-140.

[13] C. Tjortjis and P.J. Layzel, “ Using Data Mining to Assess
Software Reliability” , Suppl. Proc. IEEE 12th Int’l
Symposium Software Reliability Engineering (ISSRE 01),
2001, pp. 221-223.

[14] C. Tjortjis and P.J. Layzell, “ Expert Maintainers’ Strategies
and Needs when Understanding Software: A Qualitative
Empirical Study” , Proc. IEEE 8th Asia-Pacific Software
Engineering Conf. (APSEC 01), IEEE Comp. Soc. Press,
2001, pp. 281-287.

[15] C. Tjortjis, N. Gold, P.J. Layzell and K. Bennett, “ From
System Comprehension to Program Comprehension” , Proc.
IEEE 26th Int’l Computer Software Applications Conf.
(COMPSAC 02), IEEE Comp. Soc. Press, 2002, pp. 427-
432.

[16] C. Tjortjis, L. Sinos and P.J. Layzell, “ Facilitating Program
Comprehension by Mining Association Rules from Source
Code” , Proc. IEEE 11th Int’l Workshop Program
Comprehension (IWPC 03), IEEE Comp. Soc. Press, 2003,
pp. 125-132.

[17] V. Tzerpos and R. Holt, “ Software Botryology: Automatic
Clustering of Software Systems” , Proc. 9th Int’l Workshop
Database Expert Systems Applications (DEXA 98), IEEE
Comp. Soc. Press, 1998, pp. 811-818.

[18] T. A. Wiggerts, “ Using Clustering Algorithms in Legacy
Systems Remodularization” , Proc. 4th Working Conf.
Reverse Engineering (WCRE 97), IEEE Comp. Soc. Press,
1997, pp. 33-43.

[19] http://www.codeguru.com/mfc_database/
[20] http://www.flightgear.org

