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Abstract 

Association Rule Mining (ARM) is a popular data mining method. There are many approaches for mining frequent rules and patterns from 

a database; one employs heuristics. Many heuristic approaches have been proposed but, to the best of our knowledge, there is no 

comprehensive literature review on such approaches, only a limited attempt. This gap needs to be filled. This paper reviews heuristic 

approaches for ARM and points out their most significant strengths and weaknesses. We propose eight performance metrics, such as 

execution time, memory consumption, completeness and interestingness, we compare approaches against these performance metrics and 

discuss our findings. For instance, comparison results indicate that SRmining, PMES, Ant-ARM, and MDS-H are the fastest heuristic ARM 

algorithms. HSBO-TS is the most complete one, whilst SRmining and ACS require only one database scan. In addition, we propose a 

parameter, named GT-Rank for ranking heuristic ARM approaches, and based on that, ARMGA, ASC, and Kua emerge as the best 

approaches. We also consider ARM algorithms and their characteristics as transactions and items in a transactional database, respectively, 

and generate association rules (ARs) that indicate research trends in this area.  
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Reviewing heuristic ARM approaches, comparing them based on performance metrics like execution time, completeness, number of 
database scans etc. Finally, proposing a parameter, named GT-Rank for finding the best heuristic ARM approaches.   



Introduction 

The recent huge increase on the amount of available 
data caused the emergence of data mining techniques 
for extracting knowledge from the databases. 
Association Rule Mining (ARM) is one of the most 
popular methods in this area. In 1993, Agrawal et al. 
proposed Apriori to extract frequent rules and 
patterns from databases [1], [2]. Subsequently, many 
researchers attempted to improve this process, such 
as works presented by Yan et al. [3], Djenouri et al. [4], 
Soysal [5], Goyal et al. [6], [7], Drias [8], and in [9]. 
Apriori is a time consuming algorithm. This motivated 
many researchers to focus first on proposing faster 
algorithms, such as those presented by Hong and Bian 
[10], Li and Yang [11], Kau and Shih [12], Guo and Zhou 
[13], and in [14]. Many of them, like FP-growth were 
successful in extracting frequent rules in a short 
period of time: a significant improvement compared 
to Apriori [14].  

However, researchers uncovered more drawbacks of 
Apriori to be addressed. One of them is the large 
number of generated candidate frequent itemsets. 
Researchers focused on reducing this number [7], 
[14]. Apriori has another drawback: the need for user 
input to set the required parameter values, such as 
the minimum confidence and support. This manual 
approach is not easy, especially in large databases and 
could even have negative impact on the quality of 
generated rules [3]. As a result, researchers proposed 
approaches for setting these parameters 
automatically or even without any need for such 
predefined values, as discussed by Yan et al. [3], Kuoa 
et al. [15], Dash et al. [16], and Bidgoli et al. [17]. 
Another subject that became popular was extracting 
interesting rules and patterns [3], [16], [17], [18]. 
Many methods have been proposed to define 
interestingness and extract interesting patterns and 
rules.  

Despite these improvements, there are still many 
open challenges. Many ARM approaches have been 
designed for small or medium datasets. Therefore, 
algorithms need to address scalability. In addition, an 
important gap in ARM literature is the consideration 
of all desirable aspects that an ARM approach should 
have. There are many algorithms, which only improve 
one such aspect. For instance, they are executed in a 
short period of time, but they generate some wrong 
rules, i.e. rules which do not reflect the actual 

transactions stored in the database [3]. They may also 
have small memory usage, but they scan the database 
several times [19]. 

Applying heuristics could be a convenient solution for 
many ARM algorithms problems and challenges. 
Heuristic algorithms tend to have low execution time 
and they do not need any knowledge about the 
problem domain in advance. Combination of these 
advantages makes them a good choice even for 
optimization problems. Many heuristic algorithms 
have been proposed, and many of them have been 
employed to design ARM approaches. In this paper, 
we discuss these approaches and point out their 
advantages and disadvantages. It should be noted that 
although there are some limited attempts to review 
classic ARM algorithms by Borgelt [20], Nath et al. 
[21], Le et al. [22], Zhang and He [23], Elloumi and 
Zolmaya [24], Mukhopadhyay et al. [25], only one 
minor attempt on reviewing heuristic approaches 
was, to the best of our knowledge, made by Del et al. 
[26]. However, there is no comprehensive study, 
which compares heuristic approaches and points out 
their strengths and weaknesses. Clearly, a 
comprehensive survey on ARM algorithms using 
heuristics would benefit researchers in this area, 
particularly in helping them to identify open 
challenges and directions for future work.  

The rest of this paper discusses ARM algorithms 
background and presents Apriori and FP-growth in 
section 2. Section 3 shapes a comprehensive literature 
review on heuristics used for ARM. Section 4 
introduces some performance metrics for comparing 
heuristic approaches. Section 5 compares heuristic 
approaches using the proposed parameters. Finally, a 
detailed discussion and conclusions can be found in 
sections 6 and 7, respectively.  

 

ARM Algorithms 

This section introduces key concepts on ARM 

algorithms, by presenting one of the best-established 

algorithms in the field: Apriori. It also discusses two 

broad ARM algorithm categories: Exhaustive 

approaches, like Apriori, and heuristic approaches. All 

the algorithms are briefly discussed along with their 

main features. 



Preliminaries 
This section defines several important concepts and 

measures in the ARM field, as follows: 

• Rule: is a conditional structure (If (condition) then 

result) that indicates the relation between an 

antecedent and a consequent. 

A→B 

where A is the antecedent and B is the 

consequent. 

• Itemset: is a set of items in a (transactional) 

database. 

• Support: is the frequency of an itemset in a 

database.  

• Confidence: is the percentage of occasions that a 

rule is true, over the times it is applicable in the 

database (see formula 3). 

• Lift value of an association rule: is the ratio of the 

confidence of the rule and the expected 

confidence of the rule.  

Lift(A→B) = Support (A ∪ B) / (Support (A) × Support 

(B)) 

• Conviction: is the proportion of the expected 

support of A that may be true without B or it is 

the incorrect prediction by the rule. 

Conviction(A→B) =(1-Support(B))/ (1- 

Confidence(A→B)) 

• Interestingness: employing some metric to 

evaluate the extracted rules and extracting the 

ones that are more interesting to the user (see 

formula 7 for example). 

• Comprehensibility: is the ratio of the length of 

antecedent and consequent. It is based on the 

“Rule of Simplicity”, i.e. a rule is simpler, if it is 

shorter. 

Comprehensibility= log (1+|B|)/log (1+|A ∪ B|) 

where |B| is the size of consequent and |A ∪ B| 

is the total size of the rule. 

• Fitness Function: is used to evaluate the quality of 

generated rules. Each ARM approach could have 

different fitness function. 

• Rule reliability: usually addressed by the 

confidence quality measure, by considering 

support of the antecedent, support of the 

consequent, and support of the rule as a whole. 

• Completeness: in the context of this paper, we 

use the term completeness as the proportion of 

rules generated by a heuristic method over that 

of an exhaustive method like Apriori [2], which 

does not trade off the number of rues extracted 

over speed.  

Exhaustive ARM Approaches 
Such ARM approaches try to exhaustively find all 
possible solutions, in contrast with heuristic ones. 
However, this strategy may face problems in bigger 
databases and larger search spaces and requires high 
amount of computational power and memory space. 
In this paper, we divide exhaustive ARM approaches 
into two subcategories: Apriori-based and non 
Apriori-based. First, we briefly present Apriori. 

 

Apriori 
Apriori is the best known ARM algorithm for extracting 
frequent patterns from databases [1], [2]. It works in a 
breadth first fashion.  

Assuming there is a set of transactions T = {t1, t2, … , tn} 
and a set of items I = {i1, i2, … , in}, the main goal is to 
find all frequent {X, Y}, where X and Y are called 
itemsets, i.e. they may contain one or more items. 
Each extracted rule is of the form: 

X → Y      (1) 

meaning that when a transaction tx contains itemset 
X, it should also contain itemset Y. Itemsets X and Y 
should have no items in common: 

X ∩ Y = Φ     (2) 

Apriori, and most ARM algorithms, have two stages: 
First, they find frequent itemsets, i.e. sets of items that 
frequently occur in the set of transactions, and then 
generate rules from them. Apriori employs a 
technique called pruning and joining. First, it produces 
a list of candidate frequent itemsets. Then it uses a 
concept, named Minimum Support, to remove 
itemsets, which have lower support than the 
minimum support required. The support for an 
itemset is the number of its occurrences in all the 



transactions. Then it joins each itemset in the 
candidate list with other itemsets to generate 2-length 
items. In this step, Apriori removes items, which have 
lower support compared to the minimum support. At 
that point, the algorithm executes the same process 
Iteratively, to produce 3-length, 4-length, … itemsets. 
As a result, this algorithm needs a user-defined 
parameter, minimum support, to find frequent 
itemsets. 

Next, the algorithm checks each itemset, based on a 
process named Pruning, for each level producing 
candidate lists. According to this process, each 
nonempty subset of all items in the candidate list 
should belong to the previous level’s candidate list. If 
there is an itemset that does not satisfy this condition, 
the algorithm removes it from the candidate list. 

Finally, the last candidate list is the frequent list. 
Apriori then extracts all non-empty subset of each 
item and generates rules. In this step, the algorithm 
applies another user-defined parameter called 
Minimum Confidence to remove weak rules. 
Confidence for each rule is (S represents the support 
value):  

                      C=S (X ∪ Y) /S (X)                   (3) 

Since Apriori was proposed, many ARM algorithms 
emerged to improve its efficiency; most of them . A lot 
of them were based on Apriori, whilst others followed 
a different approach to extract rules. We discuss both 
categories in the following subsections. 

Table 1. Apriori Pseudocode 

Input: Database, minimum support and confidence 

Output: generated frequent rules 

Ci=Candidate itemsets with the size of i 

Fi=Frequent itemsets with the size of K 

While (Fi.lenght() !=0) { 

     Ci+1= the generated candidates from Fi
 

     Fi+1= The candidates items in Ci+1 that their frequency is 
more than the minimum support. 

} 

Consider the last not null frequent list and then generate the 
associated rules. 

Check that the confidence of generated rules be more that the 
minimum confidence value otherwise remove them. 

Return the generated rules 

 

Apriori-based ARM approaches 
Wang and Tjortjis [27] proposed an algorithm, named 

PRICES, to improve Apriori. Its main advantage is 

decreased number of database scans. PRICES scans 

the database only once. This algorithm uses a concept 

called price, i.e. a unique value for each item in the 

database. Then the database is scanned once, and the 

price of each transaction is calculated. For example, 

assume that A, C and D are three items with values of 

24, 22 and 21, respectively. Hence, the price for 

transaction I, which consists of {A, B, C}, is 10110 [27]. 

All prices are stored in a Price Table. Under this 

assumption, the occurrences of each sort of itemset in 

all transactions can be calculated, without scanning 

the database again. Experimental results indicate that, 

execution time of PRICES is lower than Apriori. It has 

also better results on larger databases. 

Liao proposed another ARM algorithm using an array 

that consists of a value of 0 or 1 for each item in each 

transaction [28]. At the same time, support is 

calculated for each item, thus eliminating items with 

low support, by scanning the database only once. This 

approach assigns a weight value to each item, with the 

help of the user, based on its importance, and 

calculates support based on these weights. Results 

illustrate that the approach is faster than Apriori, but 

has some drawbacks, such as using many predefined 

parameters and not considering the completeness of 

the generated rules. It should be noted that when an 

algorithm is claimed to be faster than Apriori, it should 

also be shown that it produces complete rules just like 

Apriori, which is not the case in this paper.  

Liang et al. also tried to improve Apriori [29]. First, 

they read the database and store it in an array. With 

such an approach, they did not need to deal with the 

external database, thus reducing time consumption. 

Then they remove transactions that do not contain 

any of the k-itemsets, because, such transactions 

cannot produce (k+1)-itemsets. Thus, many 

transactions are eliminated, which results in 



decreasing execution time. They applied this approach 

on the physiological indices of patients. Their 

experimental results indicate that this approach could 

generate some rules. However, this paper is missing a 

comparison with Apriori, as well as a discussion about 

the completeness of generated rules.  

Chen et al. proposed a new approach to improve 

Apriori, named BE-Apriori, addressing the issues of 

multiple database scans and generation of many 

candidate frequent itemsets [30]. Two new strategies 

are employed: first, a pruning strategy, where in each 

level of k-itemset generation, the algorithm calculates 

the frequency for each item based on the number of 

occurrences of that item in all frequent itemsets. For 

each item, if this number is less than k, each itemset 

that contains that item is removed. Secondly, a 

transaction reduction strategy is then employed, by 

deleting each item, which does not exist in the k-

itemset. At that point, for generating the (k+1)-

itemsets, they calculate the length of each transaction 

and eliminate each transaction with length less than 

k+1. Their results indicate that their approach 

generates less frequent itemsets compared to Apriori 

and this improves when increasing the minimum 

support value. In addition, BE-Apriori has shorter 

execution time than Apriori. 

Yu et al. proposed a new ARM algorithm [31]. They 

also claim that the biggest drawbacks of Apriori are: a) 

the large number of Input/Output (I/O) I/O operations 

and b) the generation of large amounts of candidate 

frequent itemsets. For solving these problems, they 

propose a Boolean matrix, which uses “1s” and “0s” to 

describe the existence of an item in each transaction. 

They applied just an AND operator to calculate 

support for each item and store them in the last 

column of the matrix. They then remove each item, 

which has lower support than the minimum. An 

interesting part of their work is that they ran their 

algorithm in a Hadoop platform executing each part of 

their method in parallel. This approach scans the 

dataset only once and runs in a parallel platform, 

which may result in great reduction of execution time 

compared to Apriori. However, they did not test their 

idea on an actual database and just used an example 

to show the efficiency of their approach instead.  

 

 Non Apriori-based Approaches 
FP-growth is a very well-known ARM algorithm [14]. 

Its most interesting innovation is that it generates 

frequent rules without generating candidate itemsets. 

It scans the database only twice. This approach 

employs a structure called Frequent-Pattern tree or 

FP-tree. In the first scan, FP-growth finds frequent 

items and in the second, it generates the FP-tree. After 

producing the FP-tree, the algorithm only needs this 

tree for further processing, instead of the number and 

length of frequent patterns. For each transaction, 

there is a path in the tree, which starts from its first 

item of its prefix sub-tree. Moreover, items in 

frequent itemsets are in descending frequency order. 

Therefore, having more support could help items to be 

shared by more paths and be at the top of the FP-tree. 

The main concept in this algorithm is that all itemsets 

that it produces are in a path of the FP-tree. In other 

words, all the itemsets in FP-growth are in the 

database, in contrast to Apriori that may generate 

candidate itemsets that are not even in the database. 

FP-growth always follows a pattern-fragment growth 

method. Having built the FP-tree, FP-growth divides it 

into smaller trees and then mines them. This is a 

Divide and Conquer approach, which names each 

smaller tree a conditional tree. Although FP-growth 

has many advantages compared to Apriori, it also has 

a significant drawback: its memory usage, especially 

when dealing with large databases that could even 

cause a crash.  

Table 2. Psseudocode of FP-growth 

Input: Database, minimum support and confidence, FP-tree 
FT, FPset 

Output: generated frequent rules 

(1) If (FT has a single path as P) { 



Foreach combination of nodes in this path (H) 

 H∪FPset with support of minimum support of nodes in H 

} Else foreach heather in FT as u { 

H = u ∪ FPset  with the support = u.support 

Create the conditional FP-tree of H as CTree 

If CTree ≠ ∅ 

 { 

    Go to the (1) and set the FT=CTree and FPset=H 

} 

} 

With the generated frequent list generate the associated 
rules. 

Check that the confidence of generated rules be more that the 
minimum confidence value otherwise remove them. 

Return the generated rules 

 

Yuan and Ding proposed an improved algorithm based 

on FP-growth [9]. The authors claim that FP-growth 

has drawbacks that should be addressed. Three are 

the main ones: 1- It scans the database twice and 

requires a sorting process in the first scan, causing 

performance degradation. 2- It uses a complex 

process to build the tree. 3- Finding the largest 

frequent itemset requires a lot of storage and time. 

Consequently, a new approach based on Huffman 

transform algorithm, named HSP-growth (Huffman 

Sequence Pattern-growth) was proposed [9]. It 

employs a binary structure to store information and a 

Huffman code platform to describe information. This 

algorithm employs a Huffman tree for frequent 

itemsets. Each node (except the leaf nodes) may have 

two children (left or right) and its value can be 1 which 

represents existence of an item in itemset otherwise 

0. Their approach scans the database only once. 

Experiments indicate that HSP-growth has shorter 

execution time compared to Apriori and FP-growth. 

However, the completeness of generated rules was 

not discussed.  

Narvekar and Seyed proposed a new improvement for 

FP-growth [7]. At first, it scans the database and 

generates a tree, named D-tree. This is a simple tree, 

with a path for each transaction, which also contains 

the number of occurrences of each node. When the D-

tree is built, the algorithm scans it and calculates the 

support for each item. If an item is frequent, it may 

occur in more than one nodes. In such a case, the 

algorithm considers the sum of all the nodes in 

calculating the support for that item. A Node table 

consists of the spare nodes. It is claimed that the 

existence of an item in more than one nodes could 

have required further processing. Instead, they 

process each item only once, by considering a 

condition, which adds to the Node table every node 

from the current node to the root node that did not 

occur before. This approach consumes a large amount 

of memory but scans the database only once. Like FP-

growth, it does not generate candidate itemsets. 

However, in contrast to FP-growth it does not require 

generating many conditional patterns and conditional 

FP-trees and generates much less conditional pattern 

bases. As a result, it is faster than FP-growth. 

However, its completeness is not discussed.  

 

Heuristic Approaches 

To the best of our knowledge, only one attempt has 
been made to review heuristic ARM algorithms: that 
by Del et al. [26]. However, this is not a comprehensive 
study, nor does it compare heuristic approaches. It 
discusses Genetic Algorithms (GAs) and swarm based 
approaches. It focuses on some of these approaches, 
and differentiates between algorithms applied 
directly for generating rules, and those for optimizing 
some part of their functionality. For instance, as we 
discuss in this section, many fuzzy ARM algorithms 
apply GAs to optimize membership functions [32]. 
Furthermore, Del et al. also classified ARM algorithms 
depending on their real world applications and 
discussed the environment that they were applied on, 
such as education, manufacturing, computer security 
etc. [26]. After all, this paper does not cover all the 
heuristic approaches, it does not critically review 
heuristic ARM algorithms pointing out their 
drawbacks and strengths, and it does not compare 
them with each other. All in all, in this section, we 



classify ARM algorithms according to the heuristic 
algorithm they apply.  

There are several heuristic algorithms for ARM. In this 

section, we review these algorithms categorised in 5 

groups: 4 groups based on the algorithms that they 

use, such as Genetic Algorithms (GAs), Bee Swarm 

Optimization (BSO), Particle Swarm Optimization 

(PSO) and Ant Colony Optimization (ACO) and one 

group based on other heuristic algorithms.   

 

Approachses based on GAs 

Genetic algorithms are evolutionary algorithms based 

on the neural selection process in biological evolution. 

This algorithm begins with a randomly initialized 

population and iteratively evaluates each population 

(called generation) based on a defined fitness 

function. In each generation, it selects the best 

individuals and generates the next generation. Yan et 

al. proposed a novel approach based on GAs for ARM 

[3]. In their method, they did not use any fixed 

minimum support threshold. Instead, they employed 

relative minimum confidence as a fitness function for 

selecting only the best rules. At the beginning, they 

proposed an algorithm, named ARMGA, which was 

designed to deal with Boolean ARM. However, since 

they also wanted to deal with quantitative Association 

Rule (AR) discovery, they proposed another GA based 

method, named EARMGA, which is an expansion of 

ARMGA [3]. They also designed a FP-tree approach 

based on FP-growth for implementing EARMGA. 

Experimental results illustrate that their algorithms 

reduce computation costs and generate only 

interesting ARs. 

Wang et al. proposed a new ARM algorithm based on 

GAs, named AGA [33]. AGA is an adaptive GA, which 

employs a mutation matrix and a crossover matrix for 

multi-dimensional ARM. For quantitative attributes, 

they employ a pre-processing step. According to that, 

for instance, for the age values, they consider intervals 

such as “0-29” or “30-40”. Moreover, they compared 

their method with the original GA. Evaluation results 

indicate that AGA has better performance compared 

to GA from the point of view of the average fitness 

value, and it generates more rules. In many heuristic 

algorithms, the fitness value determines the quality of 

each solution. For instance, it determines the quality 

of food source in the BSO algorithm. There is a similar 

case for GAs, PSO etc. As a result, each new algorithm 

could have its own design of the fitness function, 

which calculates the fitness value for each solution. 

Djenouri et al. studied AGA and they claimed that the 

main drawback of AGA is that it generates some false 

rules [4], [34]. They also compared their method with 

AGA and experimental results indicate that AGA fails 

in terms of both fitness value and computation time.  

Two more heuristic approaches were proposed by 

Drias based on GAs [8]. One named IARMGA and a 

Memetic algorithm, named IARMMA. They claim that 

most of bio-inspired-based algorithms have two main 

drawbacks: generating false rules and considering 

some rules with low support and confidence as high 

quality rules. They considered two parameters to 

evaluate their approaches and compared them with 

each other: Execution time and completeness of 

generated rules. Completeness in this approach has 

been associated with the value of their fitness 

function. For this reason, they propose a new method, 

named “delete and decomposition strategy” to 

achieve better completeness. Finally, their 

experimental results indicate that IARMMA has higher 

execution time compared to IARMGA especially for 

large datasets. However, IARMMA has better solution 

quality. In the end, they claimed that their approaches 

solved the problems of generating false and 

incomplete rules. One drawback of this work is the 

lack of comparison with other well-known ARM 

methods like Apriori. 

Another ARM algorithm, based on Parallel GAs (PGA), 

was presented by Dash et al. [16]. They demonstrate 

that the problem of Apriori and similar algorithms is 

the process of setting the minimum support and 

confidence manually. For instance, in large datasets it 



is hard to predict the value of these parameters. They 

claimed that in most ARM approaches, a user-defined 

min support and min confidence play the main role in 

finding interesting rules. In their approach, 

interestingness is determined by the fitness function, 

automatically. They also discuss that the combination 

of the problem mentioned with other issues, such as 

the large search space, render the application of 

heuristics popular to many researchers. However, 

some heuristic methods like GAs suffer from long 

computation times. As a result, they apply PGA as a 

solution. Moreover, they denote that the fitness 

evaluation process for all frequent itemsets is related 

to the size of the dataset. They use a parallel 

evaluation system to evaluate the fitness function, 

which results in decreasing computation time. Their 

experimental results indicate that their approach has 

85% completeness when detecting interesting rules. 

However, they did not evaluate the computational 

time of their approach and they did not compare it 

with other approaches.  

Lim et al. proposed a new ARM algorithm, named GA-

AssocRule [35]. According to this algorithm if we have 

n-items that are correlated, then the superset that is 

associated with n-items, could also be correlated. The 

correlation value of the superset should minimally be 

equal to n = Items’ correlation. Moreover, they 

reviewed the algorithm proposed by Yan et al. [3] as 

well as ARMGA and EARMGA. They demonstrated that 

the only difference between their approach and 

EARMGA is in the way they calculate the fitness 

function. EARMGA sets the fitness function with the 

help of a concept, named relative confidence, which 

users can set between 1 and -1. Therefore, in GA-

AssocRule they use correlation to calculate the fitness 

function. Their experimental results illustrate that 

both algorithms generate positive correlated ARs of 

variable lengths. However, unlike GA-AssocRule, 

EARMGA cannot generate all rules with all possible 

lengths. For instance, it produced rules with lengths 2 

and 4, but failed to produce rules with length 3. 

Another application of GA in ARM is reported by Sagar 

and Argraval [36]. The authors claimed that most of 

the current approaches do not consider negative 

occurrences of attributes. Moreover, they determine 

a limitation for mined rules: there is no limitation to 

the number of antecedents, but there should be only 

one consequent in a rule. Along with support and 

confidence, they also propose some other parameters 

like Complete and Comprehensibility of a rule. 

Complete is the percentage of coverage that a 

consequent has on its antecedents. They considered 

simpler rules as rules with more Comprehensibility. 

Their experimental results illustrate that although 

their approach produces desired rules, it can also 

generate all possible rules. 

Li and Yangalso propose a new ARM algorithm based 

on GAs for Manufacturing Information Systems (MIS) 

[11]. They claimed that one of the main drawbacks of 

Apriori based algorithms is that when they increase 

the number of 1-itemssets, they have more qualifying 

2-itemset which may result in decreasing efficiency. 

They also proposed a new parameter, named 

Compatibility, which was defined by formula (4): 

                               COM = C / T                                          (4) 

where COM is the compatibility value and C is the 

number of records with a specific gene list and T is the 

number of whole records.   

According to them, at the beginning, a user should 

specify a minimum Compatibility. After that, the 

algorithm calculates the Compatibility for each gene 

list. If the value is greater than the minimum 

Compatibility, then the algorithm stores it. The main 

drawback of their approach is that at the beginning, 

users should set many parameters like Compatibility, 

mutation-rate (Mutation is the rate of a gene’s 

changes of an individual to create variants and reduce 

homogeneity), and Cross over rate. Their 

experimental results illustrate that their approach has 

lower execution time compared to Apriori. It also 

indicates that in contrast to the proposed method, 



computation time for Apriori increases for larger 

datasets. In addition, they demonstrated that 

although GA decreases completeness a little, it could 

increase efficiency, especially in MIS. 

Using GAs for ARM was also proposed by Guo and 

Zhou [13]. They have improved the method of 

choosing chromosomes and other parts of GAs. Their 

experimental results indicate that their approach has 

lower execution time compared to Apriori. Moreover, 

they apply a fixed threshold for minimum support and 

confidence.   

Applying GAs or Multi-Objective GAs to extract 

frequent rules is a popular approach and has been 

proposed several times [37]. For instance, Bidgoli et al. 

proposed MOGAR [37], a new ARM algorithm based 

on multi-objective GA for numerical data [17]. They 

applied three parameters to evaluate generated rules: 

Confidence, Interestingness, and Comprehensibility. 

Moreover, they apply MOGAR to deal with discretizing 

numeric attributes. They also employ a Pareto based 

method to automate the process of setting evaluation 

measures, such as confidence. A rule is considered to 

be of high Comprehensibility, if the number of items 

in the antecedent is less than the items in the 

consequent. In their approach, they employed a list 

called Pareto archive and save all the solutions for all 

generations in that list. At that point, they select from 

these solutions. With this approach, they claim that 

they do not miss any high quality rule. Their 

experimental results indicate that in most cases their 

approach generates more rules, with higher 

confidence. Moreover, since they use a Pareto based 

approach, it does not need minimum support. 

Alim and Ivanov proposed an ARM algorithm based on 

GA for fuel assembly loading management problems 

[38]. They considered an aging process, which results 

in decreasing the size of the problem. Their approach 

also decreases time consumption. It could find 

solution for loading problem in 176th generations 

when classic GAs would obtain it in 250th generations. 

Another ARM method based on GAs was proposed by 

Du et al. [39]. First, it applies an improved version of 

Apriori to extract frequent rules. The authors assume 

that each transaction which does not have i-length 

itemsets, it neither has (i+1)-length itemsets. As a 

result, they remove this transaction. In addition, they 

store the database in a table in memory to avoid 

accessing the external memory for future references. 

Finally, with the help of a GA, they select some of 

these rules as the best possible generated rules. They 

do not discuss the effects of their approach on 

execution time, completeness or memory 

consumption. In addition, there is no comparison 

between their approach and other approaches like 

Apriori.  

QuantMiner is another GA based approach focusing 

on extracting Quantitative ARs [40]. It requires some 

predefined values like minimum support and 

confidence, the number of generations etc. A user can 

decide which item is more desired and could set a 

template for generated rules. They defined a rule 

template as “pre-set format of a quantitative 

association rule”. For instance, he or she could decide 

that the selected item should be on the consequent or 

the antecedent of the generated rules. They claim that 

their approach is 10 to 20 times faster than GAs. 

However, this paper did not consider many subjects. 

It does not give any actual specific results to readers 

to decide whether this approach is fast or not. Neither 

does it compare its approach with other algorithms 

and does not consider other parameters such as 

completeness. 

Mata et al. proposed another ARM approach, which 

only focused on one aspect of ARM, like Du et al. [39] 

and Mukhopadhyay et al. [25] and was not compared 

with other approaches [41]. They applied GAs to 

extract numeric ARs. Mata et al. [42] also employed a 

fitness function as formula 5:  

F = C – (M * PF)                                    (5) 



where F is the fitness value and C is the number of 

records that match the rule and M indicates whether 

this record has been covered by another rule or not. 

In addition, PF is a user-defined parameter that sets 

the weight of the marked parameter. This approach is 

also not compared with other algorithms.  

Ghosh and Nath considered ARM as a multi-objective 

problem [43]. In addition to the support and 

confidence, they apply two other parameters, named 

Comprehensibility and Interestingness. They claim 

that if the number of conditions in the antecedent was 

smaller rules would have higher Comprehensibility. 

They also employ formula (6) to determine the 

Comprehensibility of a rule (assuming a rule: A→C). 

Comprehensibility = log (1 +|C|) / log (1+ (AUC))      (6) 

where |C| is the number of items in the consequent 

and (AUC) is the number of items in both antecedent 

and consequent. They also claim that finding rules 

with more frequency in the database may be more 

interesting for users. In addition, they employed an 

equation to determine the interestingness of a rule: 

IN = [S(AUC)/S(A)] * [S(AUC)/S(A)] * [1-(S(AUC)/|D|)]    (7) 

where IN represents the interestingness value and S is 

the support value and |D| is the total number of 

transactions. They also applied a Pareto based 

structure to extract interesting rules from the 

database. This approach was not compared with other 

algorithms.  

Puig et al. proposed CSar, an ARM approach based on 

GAs [44]. CSar was designed for extracting rules that 

contain both quantitative and categorical attributes. It 

uses classifiers based on seven parameters: i) support, 

ii) confidence, iii) fitness, iv) experience, which 

represents the number of times that the antecedent 

of a rule matches the inputs, v) the Consequent 

matching sum, which indicates the number of times 

that all parts of the rule match the input, vi) 

numerosity, which is the number of copies of a 

classifier in the problem domain and vii) tcreate, 

which is the time taken to create the classifier.  CSar 

classifies generated rules based on two methods. The 

first is classification based on the antecedent. This 

mechanism considers two rules with similar 

antecedents as similar. The second method also 

considers two rules with similar consequent as similar. 

If two rules have the same antecedent or consequent, 

they can be merged. At that point, they also remove 

rules that express the same knowledge. Their 

experimental results indicate that CSar could generate 

rules that Apriori also generates, which is a sign of 

completeness.  

Kaya and Alhaji [45], Hong et al. [32], and Wang and 

Bridges [46], proposed GA based approaches to 

optimize membership functions. This process is a 

mandatory stage in extracting weighted ARs especially 

in the quantitative database. Moreover, Kaya and 

Alhaji claim that some rules may mislead users [45]. 

Consider a rule A→ B with support 50% and 

confidence 66.7%. If support for A is 75%, this is a 

weak rule, because there is a negative connection 

between A and B. In other words, a customer who 

wants to buy A may have a smaller chance to buy B 

compared to an anonymous customer that we have 

no prior information about. As a result, they consider 

a rule interesting, if the value of Support(X, Y)/ 

Support(X), Support(Y) is greater than 1. There is a 

similar approach by Hong et al. who tried to employ 

GAs for adjusting and optimizing membership 

functions in fuzzy ARM algorithms [32]. In their next 

paper, Chen et al. also focused on extracting frequent 

rules from quantitative databases [47]. This algorithm 

is a cluster-based fuzzy-GA approach that defines 

membership functions. For clustering chromosomes, 

they apply K-means clustering. Their experimental 

results indicate that their new approach has better 

performance compared to the previous one. Although 

their approach could find large itemsets, it also could 

find convenient values for membership functions. This 

approach also has good execution time and 

completeness compared to their previous approach. 

Interestingly, in their next paper, Chen et al. improved 



their approach, and applied a multiple support 

approach GFMMS, instead of using single minimum 

support [48]. Experimental results indicate that the 

new approach has better fitness value compared to 

the previous ones. In their more recent approach, 

Chen et al. proposed yet a new method, named 

FCGFMMS [49]. This method includes two phases:  

one is finding the minimum support and membership 

functions and the other involves extracting frequent 

fuzzy ARs. Their experimental results indicate that 

FCGFMMS is ten times faster than GFMMS and has a 

better average fitness value. Finally, Chen et al. 

proposed DGFMMS, an improvement over their 

previous approaches [50]. This approach also employs 

a divide and conquer policy. The experimental results 

indicate that DGFMMS has a higher fitness value 

compared to GFMMS [48].  

Thilagam and Ahanthanarayana applied a multi-

objective GA for fuzzy ARM [51]. Fuzzy support, fuzzy 

confidence, and rule length were the objectives of this 

approach. However, in contrast to Kaya and Alhaji 

[45], Hong et al. [32], and Wang and Bridges [46], they 

used K-mean clustering for finding the optimal values 

for membership functions. Finally, Wang et al. also 

proposed an ARM approach based on GAs and fuzzy 

ARM to manage networked manufacturing resources 

[52]. The main difference of this approach is that they 

employed a knowledge library and store the 

generated rules in it. They compare each new 

generated rule with this library and if it is redundant 

or meaningless, the algorithm removes it. However, 

they did not discuss the definition of meaningful or 

meaningless for a rule. In all of these ARM approaches 

authors did not consider parameters like execution 

time, memory usage, completeness etc. They also did 

not compare them with other ARM approaches.  

FGBRMA is an approach, employing GAs for 

determining the minimum fuzzy support and 

membership functions that was proposed by Hu [53]. 

Its main goal is to generate fuzzy classification rules. 

Experimental results indicate that their approach has 

higher classification rate compared to other 

classification methods even that in [54]. Ishibuchi and 

Yammoto also proposed a method based on multi-

objective GAs for pattern classification problems [54]. 

In [55], Fdez et al. proposed a new fuzzy ARM 

algorithm for mining quantitative data. Their 

approach is based on GAs. They claim that setting 

membership functions is not an easy task. Hence, their 

method determines the membership functions and 

mines fuzzy ARs. At the end, they compared their 

approach with Hong et al. [32] and experimental 

results indicate that their approach has better fitness 

value and produces larger 1-itemset rules. Finally, it is 

also faster than Hong et al.  [32].   

Shenoy et al. proposed another ARM approach 

suitable for dynamic databases, based on GAs [56]. 

They claim that the main issues in dynamic ARM 

algorithms are Additions and Deletions; Additions 

increase support of itemsets because of their 

occurrence in the updated data and Deletions 

decrease supports of itemset because of the lack of 

their existence in the updated data. This process could 

remove some of the generated rules. Interestingly, 

their approach also focuses on distributed databases. 

Moreover, they considered two novel terms: Intra-

transactions and inter-transactions. The former refers 

to finding frequent rules that represent relationships 

between items in a transaction. The latter refers to 

finding relationships between items in transaction A 

and items in a transaction B, which is more 

complicated than intra-transaction. As a result, their 

goal was to find large inter- transaction rules and scan 

the database only once with the help of Distributed 

and Dynamic Mining of ARs using GA (DMARG) [56]. 

Their experimental results indicate that their 

approach is faster than an improved version of Apriori 

and Fast UPdate (FUP) [56].  

Guillet et al. proposed an ARM approach, which 

applies graph visualization modelling to decrease the 

number of generated rules [57], as generating many 

rules is claimed to “hide” the most interesting rules. 



They measured the quality of their approach’s 

drawings with a fitness function. This value is based on 

the number of edge crossings and the total length of 

arcs. Their experimental results indicate that their 

approach is more robust to change, but from the point 

of view of quality of obtained drawings, dot, a well-

known static approach, has better performance.   

Kaya and Alhajj [58], proposed another ARM 

algorithm, which employs GAs. They claim that finding 

domain of quantitative attributes for Fuzzy ARM is a 

hard task. As a result, it should be done either by an 

expert or automatically. However, they claim that 

even an expert cannot do this task properly. Hence, 

they applied a clustering approach based on GAs. They 

also employed Clustering Using REpresentatives 

(CURE) for setting membership functions. Their 

experimental results indicate that their approach 

produces more interesting rules compared to previous 

approaches. However, a drawback of their work is that 

it has longer execution time compared to other 

methods.   

Alatas and Akin proposed a new automatic ARM 

approach for mining positive and negative ARMs 

based on GAs [59]. They claim that a non-automatic 

approach uses a trial and error method and runs 

several times to get the best fitness score; however, in 

this work they automatically set the minimum support 

and confidence. Their experimental results indicate 

that this approach generates rules with high support 

and confidence. They also compared their approach 

with GAR [41], which only extracts positive itemsets. 

Results illustrate that GAR finds rules with higher 

support in most of the cases. However, the number of 

items in generated rules is less than these in rules 

generated by GAR.  

Puing et al. proposed a fuzzy ARM algorithm, named 

Fuzzy-CSar, based on GAs [61]. Fuzzy-CSar includes 

classifiers that consist of fuzzy AR. These classifiers 

have 6 parameters for checking the quality of rules: 

support, confidence, fitness value, experience (the 

number of cases that the input was matched with rule 

antecedents), numerosity (which indicates the 

number of copies of the classifier among all classifiers) 

and the average size of association sets. Khabzaoui et 

al. also propose an ARM algorithm for mining DNA 

microarray databases based on GAs [62]. They 

employed eleven parameters to evaluate generated 

rules. Some of these parameters are support, 

confidence, interest, conviction etc. Kaya proposed 

another approach based on Multi-objective GA for 

fuzzy ARM [63]. The objectives of this algorithm are 

Strength, Interestingness, and Comprehensibility. 

Strong rules have support and confidence above the 

minimum. Interestingness represents how many of 

the generated rules are interesting and finally 

comprehensibility indicates the number of attributes 

that participate to the rules. In addition, Anandhavalli 

et al. put forward another ARM approach based on 

GAs, named ARG [64]. This approach, firstly, generates 

frequent rules and then, based on GAs and some 

parameters like Positive Confidence and 

Interestingness, selects the most interesting rules. 

Their experimental results indicate that their 

approach produces less rules compared to previous 

approaches and is faster. 

Martın et al. [87] proposed a multi-objective 

evolutionary algorithm, called MOPNAR, and their 

focus was on reducing the computational cost and the 

size of mined AR (either positive or negative 

quantitative rules). The three objectives that MOPNAR 

tries to maximize are comprehensibility, 

interestingness, and performance “in order to obtain 

rules that are interesting, easy to understand, and 

provide good coverage of the dataset” [87]. 

Furthermore, Palacios et al. [88] proposed another GA 

based ARM approach, named FARLAT-LQD. They 

employed a 3-tuples linguistic representation model 

to decrease their search space. They also proposed a 

model, named FFP-growth-LQD, based on the Fuzzy 

Frequent Pattern-growth algorithm for the fuzzy ARM 

[88]. 



Padillo et al. [89], proposed a new ARM approach 

based on GA for Big Data ARMs. Their focus was on 

avoiding increasing the complexity of the solutions 

[89]. This approach also employs a grammar to reduce 

the search space and uses subjective knowledge [89]. 

Moreover, Martin et al. [90] proposed another GA 

based ARM approach called NICGAR, which has a low 

runtime. This approach contains two thresholds that 

enable the user to balance the quality and diversity of 

extracted rules [90]. Finally, this approach can determine 

the similarity degree between the rules. In addition, in 

another study, Qodmanan et al. [92] proposed a dynamic 

multi-objective ARM approach that can set the minimum 

support value automatically.  

 Approaches based on Bee Swarm Optimization (BSO) 

BSO is one of the swarm optimization approaches that 

is based on the life of bees. It includes different kinds 

of bees that have different responsibilities. These bees 

should randomly explore the research problem space 

to find the possible food sources (solutions). The 

quality of each food source can be evaluated by its 

distance from the hive. Research in this area was 

conducted by Djenouri et al., who proposed a new 

method for Web ARM [34]. At the beginning, they 

proposed an improved GA-based ARM algorithm and 

compared it with previous GA-based ARMs. The paper 

discussed the drawbacks of previous methods, such as 

ARMGA, and classified them into two groups, 

methods that: i) generate rules that do not respect the 

minimum support and confidence, and ii) generate 

unacceptable rules. As a result, first, they proposed an 

ARM method based on bees’ behaviours in real world 

(BSO), named BSO-ARM. The experimental results 

indicate that from the point of view of the fitness 

value, BSO-ARM is the best. However, the main 

drawback of this approach is its computation time, 

which is higher than others. In other words, although 

BSO-ARM is a time consuming approach, it produces 

rules that are more complete compared to previous 

GA-based approaches. 

It is interesting that, in their next paper Djenouri et al. 

proposed a new ARM algorithm, HBSO-TS, based on 

two meta-heuristic algorithms: BSO and Tabu Search 

(TS) [4].  Tabu Search can be applied in optimization 

problems. In their previous paper, they proposed BSO-

ARM [34], but in this paper, they improved their 

approach. They applied TS for detecting the best 

neighbour.  The experimental results show that HBSO-

TS has better fitness value than ARMGA and BSO-

ARM. Moreover, the proposed method also has lower 

computational time than BSO-ARM. Finally, in 

contrast to ARMGA, their method does not generate 

any false rules. However, one of its biggest drawbacks 

is that when tested against a large dataset, it bluntly 

blocked [34]. In addition, as authors mentioned, since 

they applied two heuristic algorithms, many 

parameters are required to be set.  

Applying a heuristic approach also was the case in [65] 

where Djenouri et al. proposed a new ARM policy 

based on bees’ behaviour and Graphics Processing 

Unit (GPU), named PMES. It is a parallel version of 

BSO-ARM. Their goal was to tackle problems of ARM 

in large databases. First, it searches for new solutions 

using the Central Processing Unit (CPU) CPU and then 

it evaluates each solution by GPU threaded in parallel.  

Interestingly, PMES is based on a Master/Slave 

structure. In this paradigm, the algorithm finds the 

position of all bees by executing the CPU. At that 

point, with the help of GPU, it calculates the fitness 

value of all solutions at the same time and in parallel. 

The authors compared their approach with BSO-ARM, 

i.e. their previous work. Their experimental results 

indicate that PMES is faster than BSO-ARM. Moreover, 

running these two algorithms in large databases like 

Web Docs had interesting outcomes: BSO-ARM was 

blocked in 12 days, but PMES only ran for 10 hours and 

was not blocked.  

  

 Approaches based on Particle Swarm Optimization 
(PSO)  

PSO algorithm is based on the behaviour of bird 

flocking, where each bird is a single solution and has a 

fitness value. Based on this algorithm, the birds know 



that food sources exist, but they do not know where 

exactly these sources are; each bird tries to find the 

best food source. Kuoa et al. proposed a new 

approach based on PSO [15]. Their goal was to 

determine the minimum support and confidence 

automatically in a complete way. They changed the 

type of database to Binary format, and with the help 

of PSO, they extracted the rules. In the end, the best 

particle was found. At that point, the support and 

confidence of the best particle was considered as the 

minimum support and confidence. To evaluate their 

approach, they compared their method with GAs. The 

experimental results indicate that PSO has lower 

computation time. In addition, since PSO sets the 

minimum support and confidence automatically, 

there is no need to set them by a trial and error 

approach, which is time consuming. They also applied 

this method on investors’ stock purchases behaviour 

in the real world. 

There are more cases of researchers who applied two 

heuristic algorithms at the same time. Vyas and 

Chauhan proposed two heuristic approaches for ARM 

[66]. One of them was based on PSO and the other was 

based on GAs. Their experimental results indicated 

that PSO has lower average support and higher 

average confidence. GA has higher average fitness 

value compared to PSO [66], but Kuoa et al. claimed 

that PSO extracts better rules compared to GAs [15]. 

Moreover, according to Kuoa et al. [15], Vyas, and 

Chauhan [66], PSO is faster whether it uses a fixed 

threshold for the minimum support and confidence, 

or not. Kuoa et al. also claimed that PSO extracts 

better rules compared to GAs [15]. 

Another use of PSO was proposed by Nandhini et al. 

[18]. Their ARM method includes two steps. First, it 

transforms the data to binary format. Then, it applies 

PSO to define the minimum support and confidence, 

automatically. They considered support and 

confidence of the best particle as the minimum 

support and confidence. At that point, their approach 

mines ARs and extracts the rules. At the final stage, it 

uses a post mining technique, named Domain 

Ontology to reduce the number of rules. The 

algorithm also employs a rule schema, which defines 

user expectation of mined rules. User expectation is a 

predefinition that the user has extracted rules 

following these definitions; like the forms of the 

consequent part or the antecedent part of generated 

rules. Finally, they compared their proposed method 

with Apriori. Their approach generates about 1000 

rules without having any knowledge about user 

expectations. Then, by applying a domain ontology 

and taking user expectations into account, it faced a 

dramatic decrease in the number of extracted rules. 

As a result, their approach produces less rules without 

any negative impact on the interestingness of rules. 

However, they did not investigate the computation 

time of their approach.  

Alatas and Akin proposed an ARM approach based on 

PSO, named Rough PSP (RPSOA) [67]. It does not need 

any predefined parameters like minimum support and 

confidence and tries to generate rules, automatically. 

Because of this feature, some of their test results even 

indicate that if they use a fix minimum support, they 

could not generate any rule from the database. This 

contrasts with their approach that sets minimum 

support automatically and generates complete rules. 

Their experimental results indicate that their 

approach has good performance on different 

databases even with noisy data. They also compared 

their approach with other approaches like GAs and the 

results illustrate that their approach generates rules 

with higher support that contain less items in most of 

the cases.  

 

 Approaches based on Ant Colony Optimization (ACO) 

ACO is a metaheuristic optimization algorithm that 

can be used to find the best path in a graph. This 

algorithm is based on the real-world ants’ lifestyle. 

Applying Ant Colony Algorithm (ACO) is also one of the 

popular solutions for ARM. Kau and Shih proposed a 

new ARM algorithm based on a meta-heuristic 



algorithm, named Ant Colony System (ACS) [12]. ACS 

is based on the behaviour of ants. However, in this 

algorithm, ants have memory and they are not blind. 

In addition, they claimed that ACS needs some 

predefined parameters. As a result, they proposed a 

method that uses some limitations and defines most 

of these parameters before running the model and 

decrease computational time by scanning the 

database only once. The experimental results indicate 

that proposed method takes less computational time 

compared to Apriori. However, many similar rules are 

generated, which is an important challenge that 

should be addressed.    

ACO was the main solution for another approach by 

Hong-yun et al., named SRMining [68] for finding 

longer rule-chains. First, it creates a graph, named 

PAGraph, which contains directions to most potential 

ARs. Their algorithm assumes that an edge of the 

PAGraph could be part of the rule chain. In this step, 

with the help of some heuristics and feedback from 

the ants, some paths can be considered as potential 

longer rule chains. In their experiments, they 

compared their approach with FP-growth and DLG. 

Results indicate that SRMining is faster than others, 

maybe because it only scans the database once.  

There is another use of ACO by Zhu et al. [69]. In this 

paper, they proposed a new AR decision algorithm 

based on ACO for a Ball Mill Pulverizing system. In this 

system, a set of variables for controlling the system 

should be determined. However, these variables 

depend on the environment. As a result, defining 

suitable values for them is an open challenge. Previous 

works indicated that other approaches like Neural 

Networks, GAs, and Fuzzy optimization algorithms do 

not satisfy completely user expectations. 

Experimental results indicate that their approach finds 

these values quickly and completely.  

In [70], Y. He and S. Hui proposed two methods, 

named Ant-C [70], which is an ACO based clustering 

approach, and Ant-ARM [70] that is an ACO based 

ARM approach. Their experimental results indicate 

that Ant-C has better performance and higher 

completeness compared to other well-known 

clustering algorithms like K-means. Moreover, Ant-

ARM is a fast approach. Its execution time was 

reported to be 24.5% compared to that of FP-growth 

and 0.2% compared to that of Apriori, when executed 

on the same machine.   

Finally, ACO programming was also found to be a good 

technique for ARM by Olmo et al. [93], who proposed 

two algorithms guided by a context-free grammar. 

One is called Grammar-Based Ant Programming for 

Association Rule Mining (GBAP-ARM) following a 

single-objective approach using a novel fitness 

function, which measures the weighted average 

between support and confidence, to evaluate the 

individuals mined. The other is called Multi-Objective 

Grammar-Based Ant Programming for Association 

Rule Mining (MOGBAP-ARM), considering individual 

evaluation from a Pareto-based point of view, 

measuring the confidence and support of the rules 

mined and assigning them a ranking fitness. They were 

both tested over 15 data sets from the UCI repository 

[94], and their results were compared to other ARM 

algorithms, including Apriori [1] and FP-growth [14], 

ARMGA [3], as well as other genetic programming 

algorithms. The results obtained were very promising 

in terms of reliability and instance coverage, as well as 

memory, although no details are disclosed w.r.t. to 

memory usage, execution time, or interestingness. 

 

 Other Approaches  

In our recent work, we proposed ARMICA [71], 

focusing on automation, speed and completeness. We 

employed the Imperialism Competitive Algorithm 

(ICA), which is a fast heuristic approach. Our objective 

was to extract rules automatically, without any 

predefined minimum support and confidence. Early 

experimental results indicated that ARMICA is faster 

than Apriori and generates all the rules that Apriori 

produces, thus, it is complete. Finally, further 

comparisons illustrate that ARMICA is faster than FP-



growth, so it can be considered a fast approach. 

However, ARMICA has one drawback: it requires a 

predefined parameter, named: Number of 

Imperialists. Although it is much easier to set this 

parameter than the minimum support and 

confidence, it is desirable that ARMICA defines this 

parameter automatically, too. ARMICA should be 

further compared with more recent ARM approaches 

rather than just Apriori and FP-growth. As well as 

consider more metrics, such as memory usage, the 

number of database scans or interestingness.  

Another heuristic based ARM approach is MDS-H, 

which have been presented in Hong and Bian [10]. It is 

based on the Multi-Dimensional Scaling (MDS) [10] 

approach and tries to improve Apriori in terms of 

performance. MDS-H consists of two steps: grouping 

and joining. During the grouping step if an itemset has 

some items from the same group, the algorithm 

considers it as non-frequent. A result of non-frequent 

items elimination is avoiding large numbers of 

frequent itemsets. Their approach was tested in an 

urban transportation network. The experimental 

results indicate that MDS-H has low computation time 

and it is complete in long pattern discovery. They 

compared their method with Apriori and found that 

MDS-H generates less itemsets and has very lower 

computation time compared to Apriori.  

Jorio et al. proposed a new heuristic approach for 

mining gradual itemsets, which are sets of gradual 

items [72]. In this paper, there are two kinds of 

gradual items: value increases and value decreases. 

They considered the gradual rule as a higher/lower 

structure. For instance, they considered this rule as a 

gradual rule: “the higher the age, the higher the pay” 

[72]. Moreover, they claim that fuzzy based 

approaches may have some problems like losing some 

information or may not be suitable for the gradual 

pattern mining problem. In addition, gradual pattern 

mining causes a competition between items. It could 

be a two-by-two comparison, but they claim that it is 

a memory consuming process and does not generate 

gradual patterns. As a result, they make an ordered 

dataset. Since their method is based on Apriori, they 

needed to have a pruning process. However, they 

claim that it is not applicable to their approach. Hence, 

from level two they order objects and keep this order 

until the end. The main drawback of this approach is 

its long execution time. However, they did not 

compare their approach with other methods. They 

also mentioned that their approach may not generate 

all possible rules. 

Hu and Li claimed that ARM is not a single objective 

problem, so they considered it as a multi-objective 

problem and proposed a new evolutionary algorithm 

[73]. They considered three parameters as their 

objectives: Statistical Correlation, Comprehensibility, 

and Confidence. They defined Statistical Correlation 

as formula 8: 

SC (X U Y) =
|D| ∗  S(X U Y) −  |D| ∗ ∏ 𝑆(𝑖)(𝑖∈𝑋∪𝑌)  

√|D| ∗ ∏ 𝑆(𝑖)(𝑖∈𝑋∪𝑌) ∗ (1 −  ∏ 𝑆(𝑖)(𝑖∈𝑋∪𝑌) )

 

             (8) 

where S indicates the support value and the rule is 

X→Y and |D| is the number of records of the database. 

This parameter eliminates the rules that do not have 

any relativity. They also claim rules with less items in 

the consequent or the antecedent are more 

comprehensive. Their experimental results indicate 

that execution time for this approach was 54,2% 

shorter than that of FP-growth. Their approach also 

generates fewer rules. 

Alatas et al. proposed another ARM approach [74]. A 

multi-objective evolutionary algorithm that is a Pareto 

based approach, named MODENAR (Multi-Objective 

Differential Evolution Algorithm). Because this 

approach is automatic and does not need any 

minimum support and confidence, they call it, 

database independent. They also compared their 

approach with these in Alatas and Akin [59] and GAR 

[41]. Experimental results indicated that MODENAR 

generates rules with higher support and confidence 

even with noisy databases. It also generates less rules 



compared to GAR [41]. There are less items in 

generated rules by MODENAR than by GAR [41]. 

Finally, there are more database records covered by 

the generated rules by MODENAR, than these by GAR 

[41] and by Alatas and Akin [59]. Lastly, Cano et al. [91] 

proposed a new methodology based on Graphics 

Processing Units (GPUs) to evaluate ARs. Any 

evolutionary approach can employ this approach 

which enables them to evaluate ARs in parallel, 

resulting in decreasing computation time. 

Finally, we could briefly mention here approaches 

based on Grammar-Guided Genetic Programming 

(G3P). G3P can restrict the search space and build 

rules conforming to a given context-free grammar. For 

instance, an ARM algorithm called Grammar-Guided 

Genetic Programming for ARM (G3PARM) makes the 

knowledge extracted more expressive and flexible, by 

allowing a context-free grammar to be adapted to 

each problem domain and discretization [95]. It keeps 

the best individuals and obtains solutions within 

specified time limits and does not require large 

amounts of memory. It is compared to exhaustive 

search (Apriori and FP-Growth) and GAs (QuantMiner 

and ARMGA) algorithms and rules are analysed whilst 

its scalability is verified. Further work that deals with 

ARM under a multi-objective perspective using G3P 

models, that enable the extraction of both numerical 

and nominal ARs in a single step was presented in [96]. 

Experimental results indicate that multi-objective 

proposals obtain very frequent and reliable rules 

when attaining the optimal trade-off between support 

and confidence. Furthermore, for the trade-off 

between support and lift, the multi-objective 

proposals also produce very interesting and 

representative rules. Lastly, a G3P algorithm that does 

not need many parameters and enables the discovery 

of quantitative ARs comprising small-size gaps was 

presented in [97]. The algorithm was tested over a 

varied set of data, comparing the results to other ARM 

algorithms, showing that it can reduce gaps in 

numerical features. 

Comparison Performance Metrics 

In this section, we discuss the main criteria that are 

important in ARM algorithms.  Based on the reviewed 

papers, we selected 8 performance metrics to 

compare all the previous researches. They can be 

found in Table 3. In this table, the coloured cells 

indicate the best approaches from the point of view of 

that performance metric; the cells that contain the 

term “considered” represent the fact that the 

approach is not the best approach from the point of 

view of that performance metric, but it did consider 

this performance metric in its evaluation. We discuss 

this further in section 5. Then, based on the frequency 

of these performance metrics in all the approaches, a 

priority has been allocated to them, which can 

represent the importance of each performance 

metric. Moreover, based on the priority of each 

performance metric, we gave them a weight value. 

Since we have 7 priorities (1 to 7), we give to the 

performance metrics a weight from 1 to 7. For 

instance, Execution Time and Interestingness have 

priority 1, so we gave them weight 7. Finally, we 

propose a formula to calculate the GT-Rank for each 

performance metric. GT-Rank can be used to rank 

each performance metric and based on this rank, the 

best ARM approach could be selected: 

𝐺𝑇 − 𝑅(A) = ∑ 𝐵 × (𝑎param × W)
8

𝑛=1
  (9) 

where A is any given ARM approach and R is its rank, 

and aparam is factor set to 1 if approach A considers the 

corresponding performance metric n or not, and to 0 

otherwise. W is the weight for each performance 

metric, as shown in Table 3. Finally, if an algorithm is 

the best approach from the point of view of that 

performance metric (if it is coloured), then B is set to 

2 and if the approach is not the best approach in that 

performance metric but does consider it, B is set to 1. 

The main reason why the GT- Rank is an important 

factor is that right now we do not have any efficient 

ranking system to compare the heuristic ARMs, which 

can confuse researchers about their future directions, 

as well as practitioners with regards to selecting the 



most suitable ARM solution. Having an efficient rating 

system that was generated based on more than 30 

papers in the literature, can show to researchers 

which of the previous approaches are better qualified 

and which need further improvements. GT- Rank is 

based on the previous trends in heuristic ARM 

approaches and based on the frequency of the 

evaluation performance metrics in previous 

approaches. It determines which performance metric 

is more valuable to real world applications.     

However, it is noticeable that, there is not any “best” 

term for performance metrics like database scans, 

interestingness, parallel processing, and automatic 

procedure. For these performance metrics, we just 

considered all the approaches that apply to them, as 

the best approaches and colour their cells. As a result, 

they should not have any extra impact on the GT-

Ranks. Therefore, their B value would be 1. In most of 

researches on ARM, there are some common 

experimental performance metrics.  

We divided these 8 performance metrics in two 

groups based on their Priority values. performance 

metrics that are mandatory and other additional 

features. On one hand, mandatory performance 

metrics include Execution Time, Interestingness, 

Automatic Procedure, and Completeness. On the 

other hand, additional features are Itemsets/Rules 

Reduction, Database Scans, Parallel Processing, and 

Memory Usage. 

 

Mandatory Performance Metric 
Some performance metrics are necessary for any ARM 

algorithm. Without satisfying these performance 

metrics, ARM approaches could face problems.  

 

Execution Time 

One of the most important features of an ARM 

approach is its execution time. Most approaches 

focused on improving Apriori-like algorithms and 

extract the frequent rules faster. Many algorithms 

have been proposed after Apriori and they have 

succeeded to decrease execution time, but there 

should be further improvements in this area. 

 

Table III. Final Comparison: The best algorithm for each performance metric. 

Algorithm Memory 
Usage 

Execution 
Time 

Complete
ness 

Database 
scans 

Parallel 
processing 

Automatic 
Procedure 

Interesti
ngness 

Rule/Itemsets 
Reduction 

GT-
Rank 

ARMGA[3]  considers      considers 27 

ACS [12]  considers considers      25 
Narvekar [7] considers considers       20 

Kuoa[15]         20 
SRmining[68]         18 

Dash[16]   considers      24 
Ant-ARM[70]   considers      20 
ARMICA[71]  considers considers      19 

BSO-ARM[34]  considers considers      19 
Pathak[19] considers considers       20 

Nandhini[18]        considers 14 
HSBO-TS[4]  considers       19 
PMES[65]         16 
MASP[5]  considers       17 

MDS-H[10]         14 
KAYA2[58]         16 



MOGAR[17]         16 
Fdez [55]  considers considers      13 
Chen [47]  considers considers      13 

FCGFMMS [49]  considers considers      13 
RPSOA[67]   considers      12 
Alatas[59]        considers 10 

MODENAR [74]        considers 10 
QuantMiner [40]         10 

Ghosh[43]         10 
KAYA[45]         10 
Hong [32]         10 

Thilagam[51]         10 
Wang [46]         10 
KAYA3[63]         10 

GFMMS[48]   considers        6 
DGFMMS [50]   considers      6 
MOPNAR [87]         32 

FARLAT-LQD[88]  considers      considers 21 
Padillo [89]  considers       17 

NICGAR [90]         32 
Qodmanan [92]         6 

Cano [91]  considers      considers 11 
GBAP-ARM[93]   considers     considers 10 
MOGBAP-ARM 

[93] 
  considers     considers 10 

G3PARM [95]   considers      28 
NSGA-G3PARM 

[96] 
  considers     considers 10 

SPEA-G3PARM 
[96] 

  considers     considers 10 

GGGPA [97]   considers     considers 10 
Frequency of 
Parameters 

2 22 19 3 2 11 17 16  

Priority 7 1 2 6 7 5 3 4 
Weight 1 7 6 2 1 3 5 4 

Interestingness 

Most of users in real world applications do not look for 

obvious rules; they look for relations which may be 

hidden. Therefore, they look for patterns that are not 

already known. In this situation, researchers may 

propose some new approaches to extract rules that 

are more interesting. It is noticeable that this 

performance metric could have different definitions in 

different approaches and researchers employ varied 

mechanisms to define interestingness in their ARM 

algorithms.  

 

Automatic Procedure 

One performance metric that may have positive 

impact on efficiency of an ARM algorithm is employing 

a mechanism to extract frequent rules, automatically. 

Many researchers considered it to improve efficiency 

of their approaches. As a result, their approaches do 



not require predefined values like minimum support 

or confidence. Their approaches set these values 

automatically. In addition, they do not need to have 

any knowledge about the database in advance and 

could be applied in any database.  

 

Completeness 

Although users are looking for approaches that extract 

frequent rules and patterns in a short period of time, 

they also want to ensure that these results are 

complete. Hence, extracting false frequent rules in a 

short fraction of time is not acceptable in most of the 

cases. Consequently, most researchers check their 

results from the point of view of completeness. To 

calculate completeness of an algorithm, we could test 

each generated rule with the transactions in the 

database and look for the number of matches or 

mismatches. We also could compare our methods 

with Apriori or FP-growth from the point of view of 

generated rules. 

 

Additional Features 
There are other performance metrics which may not 

have been considered necessary by researchers. 

However, it is important to consider them since they 

may have an impact even on mandatory performance 

metrics and affect their performance.  

 

Number of database scans 

A factor, which may have a great impact on execution 

time, is the number of database scans. Based on this 

number, ARM approaches may have long execution 

time if they have many database scans and vice versa. 

This is because these approaches need many I/O 

operations increasing execution time. As a result, 

many algorithms have been proposed with only one 

database scan. After this scan, they store the 

necessary information in the main memory for future 

reference, which is faster than having to access the 

disk, using I/O operations.   

 

Parallel processing 

Employing a parallel structure could make any ARM 

approach faster. According to the parallel structure, 

all stages of extracting frequent rules could be done at 

the same time or at least in short intervals. As a result, 

this could decline execution time. However, like any 

other mechanism, using a parallel mechanism could 

have its own weaknesses. It may increase some other 

performance metrics like memory usage. Peris et al. 

[75] noted that the memory overhead of parallel 

processing could have a negative impact on system 

performance [10]. One of the solutions that they 

proposed is employing of a memory aware resource 

allocation policy. There are many other drawbacks 

when applying a parallel mechanism and all should be 

considered in ARM.  

 

Number of generated itemsets or rules 

Whenever an ARM approach generates many 

itemsets, it may need long time to process them. The 

best known example is Apriori. This approach 

generates itemsets many of which may not even be 

frequent. As a result, it requires extra effort and time 

to eliminate non-frequent ones. Moreover, there are 

many cases that producing all possible rules is not 

even required. Therefore, researchers prefer the most 

important rules. As it is clear, this performance metric 

has influence on execution time. In addition, it may 

have positive impact on memory usage, too.  

 

Memory Usage 

Another important performance metric in ARM 

algorithms is memory usage. Most of the fast 

algorithms like FP-growth focused only on improving 

execution time and did not consider memory usage. 

This could have negative impact on ARM algorithms.  



 

Comparison  

In this section, we compare current heuristic ARM 

algorithms, based on well-known evaluation 

performance metrics. Most of these approaches may 

have strengths regarding some of these performance 

metrics. Therefore, in order to find out the real 

advantages of each approach, we do the comparisons 

in eight sections, separately for each performance 

metric. We use this process, to establish the best 

approaches for each performance metric.  

Mandatory Performance Metric 
We selected four performance metrics as mandatory, 

based on their frequency on previous ARM 

approaches. They have higher priority compared to 

the additional performance metrics. 

 

Execution time 

Without doubt, proposing a faster algorithm was the 

most important goal for many ARM algorithms. Its 

importance is expected to increase in the future, 

especially when trying to analyse large datasets. Many 

heuristic approaches tried to improve previous ARM 

algorithms like Apriori, with extraction of frequent 

rules in a shorter period. In this paper, we compare 

these approaches in two subsections. First, we 

compare all the heuristic approaches that were 

compared with Apriori by their authors. Then, we 

evaluate all the heuristic approaches in the literature 

which were originally compared with other heuristic 

approaches, in the respective articles found in the 

literature.  

Many heuristic approaches were compared with 

Apriori and in some cases even with FP-growth. Fig. 1 

illustrates the results of these comparisons. In many 

of these papers, the authors benchmarked their 

approaches against Apriori on different databases. For 

the sake of simplicity, we calculate the average value 

of these results and mention them in Fig. 1. Moreover, 

ACS [12] runs in one hour and 45 minutes compared 

to Apriori that runs in eight hours and 5 minutes.  

According to Fig. 1 and the above information, NICGAR 

[90] is 575 times, MONPNAR [87] is 533 times, 

G3PARM [95] is 23 times, and MDS-H [10] is about 9 

times faster than Apriori. After that, ASC [12] is 

approximately 4 times faster than Apriori. Then, 

ARMICA [71], Li and Yang [11], Pathak et al. [19], and 

Improved GA [13] are in the next steps, respectively. 

 

Figure 1. Comparison of Execution time with Apriori and FP-growth 
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Figure 2. First Execution time Comparison 

However, SRmining [68] and Ant-ARM [70] are even 

faster than FP-growth. Since FP-growth is much faster 

than Apriori, these algorithms could be among the 

fastest ones. In conclusion, according to Fig. 1, NICGAR 

[90], MONPNAR [87], G3PARM [95], MDS-H [10], 

SRmining [68], and Ant-ARM [70] are the fastest 

heuristic ARM approaches, which were compared 

with Apriori and FP-growth. 

However, there are other approaches that compared 

themselves with other heuristic algorithms, instead of 

Apriori and FP-growth. For the sake of simplicity, we 

calculated the average value of these results and 

mentioned them in Fig. 2. According to Fig. 2, HSBO-

TS [4] has the highest execution time compared to 

others. BSO-ARM [34], which is previous version of 

HSBO-TS, has the second highest execution time. 

Moreover, ARMGA [3], AGA [33], and IARMGA [8] 

have the next places. Finally, PMES [65] has the 

shortest execution time compared to others. This 

could indicate that heuristic approaches based on the 

BSO algorithm may be faster than approaches based 

on GA. 

Comparison of classic GA based ARM algorithms and 

PSO based ARM algorithms was also another field of 

study. As Fig. 3 indicates, in contrast to BSO based 

algorithms, PSO based approaches do not defeat GA 

based approaches in all the cases. In one case GA is 

faster [66] and in another case PSO [15]. However, 

since PSO is 40 times faster than the GA proposed by 

Kuoa et al. [15] and there is no significant difference 

between the GA and PSO reported by Vyas and 

Chauhan [66], the approach of Kuoa et al. [15] is 

faster. It was shown [11] [13] that GA based ARM 

approaches are faster than Apriori, so Kuoa et al. [15] 

is potentially faster than Apriori.  

After all, according to these comparisons, NICGAR 

[90], MONPNAR [87], G3PARM [95], MDS-H [10], 

SRmining [68], PMES [65], Ant-ARM [70], and Kuoa et 

al. [15] have the potential to be the fastest heuristic 

ARM algorithms. However, there is a big gap in this 

area and all the heuristic approaches should compare 

themselves with each other and instead of comparing 

themselves with Apriori, they should try to establish 

comparisons with more up-to-date and faster ARM 

algorithms. The worst part is that most of them did not 

compare their approaches even with FP-growth, 

which is faster than Apriori.  

 

Interestingness 

Many definitions could define interestingness. There 

are many mechanisms, which can find out that a rule 

is interesting, or not. For instance, using simple 

performance metrics like minimum support and 

confidence is a way to extract interesting rules. 

However, many users prefer rules that are more 

interesting. As a result, applying minimum support 

and confidence may not satisfy them completely. ARM 

algorithms in Yan et al. [3], Dash et al. [16], Nandhini 

et al. [18], Soysal [5], Bidgoli et al. [17], Aoussi et al. 

[40], Ghosh and Nath [43], Qodmanan [92], NICGAR 

[90], MONPNAR [87], [53-56], [58], Kaya [63] in 

addition or even instead of the minimum support and 

confidence, considered other factors to determine 

interestingness of the extracted rules. They may have 

different mechanisms to evaluate the interestingness 

of a rule. Nandhini et al. [18] developed a method 

which is based on user knowledge (in one of the 

algorithm stages, they ask users to determine the 

user’s expectations about rules) and the domain 
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ontology process. Another interestingness parameter 

has been proposed in MASP [5].  

According to that, if we have a rule like: A→ C, then in 

this paper authors defined a performance metric, 

named Lift. It represents that how much C is 

dependent to A. 

L (A→ C) = 
Conf(A→ C)

𝑆(𝐶)
   (10) 

where Conf and S represent the confidence and 

support values, respectively. 

    

Automatic Procedure 

One of the biggest drawbacks of some ARM 

approaches is that users should set the value of 

minimum support and confidence, manually. Since 

these values could affect the quality of generated 

rules, especially in huge databases, it could be difficult 

to set them manually. A simple solution is a trial and 

error approach. It means that one tries many values to 

get the best result, but this is not easy [3].  

 

Figure 3. Comparison of GA based and PSO based ARM 
algorithms 

 

Figure 4. Comparison based on the Fitness Values 

Some researchers detected this drawback and 

proposed some semi-automatic or automatic ARM 

algorithms to find the minimum support and 

confidence, such as Yan et al. [3], [34], Kuoa et al. [15], 

Dash et al. [16], Nandhini et al. [18], Bidgoli et al. [17], 

Puig et al. [61], Khabzaoui et al. [62], Kaya [63], Alatas 

et al. [74], Ghafari and Tjortjis [71]. 

This could have many benefits: 1) there is no need to 

have prior knowledge about the database, 2) when 

working with huge databases, it may be difficult to set 

these values manually 3) this process could avoid 

faults that may be caused by setting wrong values for 

minimum support and confidence. However, this area 

needs more investigation.   

 

Completeness 

It is worth taking into consideration that, in most of 

the heuristic approaches, completeness has been 

considered as the fitness value, and measured based 

on this fitness value.  
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Experimental results of ACS [12] indicate that many 

similar rules are generated by this method. Although 

it may not result in decreasing completeness, it could 

be wasting time. They also prepared an expert 

questionnaire and interviewed expert graduate 

students of the medical university of Taiwan. Based on 

this, they claim that their approach produces more 

complete rules like Apriori. 

Moreover, in Pathak et al. [19] they considered 

completeness as an important performance metric. 

Completeness of generated rules was also another 

important performance metric in IARMGA and 

IARMMA [8]. IARMMA has better solution quality. The 

authors claimed that their approach solved the 

problem of generating false rules. Their experimental 

results indicate that with increasing in the size of data, 

their approaches have higher fitness values. 

Djenouri et al. [4] approach’s experimental results 

indicate that it has better fitness value compared to 

approaches in Djenouri et al. [34] and Yan et al. [3]. 

Moreover, BSO-ARM produces more complete rules 

than ARMGA [3]. According to Djenouri et al. [34], 

ARMGA generates rules that do not respect the 

minimum support and confidence and may even 

generate false rules. Finally, in Sagar and Argraval [36] 

they considered all types of rules (TP, TN, FP and FN) 

in their approach and their proposed a method 

generating rules with 100 % completeness.  

We compared heuristic approaches based on their 

fitness values in Fig. 4. Since these approaches have 

been tested on different datasets and for having a fair 

comparison, heuristic approaches are compared in 

three categories. In the first category, the comparison 

is between heuristic approaches and GA algorithms 

from the point of view of fitness values. 

It is clear that HSBO-TS [4] with 13.39 has the highest 

fitness value among these approaches. After that, 

BSO-ARM [34], IARMGA [8], ARMGA [3], and AGA [33] 

are in the next places, respectively. Moreover, GA 

approach with 2.55 has the least fitness value 

compared to other methods. It is interesting that the 

fitness value of HSBO-TS is approximately 5 times 

higher than GA. 

In the next category, comparison indicates that Alim 

and Ivanov [38] has a fitness value, which is slightly 

higher than GA. Moreover, in the third category, Vyas 

and Chauhan [66] has even lower fitness value 

compared to GA. In conclusion, according to Fig.4, 

HSBO-TS has the highest fitness value among these 

approaches. In addition, Pathak et al. [19] has fitness 

value of 74.33 which is higher than 70.452 of Apriori, 

so it could also be considered as complete.  

  

Additional Features 
There are also other parameters that were not 

frequently applied in the literature, but they may have 

great impact on ARM algorithms’ performance. 

  

No. of database scans 

One of the biggest challenges in ARM approaches is 

the number of database scans. It is obvious that if an 

ARM algorithm needs several database scans, it 

requires many I/O operations, which results in 

increasing execution time and performance 

degradation. There is a competition between ARM 

algorithms to have the least number of database 

scans.  

Researchers in Kau and Shih [12], Goyal et al. [6], Van 

et al. [68], [7], considered this parameter in their 

experimental process. Since Apriori scans the 

database many times and this number could vary in 

different databases, hence, we do not include it in Fig. 

5. FP-growth solved this problem and generates 

frequent rules with two scans. Until now, many ARM 

algorithms have been proposed to decrease this 

number even more. ACS [12], SRMining [68], and 

Narvekar [7] are such algorithms. They all require to 

scan the database just once. Moreover, Skyline [6] 

needs the same number of database scans as FP-

growth. However, it is clear that researchers who are  



 

Figure 5. Number of database scans 

working with heuristic approaches did not investigate 

this performance metric enough and it requires 

further study. 

Parallel processing 

With many improvements in parallel computing, we 

have an opportunity to employ this concept in ARM. 

This could bring many benefits, especially in 

decreasing the execution time. However, this is 

another gap in heuristic ARM approaches. Among 

these algorithms, only Dash et al. [16] and Djenouri et 

al. [65] implemented their approaches based on a 

parallel structure. The results indicate that it had 

positive impact on their execution time. Therefore, 

researchers should have further investigation on the 

potential of parallel computing. 

 

Number of generated itemsets or rules 

Other important performance metric in ARM 

algorithms is the number of generated rules and 

itemsets. If an ARM algorithm generates many 

itemsets, then some of them may be non-frequent; 

hence, it may take too long to process and eliminate 

them. It could also cause production of wrong rules. 

Therefore, some researchers proposed methods to 

decrease the number of generated itemsets. In 

addition, many of the generated rules are not 

interesting. Hence, researchers tried to decrease this 

number and generate only the most interesting rules. 

This could help to decrease the time and memory 

consumption. MONPNAR [87] applies a Pareto- based 

algorithm and produces about 4000 times less rules 

compared to Apriori. MDS-H [10] employs a grouping 

technique and prevents joining between none-

frequent itemsets. If an itemset has two items, which 

belong to the same group, it is not a frequent itemset.  

This would decrease the number of generated rules. 

Nandhini et al. [18] use an interesting procedure. After 

the ARM process, their approach generates many 

rules. At that point, they ask the user to define his/her  

 

 

 

Figure 6. Comparison from the point of view of number of Rules / Itemsets 
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expectations about the generated rules. After this 

process, they remove rules that do not match those 

expectations. As a result, the number of rules would 

dramatically decrease. Moreover, the proposed 

algorithm in Goyal et al. [6] calculates the utility of 

single and pair itemsets. This algorithm pre-processes 

the data and eliminates some nodes from UP-tree. 

They also apply another heuristic approach that uses 

node utility of support to increase the maximum utility 

of an itemset. This approach helps them to eliminate 

non-frequent itemsets. As a result, it decreases the 

number of generated itemsets. 

Finally, ACS [12] succeeded to have great reduction in 

the number of generated rules. Compared to Apriori, 

their approach generates approximately 24 times less 

rules. Fig. 6 illustrates the comparison results of 

heuristic approaches from the point of view of the 

number of rule / itemset reduction. 

It is noticeable that the actual number of generated 

rules by ARMGA and Apriori in the first category has 

been divided by 1000 to have numbers, which are at 

the same range of other results.  

As it is clear in Fig. 6, G3PARM [95] has the first, 

MONPNAR [87] has the second and ASC [12] has the 

third most rules reduction among other approaches. 

However, since according to NICGAR [90], NICGAR 

generates around 4 times less number of rules 

compared to MONPNAR [87], it would be the second 

approach from the point of view of number of 

generated items or rules. ASC generates 

approximately 23 times less rules compared to 

Apriori. After that, Narvekar [7] shows a significant 

feature, similarly to FP-growth. This algorithm does 

not need to generate any frequent candidate itemset, 

which results in generating frequent itemsets in a  

 

Figure 7. Average Memory Consumption 

short period of time.  ARMGA [3] and Nandhini et al. 

[18] also generate respectively 1.11 and 1.53 times 

less rules than Apriori. 

Memory Usage 

Memory consumption is one of the main performance 

metrics in ARM. It is interesting that only one heuristic 

approach in the literature, considered memory 

consumption as an evaluation parameter. However, 

this performance metric is important for system 

performance. Pathak et al. [19], have tested 5 

datasets. For simplicity, we considered the average 

memory consumption of the proposed method and 

compared it with the average memory usage of 

Apriori (Fig. 7). It is clear that Pathak et al. [19] has less 

memory consumption compared to Apriori. However, 

there is a big gap in this area and more research is 

needed to decrease memory usage in heuristic ARM 

approaches. It is noticeable that Narvekar [7] 

employed some mechanism to decrease the memory 

usage. In contrast to Apriori, it does not generate any 

candidate itemset and in contrast to FP-growth, it 

does not generate conditional FP trees, which results 

in having low memory consumption. However, they 

did not test their approach and compare it with other 

approaches, like Apriori or FP-growth. 

 

Applications of Heuristic Algorithms 

As mentioned earlier, heuristic approaches are fast 
and do not need any prior knowledge about the 
problem domain. Heuristic algorithms have many real 
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world applications. Zhu et al. [69] applied ACO to 
propose a new AR decision algorithm for a Ball Mill 
Pulverizing system which determines a set of variables 
that control the system. The authors believe that the 
AR decision problem is a combinational problem that 
it is hard to be solved and ACO is a good approach to 
solve very hard combinatorial optimization [69]. Their 
simulation results illustrate that applying this heuristic 
approach can result in finding the best association 
rules. Moreover, Liang et al. [76] also proposed a new 
fuzzy based hybrid PSO approach for forecasting wind 
speed and workload demand in wind energy systems. 
Their experimental results indicate that their heuristic 
based approach have a better performance in finding 
the best setting compared to the current approaches 
[76]. Their results indicate that their approach has a 
high satiability to find the final solution. For instance, 
the fuel cost difference between the maximum and 
minimum fuel costs, the emission difference of the 
maximum and minimum total emission, and the 
power loss difference of the maximum and minimum 
total real power loss are only 0.0004 M$/h, 0.4 ton/h, 
and 0.05 MW, respectively, which shows the efficiency 
of this approach. 

Moreover, Schoonderwoerd et al. [60] employed ACO 
to propose a new routing policy in telecommunication 
networks and to establish load balancing in such 
networks. They mentioned that a single controller in 
distributed networks can have several drawbacks like 
the fact that a single point of the network (controller) 
should have the information of each part of the 
network, there should be a link between each node in 
the network and the controller, and more importantly, 
this network suffers from the single point of failure 
problem [60]. Hence, they believed their heuristic 
approach can be used to design a decentralized 
control mechanism for networks. Based on their 
experimental results, their heuristic based approach 
has less call failures compared to state of the art 
approaches. 

Furthermore, there was an application of GAs to find 
the optimal solution for reactive power planning in 
[77]. They compared their approach with current 
approaches and their experimental results indicate 
that it has satisfactory convergent characteristics and 
sufficiently short execution time. The only limitation 
of this approach based on the authors’ opinion is its 
computational time. However, back in 1994 the 

authors predicted that with future improvements in 
computational power, their approach could have 
much better computational time compared to the 
current approaches. In addition, there are some 
applications of the Artificial Bee Colony Algorithm in 
real world problems like the constrained Weber 
problem [78]. Stojanovi et al. [78] proposed new 
approaches for solving the constrained Weber 
problem based on four heuristic algorithms, of which 
the Artificial Bee Colony has the best performance 
with respect to solution quality, robustness and 
computational time [78]. The authors believe that the 
mentioned problem has a nonconvex feasible set that 
is hard for deterministic algorithms to find a global 
optimum; in such occasions, heuristic algorithms can 
have complete results.  

M. Balokovic and M. Kürster [79] proposed a new 
approach for “radial velocity data from multi-planet 
extrasolar systems” based on GA. Their experimental 
results indicate that their heuristic based approach 
increases the quality of solutions and can decrease 
execution time, compared to current approaches. 
Moreover, in the cloud computing field, there are 
many applications of heuristic algorithms. Wang, et al. 
[80] proposed a new GA based approach, called load 
balancing genetic algorithm (JLGA) for “task 
circulation categorization” in cloud computing 
environments. Their experimental results indicate 
that although JLGA can establish a great load 
balancing in the cloud computing environment, it 
requires 30 more generations for coverage compared 
to the original heuristic-based approach, called AGA.  

Furthermore, in our previous works [81-83], we also 
proposed three different approaches based on 
heuristic algorithms, like ABC, Cuckoo Optimization 
Algorithm, and Imperialism Competitive Algorithm to 
establish load balancing in cloud computing 
datacenters and decrease the energy consumption. 
Our experimental results indicate that the proposed 
heuristic approaches have better performance 
compared to state-of-the-art algorithms like Local 
Regression [81], Dynamic Voltage Frequency Scaling 
[81], Interquartile Range [81], and Median Absolute 
Deviation [81]. For instance, Bee-MMT (based on ABC) 
has 26.46% less energy consumption compared to the 
Local Regression based approach; or it has around 
nine times fewer virtual machine migration compared 
to the Local Regression based approach. However, 



these approaches have a limitation. In all of them the 
number of hours that the hosts are in 100 percent of 
their utilizations are much more that of the current 
approaches, which can result in Service Level 
Agreement violation.  

Finally, in [84] the application of heuristic and 
metaheuristic algorithms in the Artificial Neural 
Network training stage was discussed. In addition, the 
possibility of employing GA and PSO in the training 
stage of Deep Learning was checked. The authors 
claim that although heuristic algorithms can speed up 
the training stage of deep learning approaches, there 
were not enough studies in this area. They also 
asserted that even with high computational power 
available, it is still necessary to apply heuristic 
algorithms. They noted that finding every possible 
solution is a time consuming process, hence, finding 
near-optimal results with heuristic algorithms could 
be a possible solution for many current real world 
applications. 

 

Discussion 

In this paper, we focused on current ARM solutions, 

which are based on heuristic approaches. Applying 

heuristic algorithms is one of the most popular 

solutions in many current technological problems, 

especially because of their interesting structure, 

which does not require having any knowledge of the 

problem in advance. We focused on ARM approaches 

that directly apply heuristic algorithms and classified 

them based on the type of heuristic: GA, PSO, BSO, 

ACO, and others.  

In section 5, we compared these approaches from 

many points of view, using performance metrics 

grouped into two main categories. In the first 

category, we considered mandatory performance 

metrics and in the second, we used additional 

performance metrics. We compared these methods 

based on memory usage. Surprisingly, although this is 

a very important metric, only one heuristic approach 

investigated this performance metric. However, there 

were some initial attempts in some researches, but 

their approaches were not implemented. It is one of 

the biggest gaps that should be addressed by 

researchers in the future. 

We also discussed one of the most popular 

performance metrics in ARM algorithms, which is 

execution time. First, we evaluated algorithms that 

were originally compared with Apriori. The results 

illustrate that NICGAR [90], MONPNAR [87], G3PARM 

[95], MDS-H [10], Ant-ARM [70], and SRmining [68] 

are the fastest heuristic ARM algorithms compared to 

Apriori. At that point, we compared approaches that 

compared themselves with other heuristic 

approaches. The results indicate that PMES [65] and 

Kuoa et al. [15] are among the fastest ARM 

approaches. After all, these five heuristic algorithms 

have the least execution time compared to other ARM 

algorithms.  

Although many researchers have investigated 

execution time of ARM approaches, there are still 

many gaps in this area. For instance, we should have 

many more approaches that are at least faster than 

FP-growth. Researchers should focus on proposing 

approaches, which are faster than new ARM 

algorithms. Moreover, there is another big gap in 

comparing all heuristic approaches with each other 

and find out which approach could be faster in 

extracting the frequent rules.  

After that, we considered another mandatory 

performance metric, completeness, and compared 

heuristic approaches according to this. Completeness 

of generated rules can be important for users. Hence, 

many researchers tried to generate rules with high 

completeness. Kau and Shih [12], Pathak et al. [19], 

and Drias [8] are among these approaches focusing on 

completeness.  According to Djenouri et al. [34], the 

approach that has been proposed in Yan et al. [3] is 

incomplete and may produce some false rules. As a 

result, in Djenouri et al. [34] and Djenouri et al. [4] 

they managed to propose approaches, which are 

more complete. In addition, Sagar and Argraval [36] 

proposed a method that has 100% completeness. 

Finally, we compared some of the heuristic 



approaches from the point of view of the fitness value, 

which represents completeness of generated rules. 

The results indicate that HSBO-TS [4] has the highest 

fitness value compared to other approaches. After all, 

it seems that completeness is greatly taken seriously 

by researchers. However, we believe that in any new 

ARM algorithms, completeness of generated rules 

should have high priority. 

Then, we compared current approaches from the 

point of view of the number of required database 

scans. It is noticeable that since Apriori needs several 

database scans to extract frequent rules, many 

approaches tried to improve Apriori, and focused on 

decreasing the number of database scans, which 

resulted in decreasing execution time. However, 

again, in the heuristic approaches this idea was not 

investigated enough. Only four of them considered 

this parameter and based on that ACS [12], SRMining 

[68] and Narvekar [7] scan the database only once. 

This parameter could have a great impact on 

execution time of ARM; ACS [12] and SRMining [68] 

can be a proof of this. They both are fast approaches 

and one of the main reasons is scanning the database 

only once. Because of the lack of implementation, we 

cannot discuss execution time in the case of Narvekar 

[7]. However, authors claimed that their approach is 

fast.  

Next, we considered parallel processing as another 

comparison performance metric. If an ARM algorithm 

uses parallel processing, it would have many benefits 

like requiring less computational time. However, only 

Dash et al. [16] and PMES [65] employed such 

mechanism. Researchers should investigate applying 

parallel mechanism in their ARM algorithms in the 

future.  

Next, automatically extracting frequent rules was one 

of the main goals of many researchers in ARM. This 

could have many benefits, like decreasing the 

possibility of using wrong values for performance 

metrics such as minimum support and confidence. In 

addition, in such structure, there is no need to have 

any knowledge about the characteristics of the 

dataset. Among heuristic ARM algorithms, the ones 

proposed by Yan et al. [3], Djenouri et al. [34], Kuoa et 

al. [15], Dash et al. [16], Nandhini et al. [18] and Bidgoli 

et al. [17] were investigated and they all were 

benefitted from this automatic procedure.  

Another comparison performance metric was 

Interestingness. It is true that users are looking for 

complete rules with the minimum possible cost, but 

ARM approaches should generate rules, which are 

more interesting for users. Especially for current 

applications of ARM algorithms, users are looking for 

the rules that may not make any sense in the first 

instance, but with further investigation, it is found out 

that they are complete and interesting. In such cases, 

using only the minimum support and confidence is not 

enough. For instance, Yan et al. [3], Dash et al. [16], 

Nandhini et al. [18], Soysal [5], and Bidgoli et al. [17] 

have investigated some other performance metrics 

and approaches to extract more interesting rules 

aiming to prevent any completeness reduction. This 

area also needs further investigation. 

Finally, this paper considered another performance 

metric, the number of generated itemsets or rules, 

and compared heuristic rules from the point of view 

of this performance metric. As it is clear, if an 

approach decreases the number of generated 

itemsets and eliminates non-frequent itemsets, this 

has a big impact on other performance metrics like 

time or memory consumption. On the other hand, for 

users, it is more convenient to have less but highly 

quality rules. Algorithms like these proposed by Yan et 

al. [3], Hong and Bian [10], Nandhini et al. [18], Goyal 

et al. [6], [7], and Kau and Shih [12] investigated this 

area and proposed some solutions to decrease this 

performance metric. However, among heuristic 

approaches, G3PARM [95], NICGAR [90], MONPNAR 

[87], ASC [12] and Narvekar [7] have the most rules 

and itemsets reduction, respectively. This reduction 

had positive impact on their execution time. There 

could be more improvement in this area in the future. 



Now it is time to finalize the comparison process and 

compare the best approaches, which have been found 

so far. Table 3 shows this comparison results. 

According to Table 3 and all the previous discussion, 

five heuristic approaches are the most accomplished 

heuristic ARM algorithms. These approaches have the 

highest GT-Ranks compared to other heuristic ARM 

approaches. MOPNAR [87] and NICGAR [90] are the 

best heuristic approaches regarding their GT-Rank 

which is 32. They are fast, they generate less number 

of rules, but the generated rules are more interesting. 

Next, G3PARM [95] has the highest GT-Rank (28). 

While it tries to generate less number of rules, it has a 

low execution time. ARMGA [3] is another best 

heuristic approach. Its GT-Rank is 27 and it is a fast 

approach, which also generates less itemsets/rules 

compared to Apriori. It is an automatic ARM approach 

trying to produce interesting rules. Finally, ACS [12] 

also has 25 GT-Rank and it is a fast approach, which 

scans the database only once. It generates complete 

rules and produces very high itemsets/rules reduction 

compared to other approaches. Besides that, these 

results include some facts, as follows: 

• Because there is not enough evidence about 

memory usage of heuristic approaches, we cannot 

select Pathak [19] as the best approach from the 

point of view of memory usage. As a result, we 

need more comparisons in the future to find out 

which approach has the least memory usage.  

• One of the main reasons that SRmining [68] is 

among the fastest algorithms is that it scans the 

database only once. 

• Employing a parallel mechanism is one of the main 

reasons that made PMES [65] is one of the fastest 

heuristic ARM approaches.  

• Dash et al. employed a parallel mechanism, it is an 

automatic algorithm, and it returns interesting 

patterns [16]. Although this approach did not 

investigate performance metrics, it may have the 

potential to have good outcomes on other 

performance metrics, too. 

• The only reason that Narvekar [7] have not been 

selected as one of the best ARM approaches is that 

authors did not produce some actual results to 

prove the efficiency of this approach. However, 

this approach scans the database only once, it does 

not produce any candidate itemset, and it is one of 

the few approaches that considers memory usage. 

Moreover, because of the mentioned features, it 

has the potential to be a fast algorithm. As a result, 

more investigation on this algorithm could show if 

it is one of the best heuristic ARM approaches.  

Finally, since this paper is about ARM, it would be 

interesting if we consider Table 3 as a transactional 

database and analyse it with ARM. Extracted frequent 

rules from Table 3 are reported in Table 4. In this table, 

Confidence X for a rule A->B means that the rule is 

correct in X% of all the occasions. In other words, B co-

occurs in X% of the occurrences of A. It can be 

calculated by formula 3. 

For instance, according to the first rule in Table 4, if an 

approach has low memory consumption then, with 

possibility of 100%, it also considers decreasing 

execution time. To calculate the confidence value of 

this formula, we check table 3 and look for the 

occasions that an approach employs the memory 

consumption performance metric. You may notice 

that only Narvekar [7] and Pathak [19] consider this 

metric, so T is 2 and both also have the second part of 

the rule, hence, E=2. In other words, whenever, an 

approach considered the memory usage metric, it also 

considered execution time. 

Moreover, if an ARM approach is complete, so with 

69% probability it may have low execution time. There 

is also a strong relationship (100% probability) 

between a parallel mechanism or scanning the 

database once or twice and having low execution 

time. In addition, with probability of approximately 

40%, if an approach employs an automatic 

mechanism, it also generates rules that are 

interesting.  



According to Table 4, if an ARM approach generates 

few rules / itemsets and the generated rules are 

interesting (with a probability of 50%) this approach 

tends to be automatic. Moreover, if an ARM algorithm 

has few database scans and generates complete rules, 

one of its main goals is to decrease the execution time.  

It is also interesting that if an ARM approach generates 

few rules / itemsets and it scans the database only few 

times, then it intends to have low execution time 

(probability 100%). As it was mentioned before, these 

2 items are really important to decrease the execution 

time. In addition, with probability of 50 %, if an 

approach focuses on being complete and automatic, it 

also focuses on being fast.  There is also another 

interesting rule. According to that, if an ARM 

algorithm scans the database once or twice and has 

low memory usage, it would try to be fast.  

Furthermore, there are only two interesting rules left. 

First, if an ARM approach scans the database once or 

twice and reduces the number of generated itemsets 

or rules, and generates complete rules, it definitely 

tries to be a fast approach. Secondly, if an approach 

employs a parallel mechanism, follows an automatic 

procedure, and generates interesting rules, it also 

tends to generate complete rules in a short period of 

time.  

According to the extracted rules in Table 4, since 

parallel processing and the number of database scans 

have great impact on execution time, so researchers 

tend to apply them in their approaches to decrease 

execution time. Combination of Rule / Itemset 

Reduction and Automatic Procedure or Database 

Scans is also another popular approach to decrease 

execution time; which means that only reducing the 

number of itemsets or rules may only be employed in 

50% of cases. Finally, it seems that if an approach is 

intended to be fast, it considers performance metrics 

like the number of database scans, the number of 

rules/itemsets, and parallel processing.   

Table 4. Extracted rules from final Comparison results 

Frequent Rules Confidence (%) 

Memory Usage → Execution Time 100 

Completeness →  Execute Time 69 

Parallel processing →  Execute Time 100 

Database Scans →  Execute Time 100 

Automatic Procedure →  Interestingness 40 

Rule / Itemset Reduction →  Execute Time 50 

Rule / Itemset Reduction + Interestingness →  

Automatic Procedure 
50 

Completeness + Database Scans →  Execute 

Time 
100 

Rule / Itemset Reduction + Database Scans →  

Execute Time 
100 

Automatic Procedure + Completeness →  

Execute Time 
50 

Database scans + Memory Usage → Execute 

Time 
100 

Rule / Itemset Reduction + Completeness + 

Database Scans →  Execute Time 
100 

Parallel processing + Automatic Procedure 

+Interestingness →  Execute Time 
100 

 

Open challenges and suggested directions  

There are many open challenges in this area that 

should be addressed in the future. The most 

important challenge for future heuristic ARM 

approaches is that researchers should compare them 

against other ARM approaches and algorithms, which 

do not employ heuristics. Currently, most of heuristic 

approaches have been compared with Apriori, but, as 

the Ventura and Luna [86] pointed out, Apriori needs 

many steps to compute all frequencies of patterns, 

which can result in requiring a lot of computational 

power and memory space. Such approaches may not 

be the feature of a state-of-art approach and 



researchers should compare their methods with more 

recent and efficient ARM approaches.  

For instance, from the point of view of execution time, 

most of the heuristic approaches were compared with 

Apriori. It is not enough to defeat Apriori, which is not 

considered to be a fast approach, nowadays. 

Therefore, this could be a hot topic for further 

research. In addition, another area that has not been 

explored enough is that of performance metrics which 

have not been addressed by most of the existing 

heuristic algorithms. 

A comprehensive solution for ARM should consider 

most of these performance metrics at the same time. 

Especially some of these performance metrics like 

memory usage, completeness, and parallel processing 

should be investigated in more depth. Finally, it seems 

that the majority of recent papers focus on execution 

time. Many organizations and companies own large 

databases, which require fast approaches to be 

analysed. This trend for fast ARM may increase in the 

future. Nevertheless, as mentioned in many papers, 

extracting interesting rules is also desirable for users. 

In conclusion, future researches should focus on 

decreasing execution time and generating more 

complete and interesting rules with low memory 

usage. It may also be better to test approaches on 

larger databases to make them suitable for real world 

usage. 

 

Conclusion  

With the dramatic increase in trends to extract 

knowledge from data, many data mining techniques 

have been explored. One of the best known data 

mining techniques is association rules. It extracts the 

most frequent rules and patterns from a database. 

There are many ARM algorithms, which use many 

different approaches to extract frequent rules. One 

family of such approaches applies heuristic algorithms 

or just heuristic characteristics. Many papers in this 

field have been published until now; although there 

have been some attempts, to the best of our 

knowledge, there is no comprehensive review on this 

area, except from that of Ventura and Luna [86] and 

M.J. del Jesus et al. [98], who reviewed Pattern Mining 

with Evolutionary Algorithms. As a result, this paper 

attempts to provide a comprehensive study on 

heuristic approaches, rather than just evolutionary 

ones, and discusses their advantages and drawbacks. 

We also considered all the necessary evaluation 

performance metrics and then compared all reviewed 

algorithms based on these performance metrics. We 

proposed an evaluation metric, named GT-Rank to 

rank heuristic approaches and select the best ones. 

We selected MOPNAR, NICGAR, G3PARM, ARMGA, 

and ASC as the best approaches with the highest GT-

Ranks. Finally, we considered Table 3 as a 

transactional database and extracted frequent rules 

from this. They are interesting rules that represent 

trends of heuristic approach research. Given the 

recent trend for Big Data we plan soon to review how 

ARM algorithms cope with it. 
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