
Clustering data retrieved from Java source code to support software maintenance:
A case study

Dimitris Rousidis and Christos Tjortjis

School of Informatics, University of Manchester,
PO Box 88, Manchester, M60 1QD, UK

D.Rousidis@postgrad.umist.ac.uk, tjortjis@manchester.ac.uk

Abstract

Data mining is a technology recently used in support
of software maintenance in various contexts. Our
works focuses on achieving a high level understanding
of Java systems without prior familiarity with these.
Our thesis is that system structure and
interrelationships, as well as similarities among
program components can be derived by applying
cluster analysis on data extracted from source code.
This paper proposes a methodology suitable for Java
code analysis. It comprises of a Java code analyser
which examines programs and constructs tables
representing code syntax, and a clustering engine
which operates on such tables and identifies
relationships among code elements.
We evaluate the methodology on a medium sized
system, present initial results and discuss directions
for further work.

1. Introduction

Program comprehension is an important part of

software maintenance, especially when program
structure is complex and documentation is unavailable
or outdated [7]. Data mining can produce high level
overviews of source code and interrelationships
among program components thus facilitating legacy
systems understanding [1], [5], [6], [8], [10].

The aim of this work is to establish whether data
mining techniques can support maintenance of Java
software systems and the extent to which
understanding such systems can be semi-automated by
use of relevant tools. The main objective is to define a
methodology which supports pattern identification and
program element similarity assessment.

Code mining in that sense requires the definition
of a data model which can be used to transform Java
source code into database tables suitable for mining.
Clustering is a natural choice among data mining
techniques when it comes to identifying and

measuring similarities among program entities. It is
also a technique which does not require any prior
domain knowledge, making it more suitable for
maintainers with limited or no knowledge of the
program which is analysed.

This paper presents a methodology for clustering
information extracted from Java source code aiming at
capturing program structure and achieving better
program understanding. A tool was implemented to
assess this methodology. It uses a data model defining
entities and attributes which can be extracted from
code and then groups these entities based on similarity
measurements. These groups indicate interrelated
entities. This can be verified by the findings of a case
study presented here.

The rest of this paper is organised as follows:
Section 2 reviews research on data mining used for
software maintenance and comprehension. In section 3
we propose a methodology for extracting useful
knowledge form Java source code and present a “proof
of concept” tool we used for experimentation. The
case study is discussed in section 4. Section 5
concludes and proposes ideas for further work.

2. Background

Data mining can discover non-trivial and

previously unknown relationships among records or
attributes in large databases [3]. This highlights the
capacity of data mining to obtain useful knowledge
about the structure of large systems. It has three
features that make it useful for program
comprehension and related maintenance tasks [6]:
a) It can be applied to large volumes of data. This

implies that it has the potential to analyse large
systems with complex structure.

b) It can be used to expose previously unknown non-
trivial patterns and associations between items in
databases. Therefore, it can be used to reveal
hidden relationships among program components.

c) It can extract information regardless of any
previous domain knowledge. This feature is ideal
for maintaining software with poor knowledge
about its functionality or implementation details.
Data mining has been previously used for

clustering over a Module Dependency Graph (MDG)
[5] and for identification of subsystems based on
associations (ISA methodology) [6]. Both approaches
provide a system abstraction up to the program level.
The former creates a hierarchical view of system
architecture into subsystems, based on the components
and the relationships between components that can be
detected in source code. This information is captured
through an MDG, which is then analysed in order to
extract the required structural view. The latter
approach produces a decomposition of a system into
data cohesive subsystems by detecting associations
between programs sharing the same files.

Sartipi et al. used data mining for architectural
design recovery [8]. Their method is based on
associations among system components and uses
system modularity measurement as an indication of
design quality. This approach models software
systems as attributed relational graphs with system
entities as nodes and data-control-dependencies as
edges. Application of association rules mining
decomposes such graphs into domains of entities
based on the association property.

Work on clustering as a means to supporting
software maintenance and understanding has been also
conducted in a number of contexts addressing varying
levels of abstraction and a variety of programming
languages ranging from COBOL, to C or even C++
[1], [4], [9], [10].

3. Proposed Methodology

Our approach aims at defining entities and

respective attributes in Java code which can then be
fed into a clustering engine in order to produce
groupings of such entities according to their similarity.
The methodology consists of two main parts the input
model and the clustering algorithm.

The input model takes into account five basic
Java code elements: files, packages, classes, methods,
and parameters. These elements form the entities to be
stored in respective tables. Each entity has a number
of associated attributes. A brief description of the
attributes in the input model is given in Table 3.1.

Table 3.1: Input model description

3.1 Clustering Algorithm

We employ the Hierarchical Agglomerative
Clustering (HAC) algorithm as this technique gives
more intuitive results and has been used extensively in
similar contexts [3], [9]. This algorithm requires pre-
processed data and produces sets of clusters in order
of decreasing similarity. As the tables contain entities
with both nominal and numerical values all values
need to be transformed to numerical so that the
distance among entities can be measured and stored in
a similarity matrix [2]. Each attribute of this matrix is
going to be assigned a numerical value. This
numerical value is the distance between two records of
the table of the database.

This distance (d(i, j))can range between 0 being
the nearest and 1 being the value that corresponds to
the farthest distance. So, 0 ≤ d(i, j) ≤ 1. The distance is
calculated by applying the following formula on each

Table
name

Attributes Description

Files fileID Unique file ID
 fileName File name and directory path
Packages PackageID Package unique ID
 PackageName Package name
 ImportedPackage Packages imported from API
 FileID File ID the package belongs to
Classes ClassID Unique class ID
 ClassName Class name
 Inherits Yes/no
 InheritsFrom Superclass name
 Implements Interfaces names
 ImplemetsTo Name of class that follows the

implements clause
 FileID File ID the class belongs to
Methods MethodsID Unique method ID
 MethodName Method name
 HasArguments Yes/no
 ArgumentsNum Number of arguments passed

by the method
 ReturnedValue Value type returned by the

method
 Modifier Modifiers a method can be

declared with
 Other Any additional method features
 FileID File ID the method belongs to
Parameters ParameterID Unique parameter ID
 ParameterName Parameter name
 ParameterType Parameter type
 ParameterUse Parameter used by reference /

value
 FileID File ID the parameter belongs to

record of the tables that are of great significance in the
database.

, ,
1

,
1

(,)

n

i j i j
f

n

i j
f

X Y

d i j
X

=

=

=
∑

∑

Formula 3.1: Distance Calculation

where:

d(i, j): is the distance between the two records i and j,
n: is the number of attributes of each record.

The two functions that are dependent on f, are X
and Y, and
Xi,j: is a function that can obtain just two values, 0 and
1.

• Xi,j is 0 when an attribute, namely qi,f or
qj,f,, of one of the two records is missing,
otherwise,

• Xi,j is 1.

Yi,j: is a function that is also dependent on the type of
the attribute of each record:
i) if the attribute is of binary type (for instance

Boolean), or whichever nominal type, then if:
• qi,f = qj,f then Yi,j equals 0, otherwise
• Yi,j equals 1.

ii) if the attribute is numerical then the function f

is calculated based on the following formula:

, ,
,

, ,

| - |

(max() min())
i f j f

i j
m f m f

q q
Y

q q
=

−

Formula 3.2: The Yi,j function calculation

where:

, ,| - |i f j fq q is the absolute value of the result of the

subtraction between qi,f and qj,f,

,max()m fq is the maximum numerical value of the

attribute of the column of the record, an

,min()m fq is the minimum numerical value of the

attribute of the column of the record.
By applying the formula 3.1 it is feasible to

translate the records of the tables within the database
into material that is appropriate for the data mining
clustering.
Clusters are merged recursively using the single
linkage technique, i.e. two clusters are merged if the
distance between an element in one cluster and an

element in the other is minimum. When merging two
clusters or entities the union of their attributes is the
attribute list of the new, merged cluster.

3.2 “Proof of Concept” Tool

We implemented a prototype tool in order to

evaluate our methodology. It consists of two main
parts:
• The pre-processing engine which parses the

source code and stores data extracted according to
the input model in a database.

• The clustering engine which allows for record and
attribute selection and produces clusters of
program elements using the HAC algorithm.
Results are presented via a Graphical User

interface. The whole process is shown in Fig. 3.1.

Fig. 3.1: Proof of concept tool and process

4. Case study

Our methodology groups Java program
components according to their similarity. Such
groupings can be evaluated by comparison to the
original developers’ perceptions on components’
“natural groupings”. As a case study we used a small
fragment of a medium application called “KIT (Keep
In Touch)”. The part of the application provided has
15 methods. Its programmer grouped these methods
according to their conceptual similarity into 3 groups
(DB Control, Setters-Getters and GUI) as depicted
in Table 4.1.

Table 4.1: Programmer’ s groups
Group 1

(DB Control)
Group 2

(Setters-Getters)
Group3
(GUI)

prospectActivity activitySupport activityForm
getPractivityRow clearAllFields showDialog
getPPractivityPK updateAllFields setState

getActivity create process
getDescription commit fire

We then input the applications code into the “ proof

of concept” tool and retrieved four groups as depicted
in Table 4.2.

Table 4.2: Groups proposed by methodology.
Group 1

(DB Control)
Group 2

(Setters-Getters)
Group3
(GUI)

getPractivityRow clearAllFields activityForm
getPPractivityPK updateAllFields showDialog

getActivity create setState
getDescription commit process

 fire
 activitySupport

Group 4
(Misc)

prospectActivity

Comparison of the two tables shows that 13 out of

15 methods (86.67% precision) were placed in the
correct group and only one method (activitySupport)
was misplaced. One method (prospectActivity) was
not grouped with any others because of the high
number of its arguments.

5. Conclusions and Future Work

In this paper we proposed a methodology for

clustering data extracted from Java source code in
order to better understand similarities among program
elements in support of software maintenance. This
methodology consists of an input model and a
clustering algorithm. It correctly recognises data about
packages, classes, methods and parameters.

A tool was developed to assess this fully
automated approach. Initial experimental results from
a case study were encouraging. The tool successfully
reveals similarities among Java code elements.

Precision could further improve by adding more
attributes to the entities. For example a packageID, a
ClassID, and a MethodID could be included at the
Class, Method and Parameter entities. Also argument
type and name can be used as extra attributes.

Other possibilities worth of exploration involve
extending the data model with more grammatical

elements like objects and arrays, control statements
(if…else, while, do…until, switch), and exceptions.

 The clustering engine can also be fine tuned or
parameterised by use of alternatives algorithms and
linkage methods. Assigning weighs to important
attributes could also improve performance but this
may require specialised domain knowledge. Finally,
further evaluation on larger and more complex
programs is needed to assess how the methodology
scales to deal with real industrial scale systems.

References

[1] N. Anquetil and T. C. Lethbridge, “ Experiments with

Clustering as a Software Remodularization method” ,
Proc. 6th Working Conf. Reverse Engineering (WCRE
99), IEEE Comp. Soc. Press, Oct. 1999, pp. 235-255.

[2] M.H. Dunham, Data Mining, Introductory and
advanced topics, Prentice Hall, 2002.

[3] U. Fayyad, G. Piatetsky-Shapiro, and R. Uthurusamy,
“ From Data Mining to Knowledge Discovery: An
Overview” , in Advances In Knowledge Discovery and
Data Mining, AAAI Press/The MIT Press, 1996.

[4] Y. Kanellopoulos and C. Tjortjis, “ Data Mining Source
Code to Facilitate Program Comprehension:
Experiments on Clustering Data Retrieved from C++
Programs” , Proc. IEEE 12th Int’l Workshop Program
Comprehension (IWPC 2004), IEEE Comp. Soc. Press,
2004, pp. 214-223.

[5] S. Mancoridis, B.S. Mitchell, C. Rorres, Y. Chen and
E.R. Gansner, “ Using Automatic Clustering to Produce
High-Level System Organizations of Source Code” ,
Proc. 6th Int’l Workshop Program Understanding
(IWPC 98), IEEE Comp. Soc. Press, 1998, pp. 45-53.

[6] C.M. de Oca and D.L Carver, “ Identification of Data
Cohesive Subsystems Using Data Mining Techniques” ,
Proc. Int’l Conf. Software Maintenance (ICSM 98),
IEEE Comp. Soc. Press, 1998, pp.16-23.

[7] T.M. Pigoski, Practical Software Maintenance: Best
Practices for Managing your Software Investment,
Wiley Computer Publishing, 1996.

[8] K. Sartipi, K. Kontogiannis and F. Mavaddat,
“ Architectural Design Recovery Using Data Mining
Techniques” , Proc. 2nd European Working Conf.
Software Maintenance Reengineering (CSMR 00),
IEEE Comp. Soc. Press, 2000, pp. 129-140.

[9] C. Tjortjis, N. Gold, P.J. Layzell and K. Bennett, “ From
System Comprehension to Program Comprehensions” ,
Proc. IEEE 26th Int’l Computer Software Applications
Conf. (COMPSAC 02), IEEE Comp. Soc. Press, 2002,
pp. 427-432.

[10] V. Tzerpos and R.C. Holt,” ACDC : An Algorithm for
Comprehension-Driven Clustering” , Proc. Working
Conf. on Reverse Engineering 2000, (WCRE00) IEEE
Comp. Soc. Press, 2000, pp. 258-267.

