
A Survey on Association Rules Mining Using Heuristics

Authors:

First author: S. Mohssen Ghafari
School of Science & Technology, International Hellenic University, 14th km Thessaloniki
– Moudania, 57001 Thermi, Greece
+30 2310807575, m.ghafari@ihu.edu.gr

Second author: Christos Tjortjis
School of Science & Technology, International Hellenic University, 14th km Thessaloniki
– Moudania, 57001 Thermi, Greece
+30 2310807576, c.tjortjis@ihu.edu.gr

Abstract

Association Rule Mining (ARM) is a popular data mining method. There are many approaches for mining frequent rules and patterns from

a database; one employs heuristics. Many heuristic approaches have been proposed but, to the best of our knowledge, there is no

comprehensive literature review on such approaches, only a limited attempt. This gap needs to be filled. This paper reviews heuristic

approaches for ARM and points out their most significant strengths and weaknesses. We propose eight performance metrics, such as

execution time, memory consumption, completeness and interestingness, we compare approaches against these performance metrics and

discuss our findings. For instance, comparison results indicate that SRmining, PMES, Ant-ARM, and MDS-H are the fastest heuristic ARM

algorithms. HSBO-TS is the most complete one, whilst SRmining and ACS require only one database scan. In addition, we propose a

parameter, named GT-Rank for ranking heuristic ARM approaches, and based on that, ARMGA, ASC, and Kua emerge as the best

approaches. We also consider ARM algorithms and their characteristics as transactions and items in a transactional database, respectively,

and generate association rules (ARs) that indicate research trends in this area.

Keywords

Association Rule Mining, Heuristics, Survey, Literature Review

Graphical/Visual Abstract and Caption

Reviewing heuristic ARM approaches, comparing them based on performance metrics like execution time, completeness, number of
database scans etc. Finally, proposing a parameter, named GT-Rank for finding the best heuristic ARM approaches.

Introduction

The recent huge increase on the amount of available
data caused the emergence of data mining techniques
for extracting knowledge from the databases.
Association Rule Mining (ARM) is one of the most
popular methods in this area. In 1993, Agrawal et al.
proposed Apriori to extract frequent rules and
patterns from databases [1], [2]. Subsequently, many
researchers attempted to improve this process, such
as works presented by Yan et al. [3], Djenouri et al. [4],
Soysal [5], Goyal et al. [6], [7], Drias [8], and in [9].
Apriori is a time consuming algorithm. This motivated
many researchers to focus first on proposing faster
algorithms, such as those presented by Hong and Bian
[10], Li and Yang [11], Kau and Shih [12], Guo and Zhou
[13], and in [14]. Many of them, like FP-growth were
successful in extracting frequent rules in a short
period of time: a significant improvement compared
to Apriori [14].

However, researchers uncovered more drawbacks of
Apriori to be addressed. One of them is the large
number of generated candidate frequent itemsets.
Researchers focused on reducing this number [7],
[14]. Apriori has another drawback: the need for user
input to set the required parameter values, such as
the minimum confidence and support. This manual
approach is not easy, especially in large databases and
could even have negative impact on the quality of
generated rules [3]. As a result, researchers proposed
approaches for setting these parameters
automatically or even without any need for such
predefined values, as discussed by Yan et al. [3], Kuoa
et al. [15], Dash et al. [16], and Bidgoli et al. [17].
Another subject that became popular was extracting
interesting rules and patterns [3], [16], [17], [18].
Many methods have been proposed to define
interestingness and extract interesting patterns and
rules.

Despite these improvements, there are still many
open challenges. Many ARM approaches have been
designed for small or medium datasets. Therefore,
algorithms need to address scalability. In addition, an
important gap in ARM literature is the consideration
of all desirable aspects that an ARM approach should
have. There are many algorithms, which only improve
one such aspect. For instance, they are executed in a
short period of time, but they generate some wrong
rules, i.e. rules which do not reflect the actual

transactions stored in the database [3]. They may also
have small memory usage, but they scan the database
several times [19].

Applying heuristics could be a convenient solution for
many ARM algorithms problems and challenges.
Heuristic algorithms tend to have low execution time
and they do not need any knowledge about the
problem domain in advance. Combination of these
advantages makes them a good choice even for
optimization problems. Many heuristic algorithms
have been proposed, and many of them have been
employed to design ARM approaches. In this paper,
we discuss these approaches and point out their
advantages and disadvantages. It should be noted that
although there are some limited attempts to review
classic ARM algorithms by Borgelt [20], Nath et al.
[21], Le et al. [22], Zhang and He [23], Elloumi and
Zolmaya [24], Mukhopadhyay et al. [25], only one
minor attempt on reviewing heuristic approaches
was, to the best of our knowledge, made by Del et al.
[26]. However, there is no comprehensive study,
which compares heuristic approaches and points out
their strengths and weaknesses. Clearly, a
comprehensive survey on ARM algorithms using
heuristics would benefit researchers in this area,
particularly in helping them to identify open
challenges and directions for future work.

The rest of this paper discusses ARM algorithms
background and presents Apriori and FP-growth in
section 2. Section 3 shapes a comprehensive literature
review on heuristics used for ARM. Section 4
introduces some performance metrics for comparing
heuristic approaches. Section 5 compares heuristic
approaches using the proposed parameters. Finally, a
detailed discussion and conclusions can be found in
sections 6 and 7, respectively.

ARM Algorithms

This section introduces key concepts on ARM

algorithms, by presenting one of the best-established

algorithms in the field: Apriori. It also discusses two

broad ARM algorithm categories: Exhaustive

approaches, like Apriori, and heuristic approaches. All

the algorithms are briefly discussed along with their

main features.

Preliminaries
This section defines several important concepts and

measures in the ARM field, as follows:

• Rule: is a conditional structure (If (condition) then

result) that indicates the relation between an

antecedent and a consequent.

A→B

where A is the antecedent and B is the

consequent.

• Itemset: is a set of items in a (transactional)

database.

• Support: is the frequency of an itemset in a

database.

• Confidence: is the percentage of occasions that a

rule is true, over the times it is applicable in the

database (see formula 3).

• Lift value of an association rule: is the ratio of the

confidence of the rule and the expected

confidence of the rule.

Lift(A→B) = Support (A ∪ B) / (Support (A) × Support

(B))

• Conviction: is the proportion of the expected

support of A that may be true without B or it is

the incorrect prediction by the rule.

Conviction(A→B) =(1-Support(B))/ (1-

Confidence(A→B))

• Interestingness: employing some metric to

evaluate the extracted rules and extracting the

ones that are more interesting to the user (see

formula 7 for example).

• Comprehensibility: is the ratio of the length of

antecedent and consequent. It is based on the

“Rule of Simplicity”, i.e. a rule is simpler, if it is

shorter.

Comprehensibility= log (1+|B|)/log (1+|A ∪ B|)

where |B| is the size of consequent and |A ∪ B|

is the total size of the rule.

• Fitness Function: is used to evaluate the quality of

generated rules. Each ARM approach could have

different fitness function.

• Rule reliability: usually addressed by the

confidence quality measure, by considering

support of the antecedent, support of the

consequent, and support of the rule as a whole.

• Completeness: in the context of this paper, we

use the term completeness as the proportion of

rules generated by a heuristic method over that

of an exhaustive method like Apriori [2], which

does not trade off the number of rues extracted

over speed.

Exhaustive ARM Approaches
Such ARM approaches try to exhaustively find all
possible solutions, in contrast with heuristic ones.
However, this strategy may face problems in bigger
databases and larger search spaces and requires high
amount of computational power and memory space.
In this paper, we divide exhaustive ARM approaches
into two subcategories: Apriori-based and non
Apriori-based. First, we briefly present Apriori.

Apriori
Apriori is the best known ARM algorithm for extracting
frequent patterns from databases [1], [2]. It works in a
breadth first fashion.

Assuming there is a set of transactions T = {t1, t2, … , tn}
and a set of items I = {i1, i2, … , in}, the main goal is to
find all frequent {X, Y}, where X and Y are called
itemsets, i.e. they may contain one or more items.
Each extracted rule is of the form:

X → Y (1)

meaning that when a transaction tx contains itemset
X, it should also contain itemset Y. Itemsets X and Y
should have no items in common:

X ∩ Y = Φ (2)

Apriori, and most ARM algorithms, have two stages:
First, they find frequent itemsets, i.e. sets of items that
frequently occur in the set of transactions, and then
generate rules from them. Apriori employs a
technique called pruning and joining. First, it produces
a list of candidate frequent itemsets. Then it uses a
concept, named Minimum Support, to remove
itemsets, which have lower support than the
minimum support required. The support for an
itemset is the number of its occurrences in all the

transactions. Then it joins each itemset in the
candidate list with other itemsets to generate 2-length
items. In this step, Apriori removes items, which have
lower support compared to the minimum support. At
that point, the algorithm executes the same process
Iteratively, to produce 3-length, 4-length, … itemsets.
As a result, this algorithm needs a user-defined
parameter, minimum support, to find frequent
itemsets.

Next, the algorithm checks each itemset, based on a
process named Pruning, for each level producing
candidate lists. According to this process, each
nonempty subset of all items in the candidate list
should belong to the previous level’s candidate list. If
there is an itemset that does not satisfy this condition,
the algorithm removes it from the candidate list.

Finally, the last candidate list is the frequent list.
Apriori then extracts all non-empty subset of each
item and generates rules. In this step, the algorithm
applies another user-defined parameter called
Minimum Confidence to remove weak rules.
Confidence for each rule is (S represents the support
value):

 C=S (X ∪ Y) /S (X) (3)

Since Apriori was proposed, many ARM algorithms
emerged to improve its efficiency; most of them . A lot
of them were based on Apriori, whilst others followed
a different approach to extract rules. We discuss both
categories in the following subsections.

Table 1. Apriori Pseudocode

Input: Database, minimum support and confidence

Output: generated frequent rules

Ci=Candidate itemsets with the size of i

Fi=Frequent itemsets with the size of K

While (Fi.lenght() !=0) {

 Ci+1= the generated candidates from Fi

 Fi+1= The candidates items in Ci+1 that their frequency is
more than the minimum support.

}

Consider the last not null frequent list and then generate the
associated rules.

Check that the confidence of generated rules be more that the
minimum confidence value otherwise remove them.

Return the generated rules

Apriori-based ARM approaches
Wang and Tjortjis [27] proposed an algorithm, named

PRICES, to improve Apriori. Its main advantage is

decreased number of database scans. PRICES scans

the database only once. This algorithm uses a concept

called price, i.e. a unique value for each item in the

database. Then the database is scanned once, and the

price of each transaction is calculated. For example,

assume that A, C and D are three items with values of

24, 22 and 21, respectively. Hence, the price for

transaction I, which consists of {A, B, C}, is 10110 [27].

All prices are stored in a Price Table. Under this

assumption, the occurrences of each sort of itemset in

all transactions can be calculated, without scanning

the database again. Experimental results indicate that,

execution time of PRICES is lower than Apriori. It has

also better results on larger databases.

Liao proposed another ARM algorithm using an array

that consists of a value of 0 or 1 for each item in each

transaction [28]. At the same time, support is

calculated for each item, thus eliminating items with

low support, by scanning the database only once. This

approach assigns a weight value to each item, with the

help of the user, based on its importance, and

calculates support based on these weights. Results

illustrate that the approach is faster than Apriori, but

has some drawbacks, such as using many predefined

parameters and not considering the completeness of

the generated rules. It should be noted that when an

algorithm is claimed to be faster than Apriori, it should

also be shown that it produces complete rules just like

Apriori, which is not the case in this paper.

Liang et al. also tried to improve Apriori [29]. First,

they read the database and store it in an array. With

such an approach, they did not need to deal with the

external database, thus reducing time consumption.

Then they remove transactions that do not contain

any of the k-itemsets, because, such transactions

cannot produce (k+1)-itemsets. Thus, many

transactions are eliminated, which results in

decreasing execution time. They applied this approach

on the physiological indices of patients. Their

experimental results indicate that this approach could

generate some rules. However, this paper is missing a

comparison with Apriori, as well as a discussion about

the completeness of generated rules.

Chen et al. proposed a new approach to improve

Apriori, named BE-Apriori, addressing the issues of

multiple database scans and generation of many

candidate frequent itemsets [30]. Two new strategies

are employed: first, a pruning strategy, where in each

level of k-itemset generation, the algorithm calculates

the frequency for each item based on the number of

occurrences of that item in all frequent itemsets. For

each item, if this number is less than k, each itemset

that contains that item is removed. Secondly, a

transaction reduction strategy is then employed, by

deleting each item, which does not exist in the k-

itemset. At that point, for generating the (k+1)-

itemsets, they calculate the length of each transaction

and eliminate each transaction with length less than

k+1. Their results indicate that their approach

generates less frequent itemsets compared to Apriori

and this improves when increasing the minimum

support value. In addition, BE-Apriori has shorter

execution time than Apriori.

Yu et al. proposed a new ARM algorithm [31]. They

also claim that the biggest drawbacks of Apriori are: a)

the large number of Input/Output (I/O) I/O operations

and b) the generation of large amounts of candidate

frequent itemsets. For solving these problems, they

propose a Boolean matrix, which uses “1s” and “0s” to

describe the existence of an item in each transaction.

They applied just an AND operator to calculate

support for each item and store them in the last

column of the matrix. They then remove each item,

which has lower support than the minimum. An

interesting part of their work is that they ran their

algorithm in a Hadoop platform executing each part of

their method in parallel. This approach scans the

dataset only once and runs in a parallel platform,

which may result in great reduction of execution time

compared to Apriori. However, they did not test their

idea on an actual database and just used an example

to show the efficiency of their approach instead.

 Non Apriori-based Approaches
FP-growth is a very well-known ARM algorithm [14].

Its most interesting innovation is that it generates

frequent rules without generating candidate itemsets.

It scans the database only twice. This approach

employs a structure called Frequent-Pattern tree or

FP-tree. In the first scan, FP-growth finds frequent

items and in the second, it generates the FP-tree. After

producing the FP-tree, the algorithm only needs this

tree for further processing, instead of the number and

length of frequent patterns. For each transaction,

there is a path in the tree, which starts from its first

item of its prefix sub-tree. Moreover, items in

frequent itemsets are in descending frequency order.

Therefore, having more support could help items to be

shared by more paths and be at the top of the FP-tree.

The main concept in this algorithm is that all itemsets

that it produces are in a path of the FP-tree. In other

words, all the itemsets in FP-growth are in the

database, in contrast to Apriori that may generate

candidate itemsets that are not even in the database.

FP-growth always follows a pattern-fragment growth

method. Having built the FP-tree, FP-growth divides it

into smaller trees and then mines them. This is a

Divide and Conquer approach, which names each

smaller tree a conditional tree. Although FP-growth

has many advantages compared to Apriori, it also has

a significant drawback: its memory usage, especially

when dealing with large databases that could even

cause a crash.

Table 2. Psseudocode of FP-growth

Input: Database, minimum support and confidence, FP-tree
FT, FPset

Output: generated frequent rules

(1) If (FT has a single path as P) {

Foreach combination of nodes in this path (H)

 H∪FPset with support of minimum support of nodes in H

} Else foreach heather in FT as u {

H = u ∪ FPset with the support = u.support

Create the conditional FP-tree of H as CTree

If CTree ≠ ∅

 {

 Go to the (1) and set the FT=CTree and FPset=H

}

}

With the generated frequent list generate the associated
rules.

Check that the confidence of generated rules be more that the
minimum confidence value otherwise remove them.

Return the generated rules

Yuan and Ding proposed an improved algorithm based

on FP-growth [9]. The authors claim that FP-growth

has drawbacks that should be addressed. Three are

the main ones: 1- It scans the database twice and

requires a sorting process in the first scan, causing

performance degradation. 2- It uses a complex

process to build the tree. 3- Finding the largest

frequent itemset requires a lot of storage and time.

Consequently, a new approach based on Huffman

transform algorithm, named HSP-growth (Huffman

Sequence Pattern-growth) was proposed [9]. It

employs a binary structure to store information and a

Huffman code platform to describe information. This

algorithm employs a Huffman tree for frequent

itemsets. Each node (except the leaf nodes) may have

two children (left or right) and its value can be 1 which

represents existence of an item in itemset otherwise

0. Their approach scans the database only once.

Experiments indicate that HSP-growth has shorter

execution time compared to Apriori and FP-growth.

However, the completeness of generated rules was

not discussed.

Narvekar and Seyed proposed a new improvement for

FP-growth [7]. At first, it scans the database and

generates a tree, named D-tree. This is a simple tree,

with a path for each transaction, which also contains

the number of occurrences of each node. When the D-

tree is built, the algorithm scans it and calculates the

support for each item. If an item is frequent, it may

occur in more than one nodes. In such a case, the

algorithm considers the sum of all the nodes in

calculating the support for that item. A Node table

consists of the spare nodes. It is claimed that the

existence of an item in more than one nodes could

have required further processing. Instead, they

process each item only once, by considering a

condition, which adds to the Node table every node

from the current node to the root node that did not

occur before. This approach consumes a large amount

of memory but scans the database only once. Like FP-

growth, it does not generate candidate itemsets.

However, in contrast to FP-growth it does not require

generating many conditional patterns and conditional

FP-trees and generates much less conditional pattern

bases. As a result, it is faster than FP-growth.

However, its completeness is not discussed.

Heuristic Approaches

To the best of our knowledge, only one attempt has
been made to review heuristic ARM algorithms: that
by Del et al. [26]. However, this is not a comprehensive
study, nor does it compare heuristic approaches. It
discusses Genetic Algorithms (GAs) and swarm based
approaches. It focuses on some of these approaches,
and differentiates between algorithms applied
directly for generating rules, and those for optimizing
some part of their functionality. For instance, as we
discuss in this section, many fuzzy ARM algorithms
apply GAs to optimize membership functions [32].
Furthermore, Del et al. also classified ARM algorithms
depending on their real world applications and
discussed the environment that they were applied on,
such as education, manufacturing, computer security
etc. [26]. After all, this paper does not cover all the
heuristic approaches, it does not critically review
heuristic ARM algorithms pointing out their
drawbacks and strengths, and it does not compare
them with each other. All in all, in this section, we

classify ARM algorithms according to the heuristic
algorithm they apply.

There are several heuristic algorithms for ARM. In this

section, we review these algorithms categorised in 5

groups: 4 groups based on the algorithms that they

use, such as Genetic Algorithms (GAs), Bee Swarm

Optimization (BSO), Particle Swarm Optimization

(PSO) and Ant Colony Optimization (ACO) and one

group based on other heuristic algorithms.

Approachses based on GAs

Genetic algorithms are evolutionary algorithms based

on the neural selection process in biological evolution.

This algorithm begins with a randomly initialized

population and iteratively evaluates each population

(called generation) based on a defined fitness

function. In each generation, it selects the best

individuals and generates the next generation. Yan et

al. proposed a novel approach based on GAs for ARM

[3]. In their method, they did not use any fixed

minimum support threshold. Instead, they employed

relative minimum confidence as a fitness function for

selecting only the best rules. At the beginning, they

proposed an algorithm, named ARMGA, which was

designed to deal with Boolean ARM. However, since

they also wanted to deal with quantitative Association

Rule (AR) discovery, they proposed another GA based

method, named EARMGA, which is an expansion of

ARMGA [3]. They also designed a FP-tree approach

based on FP-growth for implementing EARMGA.

Experimental results illustrate that their algorithms

reduce computation costs and generate only

interesting ARs.

Wang et al. proposed a new ARM algorithm based on

GAs, named AGA [33]. AGA is an adaptive GA, which

employs a mutation matrix and a crossover matrix for

multi-dimensional ARM. For quantitative attributes,

they employ a pre-processing step. According to that,

for instance, for the age values, they consider intervals

such as “0-29” or “30-40”. Moreover, they compared

their method with the original GA. Evaluation results

indicate that AGA has better performance compared

to GA from the point of view of the average fitness

value, and it generates more rules. In many heuristic

algorithms, the fitness value determines the quality of

each solution. For instance, it determines the quality

of food source in the BSO algorithm. There is a similar

case for GAs, PSO etc. As a result, each new algorithm

could have its own design of the fitness function,

which calculates the fitness value for each solution.

Djenouri et al. studied AGA and they claimed that the

main drawback of AGA is that it generates some false

rules [4], [34]. They also compared their method with

AGA and experimental results indicate that AGA fails

in terms of both fitness value and computation time.

Two more heuristic approaches were proposed by

Drias based on GAs [8]. One named IARMGA and a

Memetic algorithm, named IARMMA. They claim that

most of bio-inspired-based algorithms have two main

drawbacks: generating false rules and considering

some rules with low support and confidence as high

quality rules. They considered two parameters to

evaluate their approaches and compared them with

each other: Execution time and completeness of

generated rules. Completeness in this approach has

been associated with the value of their fitness

function. For this reason, they propose a new method,

named “delete and decomposition strategy” to

achieve better completeness. Finally, their

experimental results indicate that IARMMA has higher

execution time compared to IARMGA especially for

large datasets. However, IARMMA has better solution

quality. In the end, they claimed that their approaches

solved the problems of generating false and

incomplete rules. One drawback of this work is the

lack of comparison with other well-known ARM

methods like Apriori.

Another ARM algorithm, based on Parallel GAs (PGA),

was presented by Dash et al. [16]. They demonstrate

that the problem of Apriori and similar algorithms is

the process of setting the minimum support and

confidence manually. For instance, in large datasets it

is hard to predict the value of these parameters. They

claimed that in most ARM approaches, a user-defined

min support and min confidence play the main role in

finding interesting rules. In their approach,

interestingness is determined by the fitness function,

automatically. They also discuss that the combination

of the problem mentioned with other issues, such as

the large search space, render the application of

heuristics popular to many researchers. However,

some heuristic methods like GAs suffer from long

computation times. As a result, they apply PGA as a

solution. Moreover, they denote that the fitness

evaluation process for all frequent itemsets is related

to the size of the dataset. They use a parallel

evaluation system to evaluate the fitness function,

which results in decreasing computation time. Their

experimental results indicate that their approach has

85% completeness when detecting interesting rules.

However, they did not evaluate the computational

time of their approach and they did not compare it

with other approaches.

Lim et al. proposed a new ARM algorithm, named GA-

AssocRule [35]. According to this algorithm if we have

n-items that are correlated, then the superset that is

associated with n-items, could also be correlated. The

correlation value of the superset should minimally be

equal to n = Items’ correlation. Moreover, they

reviewed the algorithm proposed by Yan et al. [3] as

well as ARMGA and EARMGA. They demonstrated that

the only difference between their approach and

EARMGA is in the way they calculate the fitness

function. EARMGA sets the fitness function with the

help of a concept, named relative confidence, which

users can set between 1 and -1. Therefore, in GA-

AssocRule they use correlation to calculate the fitness

function. Their experimental results illustrate that

both algorithms generate positive correlated ARs of

variable lengths. However, unlike GA-AssocRule,

EARMGA cannot generate all rules with all possible

lengths. For instance, it produced rules with lengths 2

and 4, but failed to produce rules with length 3.

Another application of GA in ARM is reported by Sagar

and Argraval [36]. The authors claimed that most of

the current approaches do not consider negative

occurrences of attributes. Moreover, they determine

a limitation for mined rules: there is no limitation to

the number of antecedents, but there should be only

one consequent in a rule. Along with support and

confidence, they also propose some other parameters

like Complete and Comprehensibility of a rule.

Complete is the percentage of coverage that a

consequent has on its antecedents. They considered

simpler rules as rules with more Comprehensibility.

Their experimental results illustrate that although

their approach produces desired rules, it can also

generate all possible rules.

Li and Yangalso propose a new ARM algorithm based

on GAs for Manufacturing Information Systems (MIS)

[11]. They claimed that one of the main drawbacks of

Apriori based algorithms is that when they increase

the number of 1-itemssets, they have more qualifying

2-itemset which may result in decreasing efficiency.

They also proposed a new parameter, named

Compatibility, which was defined by formula (4):

 COM = C / T (4)

where COM is the compatibility value and C is the

number of records with a specific gene list and T is the

number of whole records.

According to them, at the beginning, a user should

specify a minimum Compatibility. After that, the

algorithm calculates the Compatibility for each gene

list. If the value is greater than the minimum

Compatibility, then the algorithm stores it. The main

drawback of their approach is that at the beginning,

users should set many parameters like Compatibility,

mutation-rate (Mutation is the rate of a gene’s

changes of an individual to create variants and reduce

homogeneity), and Cross over rate. Their

experimental results illustrate that their approach has

lower execution time compared to Apriori. It also

indicates that in contrast to the proposed method,

computation time for Apriori increases for larger

datasets. In addition, they demonstrated that

although GA decreases completeness a little, it could

increase efficiency, especially in MIS.

Using GAs for ARM was also proposed by Guo and

Zhou [13]. They have improved the method of

choosing chromosomes and other parts of GAs. Their

experimental results indicate that their approach has

lower execution time compared to Apriori. Moreover,

they apply a fixed threshold for minimum support and

confidence.

Applying GAs or Multi-Objective GAs to extract

frequent rules is a popular approach and has been

proposed several times [37]. For instance, Bidgoli et al.

proposed MOGAR [37], a new ARM algorithm based

on multi-objective GA for numerical data [17]. They

applied three parameters to evaluate generated rules:

Confidence, Interestingness, and Comprehensibility.

Moreover, they apply MOGAR to deal with discretizing

numeric attributes. They also employ a Pareto based

method to automate the process of setting evaluation

measures, such as confidence. A rule is considered to

be of high Comprehensibility, if the number of items

in the antecedent is less than the items in the

consequent. In their approach, they employed a list

called Pareto archive and save all the solutions for all

generations in that list. At that point, they select from

these solutions. With this approach, they claim that

they do not miss any high quality rule. Their

experimental results indicate that in most cases their

approach generates more rules, with higher

confidence. Moreover, since they use a Pareto based

approach, it does not need minimum support.

Alim and Ivanov proposed an ARM algorithm based on

GA for fuel assembly loading management problems

[38]. They considered an aging process, which results

in decreasing the size of the problem. Their approach

also decreases time consumption. It could find

solution for loading problem in 176th generations

when classic GAs would obtain it in 250th generations.

Another ARM method based on GAs was proposed by

Du et al. [39]. First, it applies an improved version of

Apriori to extract frequent rules. The authors assume

that each transaction which does not have i-length

itemsets, it neither has (i+1)-length itemsets. As a

result, they remove this transaction. In addition, they

store the database in a table in memory to avoid

accessing the external memory for future references.

Finally, with the help of a GA, they select some of

these rules as the best possible generated rules. They

do not discuss the effects of their approach on

execution time, completeness or memory

consumption. In addition, there is no comparison

between their approach and other approaches like

Apriori.

QuantMiner is another GA based approach focusing

on extracting Quantitative ARs [40]. It requires some

predefined values like minimum support and

confidence, the number of generations etc. A user can

decide which item is more desired and could set a

template for generated rules. They defined a rule

template as “pre-set format of a quantitative

association rule”. For instance, he or she could decide

that the selected item should be on the consequent or

the antecedent of the generated rules. They claim that

their approach is 10 to 20 times faster than GAs.

However, this paper did not consider many subjects.

It does not give any actual specific results to readers

to decide whether this approach is fast or not. Neither

does it compare its approach with other algorithms

and does not consider other parameters such as

completeness.

Mata et al. proposed another ARM approach, which

only focused on one aspect of ARM, like Du et al. [39]

and Mukhopadhyay et al. [25] and was not compared

with other approaches [41]. They applied GAs to

extract numeric ARs. Mata et al. [42] also employed a

fitness function as formula 5:

F = C – (M * PF) (5)

where F is the fitness value and C is the number of

records that match the rule and M indicates whether

this record has been covered by another rule or not.

In addition, PF is a user-defined parameter that sets

the weight of the marked parameter. This approach is

also not compared with other algorithms.

Ghosh and Nath considered ARM as a multi-objective

problem [43]. In addition to the support and

confidence, they apply two other parameters, named

Comprehensibility and Interestingness. They claim

that if the number of conditions in the antecedent was

smaller rules would have higher Comprehensibility.

They also employ formula (6) to determine the

Comprehensibility of a rule (assuming a rule: A→C).

Comprehensibility = log (1 +|C|) / log (1+ (AUC)) (6)

where |C| is the number of items in the consequent

and (AUC) is the number of items in both antecedent

and consequent. They also claim that finding rules

with more frequency in the database may be more

interesting for users. In addition, they employed an

equation to determine the interestingness of a rule:

IN = [S(AUC)/S(A)] * [S(AUC)/S(A)] * [1-(S(AUC)/|D|)] (7)

where IN represents the interestingness value and S is

the support value and |D| is the total number of

transactions. They also applied a Pareto based

structure to extract interesting rules from the

database. This approach was not compared with other

algorithms.

Puig et al. proposed CSar, an ARM approach based on

GAs [44]. CSar was designed for extracting rules that

contain both quantitative and categorical attributes. It

uses classifiers based on seven parameters: i) support,

ii) confidence, iii) fitness, iv) experience, which

represents the number of times that the antecedent

of a rule matches the inputs, v) the Consequent

matching sum, which indicates the number of times

that all parts of the rule match the input, vi)

numerosity, which is the number of copies of a

classifier in the problem domain and vii) tcreate,

which is the time taken to create the classifier. CSar

classifies generated rules based on two methods. The

first is classification based on the antecedent. This

mechanism considers two rules with similar

antecedents as similar. The second method also

considers two rules with similar consequent as similar.

If two rules have the same antecedent or consequent,

they can be merged. At that point, they also remove

rules that express the same knowledge. Their

experimental results indicate that CSar could generate

rules that Apriori also generates, which is a sign of

completeness.

Kaya and Alhaji [45], Hong et al. [32], and Wang and

Bridges [46], proposed GA based approaches to

optimize membership functions. This process is a

mandatory stage in extracting weighted ARs especially

in the quantitative database. Moreover, Kaya and

Alhaji claim that some rules may mislead users [45].

Consider a rule A→ B with support 50% and

confidence 66.7%. If support for A is 75%, this is a

weak rule, because there is a negative connection

between A and B. In other words, a customer who

wants to buy A may have a smaller chance to buy B

compared to an anonymous customer that we have

no prior information about. As a result, they consider

a rule interesting, if the value of Support(X, Y)/

Support(X), Support(Y) is greater than 1. There is a

similar approach by Hong et al. who tried to employ

GAs for adjusting and optimizing membership

functions in fuzzy ARM algorithms [32]. In their next

paper, Chen et al. also focused on extracting frequent

rules from quantitative databases [47]. This algorithm

is a cluster-based fuzzy-GA approach that defines

membership functions. For clustering chromosomes,

they apply K-means clustering. Their experimental

results indicate that their new approach has better

performance compared to the previous one. Although

their approach could find large itemsets, it also could

find convenient values for membership functions. This

approach also has good execution time and

completeness compared to their previous approach.

Interestingly, in their next paper, Chen et al. improved

their approach, and applied a multiple support

approach GFMMS, instead of using single minimum

support [48]. Experimental results indicate that the

new approach has better fitness value compared to

the previous ones. In their more recent approach,

Chen et al. proposed yet a new method, named

FCGFMMS [49]. This method includes two phases:

one is finding the minimum support and membership

functions and the other involves extracting frequent

fuzzy ARs. Their experimental results indicate that

FCGFMMS is ten times faster than GFMMS and has a

better average fitness value. Finally, Chen et al.

proposed DGFMMS, an improvement over their

previous approaches [50]. This approach also employs

a divide and conquer policy. The experimental results

indicate that DGFMMS has a higher fitness value

compared to GFMMS [48].

Thilagam and Ahanthanarayana applied a multi-

objective GA for fuzzy ARM [51]. Fuzzy support, fuzzy

confidence, and rule length were the objectives of this

approach. However, in contrast to Kaya and Alhaji

[45], Hong et al. [32], and Wang and Bridges [46], they

used K-mean clustering for finding the optimal values

for membership functions. Finally, Wang et al. also

proposed an ARM approach based on GAs and fuzzy

ARM to manage networked manufacturing resources

[52]. The main difference of this approach is that they

employed a knowledge library and store the

generated rules in it. They compare each new

generated rule with this library and if it is redundant

or meaningless, the algorithm removes it. However,

they did not discuss the definition of meaningful or

meaningless for a rule. In all of these ARM approaches

authors did not consider parameters like execution

time, memory usage, completeness etc. They also did

not compare them with other ARM approaches.

FGBRMA is an approach, employing GAs for

determining the minimum fuzzy support and

membership functions that was proposed by Hu [53].

Its main goal is to generate fuzzy classification rules.

Experimental results indicate that their approach has

higher classification rate compared to other

classification methods even that in [54]. Ishibuchi and

Yammoto also proposed a method based on multi-

objective GAs for pattern classification problems [54].

In [55], Fdez et al. proposed a new fuzzy ARM

algorithm for mining quantitative data. Their

approach is based on GAs. They claim that setting

membership functions is not an easy task. Hence, their

method determines the membership functions and

mines fuzzy ARs. At the end, they compared their

approach with Hong et al. [32] and experimental

results indicate that their approach has better fitness

value and produces larger 1-itemset rules. Finally, it is

also faster than Hong et al. [32].

Shenoy et al. proposed another ARM approach

suitable for dynamic databases, based on GAs [56].

They claim that the main issues in dynamic ARM

algorithms are Additions and Deletions; Additions

increase support of itemsets because of their

occurrence in the updated data and Deletions

decrease supports of itemset because of the lack of

their existence in the updated data. This process could

remove some of the generated rules. Interestingly,

their approach also focuses on distributed databases.

Moreover, they considered two novel terms: Intra-

transactions and inter-transactions. The former refers

to finding frequent rules that represent relationships

between items in a transaction. The latter refers to

finding relationships between items in transaction A

and items in a transaction B, which is more

complicated than intra-transaction. As a result, their

goal was to find large inter- transaction rules and scan

the database only once with the help of Distributed

and Dynamic Mining of ARs using GA (DMARG) [56].

Their experimental results indicate that their

approach is faster than an improved version of Apriori

and Fast UPdate (FUP) [56].

Guillet et al. proposed an ARM approach, which

applies graph visualization modelling to decrease the

number of generated rules [57], as generating many

rules is claimed to “hide” the most interesting rules.

They measured the quality of their approach’s

drawings with a fitness function. This value is based on

the number of edge crossings and the total length of

arcs. Their experimental results indicate that their

approach is more robust to change, but from the point

of view of quality of obtained drawings, dot, a well-

known static approach, has better performance.

Kaya and Alhajj [58], proposed another ARM

algorithm, which employs GAs. They claim that finding

domain of quantitative attributes for Fuzzy ARM is a

hard task. As a result, it should be done either by an

expert or automatically. However, they claim that

even an expert cannot do this task properly. Hence,

they applied a clustering approach based on GAs. They

also employed Clustering Using REpresentatives

(CURE) for setting membership functions. Their

experimental results indicate that their approach

produces more interesting rules compared to previous

approaches. However, a drawback of their work is that

it has longer execution time compared to other

methods.

Alatas and Akin proposed a new automatic ARM

approach for mining positive and negative ARMs

based on GAs [59]. They claim that a non-automatic

approach uses a trial and error method and runs

several times to get the best fitness score; however, in

this work they automatically set the minimum support

and confidence. Their experimental results indicate

that this approach generates rules with high support

and confidence. They also compared their approach

with GAR [41], which only extracts positive itemsets.

Results illustrate that GAR finds rules with higher

support in most of the cases. However, the number of

items in generated rules is less than these in rules

generated by GAR.

Puing et al. proposed a fuzzy ARM algorithm, named

Fuzzy-CSar, based on GAs [61]. Fuzzy-CSar includes

classifiers that consist of fuzzy AR. These classifiers

have 6 parameters for checking the quality of rules:

support, confidence, fitness value, experience (the

number of cases that the input was matched with rule

antecedents), numerosity (which indicates the

number of copies of the classifier among all classifiers)

and the average size of association sets. Khabzaoui et

al. also propose an ARM algorithm for mining DNA

microarray databases based on GAs [62]. They

employed eleven parameters to evaluate generated

rules. Some of these parameters are support,

confidence, interest, conviction etc. Kaya proposed

another approach based on Multi-objective GA for

fuzzy ARM [63]. The objectives of this algorithm are

Strength, Interestingness, and Comprehensibility.

Strong rules have support and confidence above the

minimum. Interestingness represents how many of

the generated rules are interesting and finally

comprehensibility indicates the number of attributes

that participate to the rules. In addition, Anandhavalli

et al. put forward another ARM approach based on

GAs, named ARG [64]. This approach, firstly, generates

frequent rules and then, based on GAs and some

parameters like Positive Confidence and

Interestingness, selects the most interesting rules.

Their experimental results indicate that their

approach produces less rules compared to previous

approaches and is faster.

Martın et al. [87] proposed a multi-objective

evolutionary algorithm, called MOPNAR, and their

focus was on reducing the computational cost and the

size of mined AR (either positive or negative

quantitative rules). The three objectives that MOPNAR

tries to maximize are comprehensibility,

interestingness, and performance “in order to obtain

rules that are interesting, easy to understand, and

provide good coverage of the dataset” [87].

Furthermore, Palacios et al. [88] proposed another GA

based ARM approach, named FARLAT-LQD. They

employed a 3-tuples linguistic representation model

to decrease their search space. They also proposed a

model, named FFP-growth-LQD, based on the Fuzzy

Frequent Pattern-growth algorithm for the fuzzy ARM

[88].

Padillo et al. [89], proposed a new ARM approach

based on GA for Big Data ARMs. Their focus was on

avoiding increasing the complexity of the solutions

[89]. This approach also employs a grammar to reduce

the search space and uses subjective knowledge [89].

Moreover, Martin et al. [90] proposed another GA

based ARM approach called NICGAR, which has a low

runtime. This approach contains two thresholds that

enable the user to balance the quality and diversity of

extracted rules [90]. Finally, this approach can determine

the similarity degree between the rules. In addition, in

another study, Qodmanan et al. [92] proposed a dynamic

multi-objective ARM approach that can set the minimum

support value automatically.

 Approaches based on Bee Swarm Optimization (BSO)

BSO is one of the swarm optimization approaches that

is based on the life of bees. It includes different kinds

of bees that have different responsibilities. These bees

should randomly explore the research problem space

to find the possible food sources (solutions). The

quality of each food source can be evaluated by its

distance from the hive. Research in this area was

conducted by Djenouri et al., who proposed a new

method for Web ARM [34]. At the beginning, they

proposed an improved GA-based ARM algorithm and

compared it with previous GA-based ARMs. The paper

discussed the drawbacks of previous methods, such as

ARMGA, and classified them into two groups,

methods that: i) generate rules that do not respect the

minimum support and confidence, and ii) generate

unacceptable rules. As a result, first, they proposed an

ARM method based on bees’ behaviours in real world

(BSO), named BSO-ARM. The experimental results

indicate that from the point of view of the fitness

value, BSO-ARM is the best. However, the main

drawback of this approach is its computation time,

which is higher than others. In other words, although

BSO-ARM is a time consuming approach, it produces

rules that are more complete compared to previous

GA-based approaches.

It is interesting that, in their next paper Djenouri et al.

proposed a new ARM algorithm, HBSO-TS, based on

two meta-heuristic algorithms: BSO and Tabu Search

(TS) [4]. Tabu Search can be applied in optimization

problems. In their previous paper, they proposed BSO-

ARM [34], but in this paper, they improved their

approach. They applied TS for detecting the best

neighbour. The experimental results show that HBSO-

TS has better fitness value than ARMGA and BSO-

ARM. Moreover, the proposed method also has lower

computational time than BSO-ARM. Finally, in

contrast to ARMGA, their method does not generate

any false rules. However, one of its biggest drawbacks

is that when tested against a large dataset, it bluntly

blocked [34]. In addition, as authors mentioned, since

they applied two heuristic algorithms, many

parameters are required to be set.

Applying a heuristic approach also was the case in [65]

where Djenouri et al. proposed a new ARM policy

based on bees’ behaviour and Graphics Processing

Unit (GPU), named PMES. It is a parallel version of

BSO-ARM. Their goal was to tackle problems of ARM

in large databases. First, it searches for new solutions

using the Central Processing Unit (CPU) CPU and then

it evaluates each solution by GPU threaded in parallel.

Interestingly, PMES is based on a Master/Slave

structure. In this paradigm, the algorithm finds the

position of all bees by executing the CPU. At that

point, with the help of GPU, it calculates the fitness

value of all solutions at the same time and in parallel.

The authors compared their approach with BSO-ARM,

i.e. their previous work. Their experimental results

indicate that PMES is faster than BSO-ARM. Moreover,

running these two algorithms in large databases like

Web Docs had interesting outcomes: BSO-ARM was

blocked in 12 days, but PMES only ran for 10 hours and

was not blocked.

 Approaches based on Particle Swarm Optimization
(PSO)

PSO algorithm is based on the behaviour of bird

flocking, where each bird is a single solution and has a

fitness value. Based on this algorithm, the birds know

that food sources exist, but they do not know where

exactly these sources are; each bird tries to find the

best food source. Kuoa et al. proposed a new

approach based on PSO [15]. Their goal was to

determine the minimum support and confidence

automatically in a complete way. They changed the

type of database to Binary format, and with the help

of PSO, they extracted the rules. In the end, the best

particle was found. At that point, the support and

confidence of the best particle was considered as the

minimum support and confidence. To evaluate their

approach, they compared their method with GAs. The

experimental results indicate that PSO has lower

computation time. In addition, since PSO sets the

minimum support and confidence automatically,

there is no need to set them by a trial and error

approach, which is time consuming. They also applied

this method on investors’ stock purchases behaviour

in the real world.

There are more cases of researchers who applied two

heuristic algorithms at the same time. Vyas and

Chauhan proposed two heuristic approaches for ARM

[66]. One of them was based on PSO and the other was

based on GAs. Their experimental results indicated

that PSO has lower average support and higher

average confidence. GA has higher average fitness

value compared to PSO [66], but Kuoa et al. claimed

that PSO extracts better rules compared to GAs [15].

Moreover, according to Kuoa et al. [15], Vyas, and

Chauhan [66], PSO is faster whether it uses a fixed

threshold for the minimum support and confidence,

or not. Kuoa et al. also claimed that PSO extracts

better rules compared to GAs [15].

Another use of PSO was proposed by Nandhini et al.

[18]. Their ARM method includes two steps. First, it

transforms the data to binary format. Then, it applies

PSO to define the minimum support and confidence,

automatically. They considered support and

confidence of the best particle as the minimum

support and confidence. At that point, their approach

mines ARs and extracts the rules. At the final stage, it

uses a post mining technique, named Domain

Ontology to reduce the number of rules. The

algorithm also employs a rule schema, which defines

user expectation of mined rules. User expectation is a

predefinition that the user has extracted rules

following these definitions; like the forms of the

consequent part or the antecedent part of generated

rules. Finally, they compared their proposed method

with Apriori. Their approach generates about 1000

rules without having any knowledge about user

expectations. Then, by applying a domain ontology

and taking user expectations into account, it faced a

dramatic decrease in the number of extracted rules.

As a result, their approach produces less rules without

any negative impact on the interestingness of rules.

However, they did not investigate the computation

time of their approach.

Alatas and Akin proposed an ARM approach based on

PSO, named Rough PSP (RPSOA) [67]. It does not need

any predefined parameters like minimum support and

confidence and tries to generate rules, automatically.

Because of this feature, some of their test results even

indicate that if they use a fix minimum support, they

could not generate any rule from the database. This

contrasts with their approach that sets minimum

support automatically and generates complete rules.

Their experimental results indicate that their

approach has good performance on different

databases even with noisy data. They also compared

their approach with other approaches like GAs and the

results illustrate that their approach generates rules

with higher support that contain less items in most of

the cases.

 Approaches based on Ant Colony Optimization (ACO)

ACO is a metaheuristic optimization algorithm that

can be used to find the best path in a graph. This

algorithm is based on the real-world ants’ lifestyle.

Applying Ant Colony Algorithm (ACO) is also one of the

popular solutions for ARM. Kau and Shih proposed a

new ARM algorithm based on a meta-heuristic

algorithm, named Ant Colony System (ACS) [12]. ACS

is based on the behaviour of ants. However, in this

algorithm, ants have memory and they are not blind.

In addition, they claimed that ACS needs some

predefined parameters. As a result, they proposed a

method that uses some limitations and defines most

of these parameters before running the model and

decrease computational time by scanning the

database only once. The experimental results indicate

that proposed method takes less computational time

compared to Apriori. However, many similar rules are

generated, which is an important challenge that

should be addressed.

ACO was the main solution for another approach by

Hong-yun et al., named SRMining [68] for finding

longer rule-chains. First, it creates a graph, named

PAGraph, which contains directions to most potential

ARs. Their algorithm assumes that an edge of the

PAGraph could be part of the rule chain. In this step,

with the help of some heuristics and feedback from

the ants, some paths can be considered as potential

longer rule chains. In their experiments, they

compared their approach with FP-growth and DLG.

Results indicate that SRMining is faster than others,

maybe because it only scans the database once.

There is another use of ACO by Zhu et al. [69]. In this

paper, they proposed a new AR decision algorithm

based on ACO for a Ball Mill Pulverizing system. In this

system, a set of variables for controlling the system

should be determined. However, these variables

depend on the environment. As a result, defining

suitable values for them is an open challenge. Previous

works indicated that other approaches like Neural

Networks, GAs, and Fuzzy optimization algorithms do

not satisfy completely user expectations.

Experimental results indicate that their approach finds

these values quickly and completely.

In [70], Y. He and S. Hui proposed two methods,

named Ant-C [70], which is an ACO based clustering

approach, and Ant-ARM [70] that is an ACO based

ARM approach. Their experimental results indicate

that Ant-C has better performance and higher

completeness compared to other well-known

clustering algorithms like K-means. Moreover, Ant-

ARM is a fast approach. Its execution time was

reported to be 24.5% compared to that of FP-growth

and 0.2% compared to that of Apriori, when executed

on the same machine.

Finally, ACO programming was also found to be a good

technique for ARM by Olmo et al. [93], who proposed

two algorithms guided by a context-free grammar.

One is called Grammar-Based Ant Programming for

Association Rule Mining (GBAP-ARM) following a

single-objective approach using a novel fitness

function, which measures the weighted average

between support and confidence, to evaluate the

individuals mined. The other is called Multi-Objective

Grammar-Based Ant Programming for Association

Rule Mining (MOGBAP-ARM), considering individual

evaluation from a Pareto-based point of view,

measuring the confidence and support of the rules

mined and assigning them a ranking fitness. They were

both tested over 15 data sets from the UCI repository

[94], and their results were compared to other ARM

algorithms, including Apriori [1] and FP-growth [14],

ARMGA [3], as well as other genetic programming

algorithms. The results obtained were very promising

in terms of reliability and instance coverage, as well as

memory, although no details are disclosed w.r.t. to

memory usage, execution time, or interestingness.

 Other Approaches

In our recent work, we proposed ARMICA [71],

focusing on automation, speed and completeness. We

employed the Imperialism Competitive Algorithm

(ICA), which is a fast heuristic approach. Our objective

was to extract rules automatically, without any

predefined minimum support and confidence. Early

experimental results indicated that ARMICA is faster

than Apriori and generates all the rules that Apriori

produces, thus, it is complete. Finally, further

comparisons illustrate that ARMICA is faster than FP-

growth, so it can be considered a fast approach.

However, ARMICA has one drawback: it requires a

predefined parameter, named: Number of

Imperialists. Although it is much easier to set this

parameter than the minimum support and

confidence, it is desirable that ARMICA defines this

parameter automatically, too. ARMICA should be

further compared with more recent ARM approaches

rather than just Apriori and FP-growth. As well as

consider more metrics, such as memory usage, the

number of database scans or interestingness.

Another heuristic based ARM approach is MDS-H,

which have been presented in Hong and Bian [10]. It is

based on the Multi-Dimensional Scaling (MDS) [10]

approach and tries to improve Apriori in terms of

performance. MDS-H consists of two steps: grouping

and joining. During the grouping step if an itemset has

some items from the same group, the algorithm

considers it as non-frequent. A result of non-frequent

items elimination is avoiding large numbers of

frequent itemsets. Their approach was tested in an

urban transportation network. The experimental

results indicate that MDS-H has low computation time

and it is complete in long pattern discovery. They

compared their method with Apriori and found that

MDS-H generates less itemsets and has very lower

computation time compared to Apriori.

Jorio et al. proposed a new heuristic approach for

mining gradual itemsets, which are sets of gradual

items [72]. In this paper, there are two kinds of

gradual items: value increases and value decreases.

They considered the gradual rule as a higher/lower

structure. For instance, they considered this rule as a

gradual rule: “the higher the age, the higher the pay”

[72]. Moreover, they claim that fuzzy based

approaches may have some problems like losing some

information or may not be suitable for the gradual

pattern mining problem. In addition, gradual pattern

mining causes a competition between items. It could

be a two-by-two comparison, but they claim that it is

a memory consuming process and does not generate

gradual patterns. As a result, they make an ordered

dataset. Since their method is based on Apriori, they

needed to have a pruning process. However, they

claim that it is not applicable to their approach. Hence,

from level two they order objects and keep this order

until the end. The main drawback of this approach is

its long execution time. However, they did not

compare their approach with other methods. They

also mentioned that their approach may not generate

all possible rules.

Hu and Li claimed that ARM is not a single objective

problem, so they considered it as a multi-objective

problem and proposed a new evolutionary algorithm

[73]. They considered three parameters as their

objectives: Statistical Correlation, Comprehensibility,

and Confidence. They defined Statistical Correlation

as formula 8:

SC (X U Y) =
|D| ∗ S(X U Y) − |D| ∗ ∏ 𝑆(𝑖)(𝑖∈𝑋∪𝑌)

√|D| ∗ ∏ 𝑆(𝑖)(𝑖∈𝑋∪𝑌) ∗ (1 − ∏ 𝑆(𝑖)(𝑖∈𝑋∪𝑌))

 (8)

where S indicates the support value and the rule is

X→Y and |D| is the number of records of the database.

This parameter eliminates the rules that do not have

any relativity. They also claim rules with less items in

the consequent or the antecedent are more

comprehensive. Their experimental results indicate

that execution time for this approach was 54,2%

shorter than that of FP-growth. Their approach also

generates fewer rules.

Alatas et al. proposed another ARM approach [74]. A

multi-objective evolutionary algorithm that is a Pareto

based approach, named MODENAR (Multi-Objective

Differential Evolution Algorithm). Because this

approach is automatic and does not need any

minimum support and confidence, they call it,

database independent. They also compared their

approach with these in Alatas and Akin [59] and GAR

[41]. Experimental results indicated that MODENAR

generates rules with higher support and confidence

even with noisy databases. It also generates less rules

compared to GAR [41]. There are less items in

generated rules by MODENAR than by GAR [41].

Finally, there are more database records covered by

the generated rules by MODENAR, than these by GAR

[41] and by Alatas and Akin [59]. Lastly, Cano et al. [91]

proposed a new methodology based on Graphics

Processing Units (GPUs) to evaluate ARs. Any

evolutionary approach can employ this approach

which enables them to evaluate ARs in parallel,

resulting in decreasing computation time.

Finally, we could briefly mention here approaches

based on Grammar-Guided Genetic Programming

(G3P). G3P can restrict the search space and build

rules conforming to a given context-free grammar. For

instance, an ARM algorithm called Grammar-Guided

Genetic Programming for ARM (G3PARM) makes the

knowledge extracted more expressive and flexible, by

allowing a context-free grammar to be adapted to

each problem domain and discretization [95]. It keeps

the best individuals and obtains solutions within

specified time limits and does not require large

amounts of memory. It is compared to exhaustive

search (Apriori and FP-Growth) and GAs (QuantMiner

and ARMGA) algorithms and rules are analysed whilst

its scalability is verified. Further work that deals with

ARM under a multi-objective perspective using G3P

models, that enable the extraction of both numerical

and nominal ARs in a single step was presented in [96].

Experimental results indicate that multi-objective

proposals obtain very frequent and reliable rules

when attaining the optimal trade-off between support

and confidence. Furthermore, for the trade-off

between support and lift, the multi-objective

proposals also produce very interesting and

representative rules. Lastly, a G3P algorithm that does

not need many parameters and enables the discovery

of quantitative ARs comprising small-size gaps was

presented in [97]. The algorithm was tested over a

varied set of data, comparing the results to other ARM

algorithms, showing that it can reduce gaps in

numerical features.

Comparison Performance Metrics

In this section, we discuss the main criteria that are

important in ARM algorithms. Based on the reviewed

papers, we selected 8 performance metrics to

compare all the previous researches. They can be

found in Table 3. In this table, the coloured cells

indicate the best approaches from the point of view of

that performance metric; the cells that contain the

term “considered” represent the fact that the

approach is not the best approach from the point of

view of that performance metric, but it did consider

this performance metric in its evaluation. We discuss

this further in section 5. Then, based on the frequency

of these performance metrics in all the approaches, a

priority has been allocated to them, which can

represent the importance of each performance

metric. Moreover, based on the priority of each

performance metric, we gave them a weight value.

Since we have 7 priorities (1 to 7), we give to the

performance metrics a weight from 1 to 7. For

instance, Execution Time and Interestingness have

priority 1, so we gave them weight 7. Finally, we

propose a formula to calculate the GT-Rank for each

performance metric. GT-Rank can be used to rank

each performance metric and based on this rank, the

best ARM approach could be selected:

𝐺𝑇 − 𝑅(A) = ∑ 𝐵 × (𝑎param × W)
8

𝑛=1
 (9)

where A is any given ARM approach and R is its rank,

and aparam is factor set to 1 if approach A considers the

corresponding performance metric n or not, and to 0

otherwise. W is the weight for each performance

metric, as shown in Table 3. Finally, if an algorithm is

the best approach from the point of view of that

performance metric (if it is coloured), then B is set to

2 and if the approach is not the best approach in that

performance metric but does consider it, B is set to 1.

The main reason why the GT- Rank is an important

factor is that right now we do not have any efficient

ranking system to compare the heuristic ARMs, which

can confuse researchers about their future directions,

as well as practitioners with regards to selecting the

most suitable ARM solution. Having an efficient rating

system that was generated based on more than 30

papers in the literature, can show to researchers

which of the previous approaches are better qualified

and which need further improvements. GT- Rank is

based on the previous trends in heuristic ARM

approaches and based on the frequency of the

evaluation performance metrics in previous

approaches. It determines which performance metric

is more valuable to real world applications.

However, it is noticeable that, there is not any “best”

term for performance metrics like database scans,

interestingness, parallel processing, and automatic

procedure. For these performance metrics, we just

considered all the approaches that apply to them, as

the best approaches and colour their cells. As a result,

they should not have any extra impact on the GT-

Ranks. Therefore, their B value would be 1. In most of

researches on ARM, there are some common

experimental performance metrics.

We divided these 8 performance metrics in two

groups based on their Priority values. performance

metrics that are mandatory and other additional

features. On one hand, mandatory performance

metrics include Execution Time, Interestingness,

Automatic Procedure, and Completeness. On the

other hand, additional features are Itemsets/Rules

Reduction, Database Scans, Parallel Processing, and

Memory Usage.

Mandatory Performance Metric
Some performance metrics are necessary for any ARM

algorithm. Without satisfying these performance

metrics, ARM approaches could face problems.

Execution Time

One of the most important features of an ARM

approach is its execution time. Most approaches

focused on improving Apriori-like algorithms and

extract the frequent rules faster. Many algorithms

have been proposed after Apriori and they have

succeeded to decrease execution time, but there

should be further improvements in this area.

Table III. Final Comparison: The best algorithm for each performance metric.

Algorithm Memory
Usage

Execution
Time

Complete
ness

Database
scans

Parallel
processing

Automatic
Procedure

Interesti
ngness

Rule/Itemsets
Reduction

GT-
Rank

ARMGA[3] considers considers 27

ACS [12] considers considers 25
Narvekar [7] considers considers 20

Kuoa[15] 20
SRmining[68] 18

Dash[16] considers 24
Ant-ARM[70] considers 20
ARMICA[71] considers considers 19

BSO-ARM[34] considers considers 19
Pathak[19] considers considers 20

Nandhini[18] considers 14
HSBO-TS[4] considers 19
PMES[65] 16
MASP[5] considers 17

MDS-H[10] 14
KAYA2[58] 16

MOGAR[17] 16
Fdez [55] considers considers 13
Chen [47] considers considers 13

FCGFMMS [49] considers considers 13
RPSOA[67] considers 12
Alatas[59] considers 10

MODENAR [74] considers 10
QuantMiner [40] 10

Ghosh[43] 10
KAYA[45] 10
Hong [32] 10

Thilagam[51] 10
Wang [46] 10
KAYA3[63] 10

GFMMS[48] considers 6
DGFMMS [50] considers 6
MOPNAR [87] 32

FARLAT-LQD[88] considers considers 21
Padillo [89] considers 17

NICGAR [90] 32
Qodmanan [92] 6

Cano [91] considers considers 11
GBAP-ARM[93] considers considers 10
MOGBAP-ARM

[93]
 considers considers 10

G3PARM [95] considers 28
NSGA-G3PARM

[96]
 considers considers 10

SPEA-G3PARM
[96]

 considers considers 10

GGGPA [97] considers considers 10
Frequency of
Parameters

2 22 19 3 2 11 17 16

Priority 7 1 2 6 7 5 3 4
Weight 1 7 6 2 1 3 5 4

Interestingness

Most of users in real world applications do not look for

obvious rules; they look for relations which may be

hidden. Therefore, they look for patterns that are not

already known. In this situation, researchers may

propose some new approaches to extract rules that

are more interesting. It is noticeable that this

performance metric could have different definitions in

different approaches and researchers employ varied

mechanisms to define interestingness in their ARM

algorithms.

Automatic Procedure

One performance metric that may have positive

impact on efficiency of an ARM algorithm is employing

a mechanism to extract frequent rules, automatically.

Many researchers considered it to improve efficiency

of their approaches. As a result, their approaches do

not require predefined values like minimum support

or confidence. Their approaches set these values

automatically. In addition, they do not need to have

any knowledge about the database in advance and

could be applied in any database.

Completeness

Although users are looking for approaches that extract

frequent rules and patterns in a short period of time,

they also want to ensure that these results are

complete. Hence, extracting false frequent rules in a

short fraction of time is not acceptable in most of the

cases. Consequently, most researchers check their

results from the point of view of completeness. To

calculate completeness of an algorithm, we could test

each generated rule with the transactions in the

database and look for the number of matches or

mismatches. We also could compare our methods

with Apriori or FP-growth from the point of view of

generated rules.

Additional Features
There are other performance metrics which may not

have been considered necessary by researchers.

However, it is important to consider them since they

may have an impact even on mandatory performance

metrics and affect their performance.

Number of database scans

A factor, which may have a great impact on execution

time, is the number of database scans. Based on this

number, ARM approaches may have long execution

time if they have many database scans and vice versa.

This is because these approaches need many I/O

operations increasing execution time. As a result,

many algorithms have been proposed with only one

database scan. After this scan, they store the

necessary information in the main memory for future

reference, which is faster than having to access the

disk, using I/O operations.

Parallel processing

Employing a parallel structure could make any ARM

approach faster. According to the parallel structure,

all stages of extracting frequent rules could be done at

the same time or at least in short intervals. As a result,

this could decline execution time. However, like any

other mechanism, using a parallel mechanism could

have its own weaknesses. It may increase some other

performance metrics like memory usage. Peris et al.

[75] noted that the memory overhead of parallel

processing could have a negative impact on system

performance [10]. One of the solutions that they

proposed is employing of a memory aware resource

allocation policy. There are many other drawbacks

when applying a parallel mechanism and all should be

considered in ARM.

Number of generated itemsets or rules

Whenever an ARM approach generates many

itemsets, it may need long time to process them. The

best known example is Apriori. This approach

generates itemsets many of which may not even be

frequent. As a result, it requires extra effort and time

to eliminate non-frequent ones. Moreover, there are

many cases that producing all possible rules is not

even required. Therefore, researchers prefer the most

important rules. As it is clear, this performance metric

has influence on execution time. In addition, it may

have positive impact on memory usage, too.

Memory Usage

Another important performance metric in ARM

algorithms is memory usage. Most of the fast

algorithms like FP-growth focused only on improving

execution time and did not consider memory usage.

This could have negative impact on ARM algorithms.

Comparison

In this section, we compare current heuristic ARM

algorithms, based on well-known evaluation

performance metrics. Most of these approaches may

have strengths regarding some of these performance

metrics. Therefore, in order to find out the real

advantages of each approach, we do the comparisons

in eight sections, separately for each performance

metric. We use this process, to establish the best

approaches for each performance metric.

Mandatory Performance Metric
We selected four performance metrics as mandatory,

based on their frequency on previous ARM

approaches. They have higher priority compared to

the additional performance metrics.

Execution time

Without doubt, proposing a faster algorithm was the

most important goal for many ARM algorithms. Its

importance is expected to increase in the future,

especially when trying to analyse large datasets. Many

heuristic approaches tried to improve previous ARM

algorithms like Apriori, with extraction of frequent

rules in a shorter period. In this paper, we compare

these approaches in two subsections. First, we

compare all the heuristic approaches that were

compared with Apriori by their authors. Then, we

evaluate all the heuristic approaches in the literature

which were originally compared with other heuristic

approaches, in the respective articles found in the

literature.

Many heuristic approaches were compared with

Apriori and in some cases even with FP-growth. Fig. 1

illustrates the results of these comparisons. In many

of these papers, the authors benchmarked their

approaches against Apriori on different databases. For

the sake of simplicity, we calculate the average value

of these results and mention them in Fig. 1. Moreover,

ACS [12] runs in one hour and 45 minutes compared

to Apriori that runs in eight hours and 5 minutes.

According to Fig. 1 and the above information, NICGAR

[90] is 575 times, MONPNAR [87] is 533 times,

G3PARM [95] is 23 times, and MDS-H [10] is about 9

times faster than Apriori. After that, ASC [12] is

approximately 4 times faster than Apriori. Then,

ARMICA [71], Li and Yang [11], Pathak et al. [19], and

Improved GA [13] are in the next steps, respectively.

Figure 1. Comparison of Execution time with Apriori and FP-growth

0
50

100
150
200
250
300

18.16

23.75
8.083

46.5
7.6

92.9

2.63
7.14 0.51 0.473 10

36.83 32 1.91 66.75

147.28

6.33

272.778 272.778
233

56.5
29.19 44

Execution Time

Proposed Algorithm Apriori FP-Growth

Figure 2. First Execution time Comparison

However, SRmining [68] and Ant-ARM [70] are even

faster than FP-growth. Since FP-growth is much faster

than Apriori, these algorithms could be among the

fastest ones. In conclusion, according to Fig. 1, NICGAR

[90], MONPNAR [87], G3PARM [95], MDS-H [10],

SRmining [68], and Ant-ARM [70] are the fastest

heuristic ARM approaches, which were compared

with Apriori and FP-growth.

However, there are other approaches that compared

themselves with other heuristic algorithms, instead of

Apriori and FP-growth. For the sake of simplicity, we

calculated the average value of these results and

mentioned them in Fig. 2. According to Fig. 2, HSBO-

TS [4] has the highest execution time compared to

others. BSO-ARM [34], which is previous version of

HSBO-TS, has the second highest execution time.

Moreover, ARMGA [3], AGA [33], and IARMGA [8]

have the next places. Finally, PMES [65] has the

shortest execution time compared to others. This

could indicate that heuristic approaches based on the

BSO algorithm may be faster than approaches based

on GA.

Comparison of classic GA based ARM algorithms and

PSO based ARM algorithms was also another field of

study. As Fig. 3 indicates, in contrast to BSO based

algorithms, PSO based approaches do not defeat GA

based approaches in all the cases. In one case GA is

faster [66] and in another case PSO [15]. However,

since PSO is 40 times faster than the GA proposed by

Kuoa et al. [15] and there is no significant difference

between the GA and PSO reported by Vyas and

Chauhan [66], the approach of Kuoa et al. [15] is

faster. It was shown [11] [13] that GA based ARM

approaches are faster than Apriori, so Kuoa et al. [15]

is potentially faster than Apriori.

After all, according to these comparisons, NICGAR

[90], MONPNAR [87], G3PARM [95], MDS-H [10],

SRmining [68], PMES [65], Ant-ARM [70], and Kuoa et

al. [15] have the potential to be the fastest heuristic

ARM algorithms. However, there is a big gap in this

area and all the heuristic approaches should compare

themselves with each other and instead of comparing

themselves with Apriori, they should try to establish

comparisons with more up-to-date and faster ARM

algorithms. The worst part is that most of them did not

compare their approaches even with FP-growth,

which is faster than Apriori.

Interestingness

Many definitions could define interestingness. There

are many mechanisms, which can find out that a rule

is interesting, or not. For instance, using simple

performance metrics like minimum support and

confidence is a way to extract interesting rules.

However, many users prefer rules that are more

interesting. As a result, applying minimum support

and confidence may not satisfy them completely. ARM

algorithms in Yan et al. [3], Dash et al. [16], Nandhini

et al. [18], Soysal [5], Bidgoli et al. [17], Aoussi et al.

[40], Ghosh and Nath [43], Qodmanan [92], NICGAR

[90], MONPNAR [87], [53-56], [58], Kaya [63] in

addition or even instead of the minimum support and

confidence, considered other factors to determine

interestingness of the extracted rules. They may have

different mechanisms to evaluate the interestingness

of a rule. Nandhini et al. [18] developed a method

which is based on user knowledge (in one of the

algorithm stages, they ask users to determine the

user’s expectations about rules) and the domain

0
20
40
60
80

100
60.25

82.25 87.54

54.75
72.62

0.301

Execution Time (sec.)

ontology process. Another interestingness parameter

has been proposed in MASP [5].

According to that, if we have a rule like: A→ C, then in

this paper authors defined a performance metric,

named Lift. It represents that how much C is

dependent to A.

L (A→ C) =
Conf(A→ C)

𝑆(𝐶)
 (10)

where Conf and S represent the confidence and

support values, respectively.

Automatic Procedure

One of the biggest drawbacks of some ARM

approaches is that users should set the value of

minimum support and confidence, manually. Since

these values could affect the quality of generated

rules, especially in huge databases, it could be difficult

to set them manually. A simple solution is a trial and

error approach. It means that one tries many values to

get the best result, but this is not easy [3].

Figure 3. Comparison of GA based and PSO based ARM
algorithms

Figure 4. Comparison based on the Fitness Values

Some researchers detected this drawback and

proposed some semi-automatic or automatic ARM

algorithms to find the minimum support and

confidence, such as Yan et al. [3], [34], Kuoa et al. [15],

Dash et al. [16], Nandhini et al. [18], Bidgoli et al. [17],

Puig et al. [61], Khabzaoui et al. [62], Kaya [63], Alatas

et al. [74], Ghafari and Tjortjis [71].

This could have many benefits: 1) there is no need to

have prior knowledge about the database, 2) when

working with huge databases, it may be difficult to set

these values manually 3) this process could avoid

faults that may be caused by setting wrong values for

minimum support and confidence. However, this area

needs more investigation.

Completeness

It is worth taking into consideration that, in most of

the heuristic approaches, completeness has been

considered as the fitness value, and measured based

on this fitness value.

0

500

1000

1500

Kuoa [15] Vyas [66]

40

0.071

1200

0.031

Execution Time (sec.)

Proposed
Algorithm

GA

0

2

4

6

8

10

12

14
11.14

8.37

11.03
13.39

3.37
2.55

3.587

0.22

3.602
0.2

Fitness Value

BSO-ARM[34] ARMGA[3] IARMGA[8] HBSO-TS[4] AGA[33] GA Alim [38] Vyas [66]

Experimental results of ACS [12] indicate that many

similar rules are generated by this method. Although

it may not result in decreasing completeness, it could

be wasting time. They also prepared an expert

questionnaire and interviewed expert graduate

students of the medical university of Taiwan. Based on

this, they claim that their approach produces more

complete rules like Apriori.

Moreover, in Pathak et al. [19] they considered

completeness as an important performance metric.

Completeness of generated rules was also another

important performance metric in IARMGA and

IARMMA [8]. IARMMA has better solution quality. The

authors claimed that their approach solved the

problem of generating false rules. Their experimental

results indicate that with increasing in the size of data,

their approaches have higher fitness values.

Djenouri et al. [4] approach’s experimental results

indicate that it has better fitness value compared to

approaches in Djenouri et al. [34] and Yan et al. [3].

Moreover, BSO-ARM produces more complete rules

than ARMGA [3]. According to Djenouri et al. [34],

ARMGA generates rules that do not respect the

minimum support and confidence and may even

generate false rules. Finally, in Sagar and Argraval [36]

they considered all types of rules (TP, TN, FP and FN)

in their approach and their proposed a method

generating rules with 100 % completeness.

We compared heuristic approaches based on their

fitness values in Fig. 4. Since these approaches have

been tested on different datasets and for having a fair

comparison, heuristic approaches are compared in

three categories. In the first category, the comparison

is between heuristic approaches and GA algorithms

from the point of view of fitness values.

It is clear that HSBO-TS [4] with 13.39 has the highest

fitness value among these approaches. After that,

BSO-ARM [34], IARMGA [8], ARMGA [3], and AGA [33]

are in the next places, respectively. Moreover, GA

approach with 2.55 has the least fitness value

compared to other methods. It is interesting that the

fitness value of HSBO-TS is approximately 5 times

higher than GA.

In the next category, comparison indicates that Alim

and Ivanov [38] has a fitness value, which is slightly

higher than GA. Moreover, in the third category, Vyas

and Chauhan [66] has even lower fitness value

compared to GA. In conclusion, according to Fig.4,

HSBO-TS has the highest fitness value among these

approaches. In addition, Pathak et al. [19] has fitness

value of 74.33 which is higher than 70.452 of Apriori,

so it could also be considered as complete.

Additional Features
There are also other parameters that were not

frequently applied in the literature, but they may have

great impact on ARM algorithms’ performance.

No. of database scans

One of the biggest challenges in ARM approaches is

the number of database scans. It is obvious that if an

ARM algorithm needs several database scans, it

requires many I/O operations, which results in

increasing execution time and performance

degradation. There is a competition between ARM

algorithms to have the least number of database

scans.

Researchers in Kau and Shih [12], Goyal et al. [6], Van

et al. [68], [7], considered this parameter in their

experimental process. Since Apriori scans the

database many times and this number could vary in

different databases, hence, we do not include it in Fig.

5. FP-growth solved this problem and generates

frequent rules with two scans. Until now, many ARM

algorithms have been proposed to decrease this

number even more. ACS [12], SRMining [68], and

Narvekar [7] are such algorithms. They all require to

scan the database just once. Moreover, Skyline [6]

needs the same number of database scans as FP-

growth. However, it is clear that researchers who are

Figure 5. Number of database scans

working with heuristic approaches did not investigate

this performance metric enough and it requires

further study.

Parallel processing

With many improvements in parallel computing, we

have an opportunity to employ this concept in ARM.

This could bring many benefits, especially in

decreasing the execution time. However, this is

another gap in heuristic ARM approaches. Among

these algorithms, only Dash et al. [16] and Djenouri et

al. [65] implemented their approaches based on a

parallel structure. The results indicate that it had

positive impact on their execution time. Therefore,

researchers should have further investigation on the

potential of parallel computing.

Number of generated itemsets or rules

Other important performance metric in ARM

algorithms is the number of generated rules and

itemsets. If an ARM algorithm generates many

itemsets, then some of them may be non-frequent;

hence, it may take too long to process and eliminate

them. It could also cause production of wrong rules.

Therefore, some researchers proposed methods to

decrease the number of generated itemsets. In

addition, many of the generated rules are not

interesting. Hence, researchers tried to decrease this

number and generate only the most interesting rules.

This could help to decrease the time and memory

consumption. MONPNAR [87] applies a Pareto- based

algorithm and produces about 4000 times less rules

compared to Apriori. MDS-H [10] employs a grouping

technique and prevents joining between none-

frequent itemsets. If an itemset has two items, which

belong to the same group, it is not a frequent itemset.

This would decrease the number of generated rules.

Nandhini et al. [18] use an interesting procedure. After

the ARM process, their approach generates many

rules. At that point, they ask the user to define his/her

Figure 6. Comparison from the point of view of number of Rules / Itemsets

0

0.5

1

1.5

2

Number of database scans

0
200
400
600

ARMGA[3] ACS[12] Nandhini[18] Narvekar [7] MONPNAR
[87]

G3PARM [95]

496

10
197.4

18

0.06 2

446

235
302.2

0 260.306 2000

Rules / Itemsets reduction

Proposed Algorithm Apriori FP-growth

expectations about the generated rules. After this

process, they remove rules that do not match those

expectations. As a result, the number of rules would

dramatically decrease. Moreover, the proposed

algorithm in Goyal et al. [6] calculates the utility of

single and pair itemsets. This algorithm pre-processes

the data and eliminates some nodes from UP-tree.

They also apply another heuristic approach that uses

node utility of support to increase the maximum utility

of an itemset. This approach helps them to eliminate

non-frequent itemsets. As a result, it decreases the

number of generated itemsets.

Finally, ACS [12] succeeded to have great reduction in

the number of generated rules. Compared to Apriori,

their approach generates approximately 24 times less

rules. Fig. 6 illustrates the comparison results of

heuristic approaches from the point of view of the

number of rule / itemset reduction.

It is noticeable that the actual number of generated

rules by ARMGA and Apriori in the first category has

been divided by 1000 to have numbers, which are at

the same range of other results.

As it is clear in Fig. 6, G3PARM [95] has the first,

MONPNAR [87] has the second and ASC [12] has the

third most rules reduction among other approaches.

However, since according to NICGAR [90], NICGAR

generates around 4 times less number of rules

compared to MONPNAR [87], it would be the second

approach from the point of view of number of

generated items or rules. ASC generates

approximately 23 times less rules compared to

Apriori. After that, Narvekar [7] shows a significant

feature, similarly to FP-growth. This algorithm does

not need to generate any frequent candidate itemset,

which results in generating frequent itemsets in a

Figure 7. Average Memory Consumption

short period of time. ARMGA [3] and Nandhini et al.

[18] also generate respectively 1.11 and 1.53 times

less rules than Apriori.

Memory Usage

Memory consumption is one of the main performance

metrics in ARM. It is interesting that only one heuristic

approach in the literature, considered memory

consumption as an evaluation parameter. However,

this performance metric is important for system

performance. Pathak et al. [19], have tested 5

datasets. For simplicity, we considered the average

memory consumption of the proposed method and

compared it with the average memory usage of

Apriori (Fig. 7). It is clear that Pathak et al. [19] has less

memory consumption compared to Apriori. However,

there is a big gap in this area and more research is

needed to decrease memory usage in heuristic ARM

approaches. It is noticeable that Narvekar [7]

employed some mechanism to decrease the memory

usage. In contrast to Apriori, it does not generate any

candidate itemset and in contrast to FP-growth, it

does not generate conditional FP trees, which results

in having low memory consumption. However, they

did not test their approach and compare it with other

approaches, like Apriori or FP-growth.

Applications of Heuristic Algorithms

As mentioned earlier, heuristic approaches are fast
and do not need any prior knowledge about the
problem domain. Heuristic algorithms have many real

31000

32000

33000

34000

35000

36000

Pathak[19] Apriori

32976.6

35200

Average Memory Usage

world applications. Zhu et al. [69] applied ACO to
propose a new AR decision algorithm for a Ball Mill
Pulverizing system which determines a set of variables
that control the system. The authors believe that the
AR decision problem is a combinational problem that
it is hard to be solved and ACO is a good approach to
solve very hard combinatorial optimization [69]. Their
simulation results illustrate that applying this heuristic
approach can result in finding the best association
rules. Moreover, Liang et al. [76] also proposed a new
fuzzy based hybrid PSO approach for forecasting wind
speed and workload demand in wind energy systems.
Their experimental results indicate that their heuristic
based approach have a better performance in finding
the best setting compared to the current approaches
[76]. Their results indicate that their approach has a
high satiability to find the final solution. For instance,
the fuel cost difference between the maximum and
minimum fuel costs, the emission difference of the
maximum and minimum total emission, and the
power loss difference of the maximum and minimum
total real power loss are only 0.0004 M$/h, 0.4 ton/h,
and 0.05 MW, respectively, which shows the efficiency
of this approach.

Moreover, Schoonderwoerd et al. [60] employed ACO
to propose a new routing policy in telecommunication
networks and to establish load balancing in such
networks. They mentioned that a single controller in
distributed networks can have several drawbacks like
the fact that a single point of the network (controller)
should have the information of each part of the
network, there should be a link between each node in
the network and the controller, and more importantly,
this network suffers from the single point of failure
problem [60]. Hence, they believed their heuristic
approach can be used to design a decentralized
control mechanism for networks. Based on their
experimental results, their heuristic based approach
has less call failures compared to state of the art
approaches.

Furthermore, there was an application of GAs to find
the optimal solution for reactive power planning in
[77]. They compared their approach with current
approaches and their experimental results indicate
that it has satisfactory convergent characteristics and
sufficiently short execution time. The only limitation
of this approach based on the authors’ opinion is its
computational time. However, back in 1994 the

authors predicted that with future improvements in
computational power, their approach could have
much better computational time compared to the
current approaches. In addition, there are some
applications of the Artificial Bee Colony Algorithm in
real world problems like the constrained Weber
problem [78]. Stojanovi et al. [78] proposed new
approaches for solving the constrained Weber
problem based on four heuristic algorithms, of which
the Artificial Bee Colony has the best performance
with respect to solution quality, robustness and
computational time [78]. The authors believe that the
mentioned problem has a nonconvex feasible set that
is hard for deterministic algorithms to find a global
optimum; in such occasions, heuristic algorithms can
have complete results.

M. Balokovic and M. Kürster [79] proposed a new
approach for “radial velocity data from multi-planet
extrasolar systems” based on GA. Their experimental
results indicate that their heuristic based approach
increases the quality of solutions and can decrease
execution time, compared to current approaches.
Moreover, in the cloud computing field, there are
many applications of heuristic algorithms. Wang, et al.
[80] proposed a new GA based approach, called load
balancing genetic algorithm (JLGA) for “task
circulation categorization” in cloud computing
environments. Their experimental results indicate
that although JLGA can establish a great load
balancing in the cloud computing environment, it
requires 30 more generations for coverage compared
to the original heuristic-based approach, called AGA.

Furthermore, in our previous works [81-83], we also
proposed three different approaches based on
heuristic algorithms, like ABC, Cuckoo Optimization
Algorithm, and Imperialism Competitive Algorithm to
establish load balancing in cloud computing
datacenters and decrease the energy consumption.
Our experimental results indicate that the proposed
heuristic approaches have better performance
compared to state-of-the-art algorithms like Local
Regression [81], Dynamic Voltage Frequency Scaling
[81], Interquartile Range [81], and Median Absolute
Deviation [81]. For instance, Bee-MMT (based on ABC)
has 26.46% less energy consumption compared to the
Local Regression based approach; or it has around
nine times fewer virtual machine migration compared
to the Local Regression based approach. However,

these approaches have a limitation. In all of them the
number of hours that the hosts are in 100 percent of
their utilizations are much more that of the current
approaches, which can result in Service Level
Agreement violation.

Finally, in [84] the application of heuristic and
metaheuristic algorithms in the Artificial Neural
Network training stage was discussed. In addition, the
possibility of employing GA and PSO in the training
stage of Deep Learning was checked. The authors
claim that although heuristic algorithms can speed up
the training stage of deep learning approaches, there
were not enough studies in this area. They also
asserted that even with high computational power
available, it is still necessary to apply heuristic
algorithms. They noted that finding every possible
solution is a time consuming process, hence, finding
near-optimal results with heuristic algorithms could
be a possible solution for many current real world
applications.

Discussion

In this paper, we focused on current ARM solutions,

which are based on heuristic approaches. Applying

heuristic algorithms is one of the most popular

solutions in many current technological problems,

especially because of their interesting structure,

which does not require having any knowledge of the

problem in advance. We focused on ARM approaches

that directly apply heuristic algorithms and classified

them based on the type of heuristic: GA, PSO, BSO,

ACO, and others.

In section 5, we compared these approaches from

many points of view, using performance metrics

grouped into two main categories. In the first

category, we considered mandatory performance

metrics and in the second, we used additional

performance metrics. We compared these methods

based on memory usage. Surprisingly, although this is

a very important metric, only one heuristic approach

investigated this performance metric. However, there

were some initial attempts in some researches, but

their approaches were not implemented. It is one of

the biggest gaps that should be addressed by

researchers in the future.

We also discussed one of the most popular

performance metrics in ARM algorithms, which is

execution time. First, we evaluated algorithms that

were originally compared with Apriori. The results

illustrate that NICGAR [90], MONPNAR [87], G3PARM

[95], MDS-H [10], Ant-ARM [70], and SRmining [68]

are the fastest heuristic ARM algorithms compared to

Apriori. At that point, we compared approaches that

compared themselves with other heuristic

approaches. The results indicate that PMES [65] and

Kuoa et al. [15] are among the fastest ARM

approaches. After all, these five heuristic algorithms

have the least execution time compared to other ARM

algorithms.

Although many researchers have investigated

execution time of ARM approaches, there are still

many gaps in this area. For instance, we should have

many more approaches that are at least faster than

FP-growth. Researchers should focus on proposing

approaches, which are faster than new ARM

algorithms. Moreover, there is another big gap in

comparing all heuristic approaches with each other

and find out which approach could be faster in

extracting the frequent rules.

After that, we considered another mandatory

performance metric, completeness, and compared

heuristic approaches according to this. Completeness

of generated rules can be important for users. Hence,

many researchers tried to generate rules with high

completeness. Kau and Shih [12], Pathak et al. [19],

and Drias [8] are among these approaches focusing on

completeness. According to Djenouri et al. [34], the

approach that has been proposed in Yan et al. [3] is

incomplete and may produce some false rules. As a

result, in Djenouri et al. [34] and Djenouri et al. [4]

they managed to propose approaches, which are

more complete. In addition, Sagar and Argraval [36]

proposed a method that has 100% completeness.

Finally, we compared some of the heuristic

approaches from the point of view of the fitness value,

which represents completeness of generated rules.

The results indicate that HSBO-TS [4] has the highest

fitness value compared to other approaches. After all,

it seems that completeness is greatly taken seriously

by researchers. However, we believe that in any new

ARM algorithms, completeness of generated rules

should have high priority.

Then, we compared current approaches from the

point of view of the number of required database

scans. It is noticeable that since Apriori needs several

database scans to extract frequent rules, many

approaches tried to improve Apriori, and focused on

decreasing the number of database scans, which

resulted in decreasing execution time. However,

again, in the heuristic approaches this idea was not

investigated enough. Only four of them considered

this parameter and based on that ACS [12], SRMining

[68] and Narvekar [7] scan the database only once.

This parameter could have a great impact on

execution time of ARM; ACS [12] and SRMining [68]

can be a proof of this. They both are fast approaches

and one of the main reasons is scanning the database

only once. Because of the lack of implementation, we

cannot discuss execution time in the case of Narvekar

[7]. However, authors claimed that their approach is

fast.

Next, we considered parallel processing as another

comparison performance metric. If an ARM algorithm

uses parallel processing, it would have many benefits

like requiring less computational time. However, only

Dash et al. [16] and PMES [65] employed such

mechanism. Researchers should investigate applying

parallel mechanism in their ARM algorithms in the

future.

Next, automatically extracting frequent rules was one

of the main goals of many researchers in ARM. This

could have many benefits, like decreasing the

possibility of using wrong values for performance

metrics such as minimum support and confidence. In

addition, in such structure, there is no need to have

any knowledge about the characteristics of the

dataset. Among heuristic ARM algorithms, the ones

proposed by Yan et al. [3], Djenouri et al. [34], Kuoa et

al. [15], Dash et al. [16], Nandhini et al. [18] and Bidgoli

et al. [17] were investigated and they all were

benefitted from this automatic procedure.

Another comparison performance metric was

Interestingness. It is true that users are looking for

complete rules with the minimum possible cost, but

ARM approaches should generate rules, which are

more interesting for users. Especially for current

applications of ARM algorithms, users are looking for

the rules that may not make any sense in the first

instance, but with further investigation, it is found out

that they are complete and interesting. In such cases,

using only the minimum support and confidence is not

enough. For instance, Yan et al. [3], Dash et al. [16],

Nandhini et al. [18], Soysal [5], and Bidgoli et al. [17]

have investigated some other performance metrics

and approaches to extract more interesting rules

aiming to prevent any completeness reduction. This

area also needs further investigation.

Finally, this paper considered another performance

metric, the number of generated itemsets or rules,

and compared heuristic rules from the point of view

of this performance metric. As it is clear, if an

approach decreases the number of generated

itemsets and eliminates non-frequent itemsets, this

has a big impact on other performance metrics like

time or memory consumption. On the other hand, for

users, it is more convenient to have less but highly

quality rules. Algorithms like these proposed by Yan et

al. [3], Hong and Bian [10], Nandhini et al. [18], Goyal

et al. [6], [7], and Kau and Shih [12] investigated this

area and proposed some solutions to decrease this

performance metric. However, among heuristic

approaches, G3PARM [95], NICGAR [90], MONPNAR

[87], ASC [12] and Narvekar [7] have the most rules

and itemsets reduction, respectively. This reduction

had positive impact on their execution time. There

could be more improvement in this area in the future.

Now it is time to finalize the comparison process and

compare the best approaches, which have been found

so far. Table 3 shows this comparison results.

According to Table 3 and all the previous discussion,

five heuristic approaches are the most accomplished

heuristic ARM algorithms. These approaches have the

highest GT-Ranks compared to other heuristic ARM

approaches. MOPNAR [87] and NICGAR [90] are the

best heuristic approaches regarding their GT-Rank

which is 32. They are fast, they generate less number

of rules, but the generated rules are more interesting.

Next, G3PARM [95] has the highest GT-Rank (28).

While it tries to generate less number of rules, it has a

low execution time. ARMGA [3] is another best

heuristic approach. Its GT-Rank is 27 and it is a fast

approach, which also generates less itemsets/rules

compared to Apriori. It is an automatic ARM approach

trying to produce interesting rules. Finally, ACS [12]

also has 25 GT-Rank and it is a fast approach, which

scans the database only once. It generates complete

rules and produces very high itemsets/rules reduction

compared to other approaches. Besides that, these

results include some facts, as follows:

• Because there is not enough evidence about

memory usage of heuristic approaches, we cannot

select Pathak [19] as the best approach from the

point of view of memory usage. As a result, we

need more comparisons in the future to find out

which approach has the least memory usage.

• One of the main reasons that SRmining [68] is

among the fastest algorithms is that it scans the

database only once.

• Employing a parallel mechanism is one of the main

reasons that made PMES [65] is one of the fastest

heuristic ARM approaches.

• Dash et al. employed a parallel mechanism, it is an

automatic algorithm, and it returns interesting

patterns [16]. Although this approach did not

investigate performance metrics, it may have the

potential to have good outcomes on other

performance metrics, too.

• The only reason that Narvekar [7] have not been

selected as one of the best ARM approaches is that

authors did not produce some actual results to

prove the efficiency of this approach. However,

this approach scans the database only once, it does

not produce any candidate itemset, and it is one of

the few approaches that considers memory usage.

Moreover, because of the mentioned features, it

has the potential to be a fast algorithm. As a result,

more investigation on this algorithm could show if

it is one of the best heuristic ARM approaches.

Finally, since this paper is about ARM, it would be

interesting if we consider Table 3 as a transactional

database and analyse it with ARM. Extracted frequent

rules from Table 3 are reported in Table 4. In this table,

Confidence X for a rule A->B means that the rule is

correct in X% of all the occasions. In other words, B co-

occurs in X% of the occurrences of A. It can be

calculated by formula 3.

For instance, according to the first rule in Table 4, if an

approach has low memory consumption then, with

possibility of 100%, it also considers decreasing

execution time. To calculate the confidence value of

this formula, we check table 3 and look for the

occasions that an approach employs the memory

consumption performance metric. You may notice

that only Narvekar [7] and Pathak [19] consider this

metric, so T is 2 and both also have the second part of

the rule, hence, E=2. In other words, whenever, an

approach considered the memory usage metric, it also

considered execution time.

Moreover, if an ARM approach is complete, so with

69% probability it may have low execution time. There

is also a strong relationship (100% probability)

between a parallel mechanism or scanning the

database once or twice and having low execution

time. In addition, with probability of approximately

40%, if an approach employs an automatic

mechanism, it also generates rules that are

interesting.

According to Table 4, if an ARM approach generates

few rules / itemsets and the generated rules are

interesting (with a probability of 50%) this approach

tends to be automatic. Moreover, if an ARM algorithm

has few database scans and generates complete rules,

one of its main goals is to decrease the execution time.

It is also interesting that if an ARM approach generates

few rules / itemsets and it scans the database only few

times, then it intends to have low execution time

(probability 100%). As it was mentioned before, these

2 items are really important to decrease the execution

time. In addition, with probability of 50 %, if an

approach focuses on being complete and automatic, it

also focuses on being fast. There is also another

interesting rule. According to that, if an ARM

algorithm scans the database once or twice and has

low memory usage, it would try to be fast.

Furthermore, there are only two interesting rules left.

First, if an ARM approach scans the database once or

twice and reduces the number of generated itemsets

or rules, and generates complete rules, it definitely

tries to be a fast approach. Secondly, if an approach

employs a parallel mechanism, follows an automatic

procedure, and generates interesting rules, it also

tends to generate complete rules in a short period of

time.

According to the extracted rules in Table 4, since

parallel processing and the number of database scans

have great impact on execution time, so researchers

tend to apply them in their approaches to decrease

execution time. Combination of Rule / Itemset

Reduction and Automatic Procedure or Database

Scans is also another popular approach to decrease

execution time; which means that only reducing the

number of itemsets or rules may only be employed in

50% of cases. Finally, it seems that if an approach is

intended to be fast, it considers performance metrics

like the number of database scans, the number of

rules/itemsets, and parallel processing.

Table 4. Extracted rules from final Comparison results

Frequent Rules Confidence (%)

Memory Usage → Execution Time 100

Completeness → Execute Time 69

Parallel processing → Execute Time 100

Database Scans → Execute Time 100

Automatic Procedure → Interestingness 40

Rule / Itemset Reduction → Execute Time 50

Rule / Itemset Reduction + Interestingness →

Automatic Procedure
50

Completeness + Database Scans → Execute

Time
100

Rule / Itemset Reduction + Database Scans →

Execute Time
100

Automatic Procedure + Completeness →

Execute Time
50

Database scans + Memory Usage → Execute

Time
100

Rule / Itemset Reduction + Completeness +

Database Scans → Execute Time
100

Parallel processing + Automatic Procedure

+Interestingness → Execute Time
100

Open challenges and suggested directions

There are many open challenges in this area that

should be addressed in the future. The most

important challenge for future heuristic ARM

approaches is that researchers should compare them

against other ARM approaches and algorithms, which

do not employ heuristics. Currently, most of heuristic

approaches have been compared with Apriori, but, as

the Ventura and Luna [86] pointed out, Apriori needs

many steps to compute all frequencies of patterns,

which can result in requiring a lot of computational

power and memory space. Such approaches may not

be the feature of a state-of-art approach and

researchers should compare their methods with more

recent and efficient ARM approaches.

For instance, from the point of view of execution time,

most of the heuristic approaches were compared with

Apriori. It is not enough to defeat Apriori, which is not

considered to be a fast approach, nowadays.

Therefore, this could be a hot topic for further

research. In addition, another area that has not been

explored enough is that of performance metrics which

have not been addressed by most of the existing

heuristic algorithms.

A comprehensive solution for ARM should consider

most of these performance metrics at the same time.

Especially some of these performance metrics like

memory usage, completeness, and parallel processing

should be investigated in more depth. Finally, it seems

that the majority of recent papers focus on execution

time. Many organizations and companies own large

databases, which require fast approaches to be

analysed. This trend for fast ARM may increase in the

future. Nevertheless, as mentioned in many papers,

extracting interesting rules is also desirable for users.

In conclusion, future researches should focus on

decreasing execution time and generating more

complete and interesting rules with low memory

usage. It may also be better to test approaches on

larger databases to make them suitable for real world

usage.

Conclusion

With the dramatic increase in trends to extract

knowledge from data, many data mining techniques

have been explored. One of the best known data

mining techniques is association rules. It extracts the

most frequent rules and patterns from a database.

There are many ARM algorithms, which use many

different approaches to extract frequent rules. One

family of such approaches applies heuristic algorithms

or just heuristic characteristics. Many papers in this

field have been published until now; although there

have been some attempts, to the best of our

knowledge, there is no comprehensive review on this

area, except from that of Ventura and Luna [86] and

M.J. del Jesus et al. [98], who reviewed Pattern Mining

with Evolutionary Algorithms. As a result, this paper

attempts to provide a comprehensive study on

heuristic approaches, rather than just evolutionary

ones, and discusses their advantages and drawbacks.

We also considered all the necessary evaluation

performance metrics and then compared all reviewed

algorithms based on these performance metrics. We

proposed an evaluation metric, named GT-Rank to

rank heuristic approaches and select the best ones.

We selected MOPNAR, NICGAR, G3PARM, ARMGA,

and ASC as the best approaches with the highest GT-

Ranks. Finally, we considered Table 3 as a

transactional database and extracted frequent rules

from this. They are interesting rules that represent

trends of heuristic approach research. Given the

recent trend for Big Data we plan soon to review how

ARM algorithms cope with it.

REFERENCES
[1] R. Agrawal, R. Srikant. Fast Algorithms for Mining Association

Rules in Large Databases. In: VLDB '94 Proc. of the 20th Int’l

Conf. on Very Large Data Bases, J.B. Bocca, M. Jarke, C. Zaniolo

(Eds.). USA: Morgan Kaufmann Publishers; 1994.

[2] R. Agrawal, T. Imielinski, A. Swami. Mining association rules

between sets of items in large databases. In: ACM SIGMOD

Conf. on Management of Data. New York: ACM; 1993.

[3] X. Yan, C. Zhang, S. Zhang. Genetic algorithm-based strategy for

identifying association rules without specifying actual minimum

support. Expert Systems with Applications 2009, 36: 3066–

3076.

[4] Y. Djenouri, H. Drias, A. Chemchem. A Hybrid Bees Swarm

Optimization and Tabu Search Algorithm for Association Rule

Mining. World Congress on Nature and Biologically Inspired

Computing (NaBIC). Fargo, ND: IEEE; 2013.
[5] Ö. M. Soysal. Association rule mining with mostly associated

sequential patterns. Expert Systems with Applications 2015, 42:

2582–2592.

[6] V. Goyal, A. Sureka, D. Patel. Efficient Skyline Itemsets Mining.

In: C3S2E '15 Proc. of the Eighth Int’l Conf. on Computer Science

& Software Engineering. Japan: ACM; 2015.

[7] M. Narvekar, S. F. Syed. An optimized algorithm for association

rule mining using FP tree. In: International Conf. on Advanced

Computing Technologies and Applications (ICACTA). India:

Elsevier; 2015.

[8] H. Drias. Genetic algorithm versus memetic algorithm for

association rules mining. In: Sixth World Congress on Nature

and Biologically Inspired Computing (NaBIC). Porto: IEEE; 2014.

[9] J. Yuan, S. Ding. Research and Improvement on Association Rule

Algorithm Based on FP-Growth. In: International Conf. on Web

Information Systems and Mining, WISM. China: Springer; 2012.

[10] Z. Hong, F. Bian. A Heuristic Approach for Fast Mining

Association Rules in Transportation System. In: Fifth Int’l Conf.

on Fuzzy Systems and Knowledge Discovery. Shandong: IEEE;

2008.

[11] C. Li, M. Yang. Association rules data mining in manufacturing

information system based on genetic algorithms. In: 3rd Int’l

Conf. on Computational Electromagnetics and Its Applications

ICCEA. 2004.

[12] R.J. Kuo, C.W. Shih. Association rule mining through the ant

colony system for National Health Insurance Research

Database in Taiwan. Computers and Mathematics with

Applications 2007, 54: 1303–1318.

[13] H. Guo, Y. ZHOU. An Algorithm for Mining Association Rules

Based on Improved Genetic Algorithm and its Application. In:

Third International Conf. on Genetic and Evolutionary

Computing. Guilin: IEEE; 2009.

[14] J. Han, J. Pei, Y. Yin, R. Mao. Mining Frequent Patterns without

Candidate Generation: A Frequent-Pattern Tree Approach.

Data Mining and Knowledge Discovery 2004, 8: 53-87.

[15] R.J. Kuoa, C.M. Chaob, Y.T. Chiu. Application of particle swarm

optimization to association rule mining. Applied Soft Computing

2011, 11: 326–336.
[16] S. R. Dash, S. Dehuri, S. Rayaguru. Discovering Interesting Rules

from Biological Data Using Parallel Genetic Algorithm. In: IEEE

3rd Int’l Advance Computing Conf. (IACC). Ghaziabad: IEEE;

2013.

[17] B. Minaei-Bidgoli, R. Barmaki, M. Nasiri. Mining numerical

association rules via multi-objective genetic algorithms.

(Elsevier) Information Sciences 2013, 233: 15–24.

[18] M. Nandhini, M. Janani, S.N. Sivanandham. Association Rule

Mining Using Swarm Intelligence and Domain Ontology. In: Int’l

Conf. on Recent Trends In Information Technology (ICRTIT).

Chennai, Tamil Nadu: IEEE; 2012.

[19] N. Pathak, V. Shah, C. Ajmeera. A Memory Efficient Algorithm

with Enhance Preprocessing Technique for Web Usage Mining.

In: ICTCS '14 Proc. of the International Conf. on Information and

Communication Technology for Competitive Strategies.

Gujarat: ACM; 2014

[20] C. Borgelt. Frequent item set mining. Data Mining and

Knowledge Discovery 2012, 2: 437–456.

[21] B. Nath, D. K. Bhattacharyya, A. Ghosh. Incremental association

rule mining: a survey. Data Mining and Knowledge Discovery

2013, 3: 157–169.

[22] T. Le, B. Vo, G. Nguyen, “A survey of erasable itemset mining

algorithms. Data Mining and Knowledge Discovery 2014, 4:

356–379.

[23] M. Zhang, C. He. Survey on Association Rules Mining

Algorithms. Advancing Computing, Communication, Control

and Management 2010, 56: 111-118.

[24] M. Elloumi, A. Y. Zomaya. Biological Knowledge Discovery

Handbook: Preprocessing, Mining and Postprocessing of

Biological Data. 1, ed. John Wiley & Sons, Inc. Hoboken, New

Jersey; 2014.

[25] A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay, C. A. Coello.

Survey of Multi objective Evolutionary Algorithms for Data

Mining: Part II. IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION 2014. 18: 4-19.

[26] M.J. del Jesus, J.A. Gámez, P. González, J.M Puerta, On the

discovery of association rules by means of evolutionary

algorithms. WIREs Data Mining Knowl. Discov. 2011, 1: 397-415

[27] C. Wang, C. Tjortjis. PRICES: An Efficient Algorithm for Mining

Association Rules. Intelligent Data Engineering and Automated

Learning 2004, 3177: 352-358.

[28] B. Liao. An Improved Algorithm of Apriori. In: 4th International

Symp., ISICA. China: Springer; 2009.

[29] X. Liang, C. Xue, M. Huang. Improved Apriori Algorithm for

Mining Association Rules of Many Diseases. In: 5th

International Symp., ISICA. China: Springer; 2010.

[30] Z. Chen, S. Cai, Q. Song, C. Zhu. An Improved Apriori Algorithm

Based on Pruning Optimization and Transaction Reduction. In:

2nd International Artificial Intelligence, Management Science

and Electronic Commerce (AIMSEC). Deng Leng: IEEE; 2011.

[31] H. Yu, J. Wen, H. Wang, L. Jun. An Improved Apriori Algorithm

Based On the Boolean Matrix and Hadoop. (Elsevier) Advanced

in Control Engineering and Information Science 2011, 15: 1827

– 1831.

[32] T. Hong, C. Chen, Y. Wu, Yeong-Chyi Lee, “A GA-based fuzzy

mining approach to achieve a trade-off between number of

rules and suitability of membership functions. Soft Computing

2006, 10: 1091-1101.

[33] M. Wang, Q. Zou, C. Liu. Multi-dimension Association Rule

Mining Based on Adaptive Genetic Algorithm. In: Int’l Conf. on

Uncertainty Reasoning and Knowledge Engineering. Bali: IEEE;

2011.

[34] Y. Djenouri, H. Drias, Z. Habbas, H. Mosteghanemi. Bees Swarm

Optimization for Web Association Rule Mining. In:

IEEE/WIC/ACM Int’l Conf. on Web Intelligence and Intelligent

Agent Technology. Macau: IEEE; 2012.

[35] A H.L. Lim, C.S. Lee, M. Raman. Hybrid genetic algorithm and

association rules for mining workflow best practices. Elsevier

Expert Systems with Applications 2012, 39: 10544–10551.

[36] M. Saggar, A.K. Agrawal, A. Lad. Optimization of Association

Rule Mining using Improved Genetic Algorithms. In: IEEE Int’l

Conf. on Systems Man and Cybernetics. IEEE; 2004.

[37] A, Dehuri S. Ghosh S. Multi-Objective Evolutionary Algorithms

for Knowledge Discovery from Databases. Vol. 98. Springer

Berlin Heidelberg: Springer; 2008.

[38] F. Alim, K. Ivanov. Heuristic Rules Embedded Genetic Algorithm

to Solve In-Core Fuel Management Optimization Problem. In:

GECCO '05 Proc. of the 7th annual Conf. on Genetic and

evolutionary computation. Washington DC: ACM; 2005.

[39] F. Du, N. Rao, J. Guo, Z. Yuan and R. Wang. Mining Gene

Network by Combined Association Rules and Genetic

Algorithm. In: Int’l Conf. on Communications, Circuits and

Systems (ICCCAS). Milpitas: IEEE; 2009.

[40] A. Salleb-Aouissi, C. Vrain, C. Nortet. QuantMiner: A Genetic

Algorithm for Mining Quantitative Association Rules. In:

http://link.springer.com/book/10.1007/978-3-642-05173-9
http://link.springer.com/book/10.1007/978-3-642-05173-9

IJCAI'07 Proc. of the 20th international joint Conf. on Artificial

intelligence, San Francisco: Morgan Kaufmann Publishers;

2007.

[41] J. Mata, J. L. Alvarez, J. C. Riquelme. An Evolutionary Algorithm

to Discover Numeric Association Rules. In: SAC '02 Proc. of the

ACM Symp. on Applied computing. USA: ACM; 2002.

[42] J. Mata, J. L. Alvarez, J. C. Riquelme. Mining Numeric

Association Rules with Genetic Algorithms. In: Artificial Neural

Nets and Genetic Algorithms 2001, 264-267.

[43] A. Ghosh, B. Nath. Multi-objective rule mining using Genetic

algorithms. Information Sciences 2004, 163: 123–133.

[44] A. Orriols-Puig, J. Casillas, E. Bernadó-Mansilla. First approach

toward on-line evolution of association rules with learning

classifier systems. In: GECCO '08 Proc. of the 10th annual Conf.

companion on Genetic and evolutionary computation. USA:

ACM; 2008.

[45] M. Kaya, R. Alhajj. Utilizing Genetic Algorithms to Optimize

Membership Functions for Fuzzy Weighted Association Rules

Mining. Applied Intelligence 2006, 24: 7-15.

[46] W. Wang, S. M. Bridges. Genetic Algorithm Optimization of

Membership Functions for Mining Fuzzy Association Rules. In:

International Joint Conf. on Information Systems, Fuzzy Theory

and Technology Conf. Atlantic City: Association for Intelligent

Machinery; 2000.

[47] C. Chen, V. S. Tseng, T. Hong. Cluster-Based Evaluation in Fuzzy-

Genetic Data Mining. IEEE Transactions on Fuzzy System 2008.

16: 249 – 262.

[48] C. Chen, T. Hong, V. S. Tseng, C. Lee. A Genetic-Fuzzy Mining

Approach for Items with Multiple Minimum Supports. In: IEEE

International Fuzzy Systems Conf. London: IEEE; 2007.
[49] C. Chen, T. Hong, V. S. Tseng. Speeding up genetic-fuzzy mining

by fuzzy clustering. In: IEEE International Conf. on Fuzzy Systems

(FUZZ-IEEE). Jeju Island: IEEE; 2009.

[50] C. Chen, T. Hong, V. S. Tseng. An improved approach to find

membership functions and multiple minimum supports in fuzzy

data mining. Expert Systems with Applications 2009, 36: 10016–

10024.

[51] P. S. Thilagam, V. S. Ananthanarayana. Extraction and

optimization of fuzzy association rules using multi-objective

genetic algorithm. Pattern Analysis and Application 2008, 11:

159–168.

[52] B. Wang, N. Zhou, D. Liu, L. Zhou, P. Wang. Genetic Algorithm-

Based Rules Discovery for Networked Manufacturing Resources

Management. In: 4th International Conf. on Wireless

Communications, Networking and Mobile Computing. Dalian:

IEEE; 2008.

[53] Y. Hu. Determining membership functions and minimum fuzzy

support in finding fuzzy association rules for classification

problems. Knowledge-Based Systems 2006, 19: 57–66.

[54] H. Ishibuchi, T. Yamamoto. Fuzzy rule selection by multi-

objective genetic local search algorithms and rule evaluation

measures in data mining. Fuzzy Sets and Systems 2004, 141: 59–

88.

[55] J. Alcalá-Fdez, R. Alcalá, M. J. Gacto, Francisco Herrera. Learning

the membership function contexts for mining fuzzy association

rules by using genetic algorithms. Fuzzy Sets and Systems 2009,

160: 905–921.

[56] P. Deepa Shenoy, K.G. Srinivasa, K.R. Venugopal, L.M. Patnaik.

Evolutionary Approach for Mining Association Rules on

Dynamic Databases. Advances in Knowledge Discovery and

Data Mining 2003, 2637: 325-336.

[57] F. Guillet, P. Kuntz, R. Lehn. A Genetic Algorithm for Visualizing

Networks of Association Rules. Multiple Approaches to

Intelligent Systems 1999, 1611: 145-154.

[58] M. Kaya, R. Alhajj, Genetic algorithm based framework for

mining fuzzy association rules. Fuzzy Sets and Systems 2005,

152: 587–601.

[59] B. Alatas¸ E. Akin. An efficient genetic algorithm for automated

mining of both positive and negative quantitative association

rules. Soft Computing 2006, 10: 230-237.

[60] Ruud Schoonderwoerd, Janet L. Bruten, Owen E. Holland, and

Leon J. M. Rothkrantz. Ant-based load balancing in

telecommunications networks, Adaptive Behavior 1996, 5: 169-

207.

[61] A. Orriols-Puig, J. Casillas, F. Mart´. Unsupervised learning of

fuzzy association rules for consumer behavior modeling. Math

ware and Soft Computing 2009, 16: 29–43.

[62] M. Khabzaoui, C. Dhaenens, E. Ghazali Talbi. A Multicriteria

Genetic Algorithm to analyze DNA microarray data. In: Congress

on Evolutionary Computation CEC. USA: IEEE; 2004.

[63] M.t Kaya, “Multi-objective genetic algorithm based approaches

for mining optimized fuzzy association rules. Soft Computing

2006, 10: 578-586.

[64] M. Anandhavalli, SMIT, M. K. Ghose, K. Gauthaman, M. Boosha.

Global Search Analysis of Spatial Gene Expression Data Using

Genetic Algorithm. Recent Trends in Network Security and

Applications 2010, 89: 593-602.

[65] Y. Djenouri, A. Bendjoudi, M. Mehdi and N. Nouali-

Taboudjemat. Parallel association rules mining using GPUS and

bees behaviors. In: IEEE 6th International Conf. of Soft

Computing and Pattern Recognition (SoCPaR). Tunis: IEEE;

2014.

[66] P. Vyas, A. Chauhan. Comparative Optimization of Efficient

Association Rule Mining through PSO and GA. In: Int’l Conf. on

Machine Intelligence Research and Advancement. Katra: IEEE;

2013.

[67] B. Alatas, E. Akin. Rough particle swarm optimization and its

applications in data mining. In: Soft Computing, 2008, 12: 1205-

1218.

[68] N. Hong-yun, L. Jin-lan, Z. De-gan. Self-optimization Rule-chain

Mining Based on Potential Association Rule Directed Graph. In:

International Symp. on Computational Intelligence and Design.

Wuhan: IEEE; 2008.

[69] W. Zhu, J. Wang, H. Cao, Y. Zhang. A Novel Association Rule

Decision Algorithm Based on Ant Colony Optimization

Algorithm for Ball Mill Pulverizing System. In: Int’l Conf. on

Computer Science and Software Engineering. Hubei: IEEE; 2008.

[70] Y. He, S. C. Hui. Exploring ant-based algorithms for gene

expression data analysis. Artificial Intelligence in Medicine

2009, 47: 105—119.

[71] S.M Ghafari., C. Tjortjis. Association Rules Mining by improving

the Imperialism Competitive Algorithm (ARMICA). In: IFIP AICT

Proc. 12th Int'l Conf. on Artificial Intelligence Applications and

Innovations (AIAI). Greece: Springer; 2016.

[72] L. D. Jorio, A. Laurent, M. Teisseire. Fast Extraction of Gradual

Association Rules: A Heuristic Based Method. In: CSTST'08:

International Conf. on Soft Computing as Transdisciplinary

Science and Technology. France: ACM; 2008.

[73] J. Hu, X. Yang-Li. Association Rules Mining Using Multi-objective

Coevolutionary Algorithm. International Conf. on

Computational Intelligence and Security Workshop. Harbin:

IEEE; 2007.

[74] B. Alatas, E. Akin, A. Karci. MODENAR: Multi-objective

differential evolution algorithm for mining numeric association

rules. Applied Soft Computing 2008, 8: 646–656.

[75] K. Prasanna, M. Seetha, A.P. S. Kumar. CApriori: Conviction

Based Apriori Algorithm for Discovering Frequent Determinant

Patterns from High Dimensional Datasets. In: Int’l Conf. on

Science Engineering and Management Research (ICSEMR).

Chennai: IEEE; 2014.

[76] Ruey-Hsun Liang, Sheng-Ren Tsai, Yie-Tone Chen, Wan-Tsun

Tseng. Optimal power flow by a fuzzy based hybrid particle

swarm optimization approach. Electric Power Systems Research

2011, 81: 1466-1474.

[77] Iba K. Reactive power optimization by genetic algorithm. IEEE

Trans Power Syst. 1994, 9:685–692.

[78] I. Stojanović, I. Brajević, Predrag S. Stanimirović, L. A.

Kazakovtsev, and Z. Zdravev. Application of Heuristic and

Metaheuristic Algorithms in Solving Constrained Weber

Problem with Feasible Region Bounded by Arcs. Mathematical

Problems in Engineering. 2017.

[79] Baloković, M.; Kürster, M. An Application of Heuristic

Algorithms to Radial Velocity Data from Multiple-Planet

Extrasolar Systems. YSC'15 Proceedings of Contributed Papers,

pp. 44-47, Kyivskyi Universyte, 2008.

[80] Wang T, Liu Z, Chen Y, Xu Y, Dai X. Load Balancing Task

Scheduling Based on Genetic Algorithm in Cloud Computing.

Dependable, Autonomic and Secure Computing (DASC) IEEE

12th International Conference on, IEEE, 2014.

[81] S. M. Ghafari, M. Fazeli, A. Patooghy and L. Rikhtechi. Bee-

MMT: A load balancing method for power consumption

management in cloud computing. In: Sixth International

Conference on Contemporary Computing (IC3), Noida, pp. 76-

80, IEEE, 2013.

[82] M. Yakhchi, S. M. Ghafari, S. Yakhchi, M. Fazeli and A. Patooghi.

Proposing a load balancing method based on Cuckoo

Optimization Algorithm for energy management in cloud

computing infrastructures. In: 6th International Conference on

Modeling, Simulation, and Applied Optimization (ICMSAO),

Istanbul, pp. 1-5, IEEE, 2015.

[83] S. Yakhchi, S. M. Ghafari, M. Yakhchi, M. Fazeli and A. Patooghy.

ICA-MMT: A load balancing method in cloud computing

environment. In: 2nd World Symposium on Web Applications

and Networking (WSWAN), Sousse, pp. 1-7, IEEE, 2015.

[84] Tian, Zhonghuan, and S. Fong. Survey of Meta-Heuristic

Algorithms for Deep Learning Training. Optimization

Algorithms-Methods and Applications. Ozgur Baskan, InTech,

2016.

[85] V. Calderaro, V. Galdi, G. Graber and A. Piccolo, "Deterministic

vs heuristic algorithms for eco-driving application in metro

network," In: International Conference on Electrical Systems for

Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS),

Aachen, pp. 1-6, IEEE, 2015.

[86] S. Ventura and J. M. Luna. Pattern Mining with Evolutionary

Algorithms. Cham, Switzerland, Springer, 2016.

[87] D. Martín, A. Rosete, J. Alcalá-Fdez and F. Herrera. New Multi-

objective Evolutionary Algorithm for Mining a Reduced Set of

Interesting Positive and Negative Quantitative Association

Rules. IEEE Transactions on Evolutionary Computation 2014, 18:

54-69.

[88] A. M. Palacios, J. L. Palacios, L. Sanchez, J. Alcala-Fdez. Genetic

learning of the membership functions for mining fuzzy

association rules from low quality data. Information Sciences

2015, 295: 358-378.

[89] F. Padillo, J. M. Luna, F. Herrera, and S. Ventura. Mining

association rules on Big Data through MapReduce genetic

programming. Integrated Computer-Aided Engineering 2018,

25: 31—48.

[90] D. Martín, J. Alcalá-Fdez, A. Rosete, F. Herrera. NICGAR: A

Niching Genetic Algorithm to mine a diverse set of interesting

quantitative association rules. Information Sciences 2016, 356:

208-228,

[91] A. Cano, J. M. Luna, and S. Ventura. High performance

evaluation of evolutionary-mined association rules on GPUs.

The Journal of Supercomputing 2013, 66: 1438—1461.

[92] H. R. Qodmanan, M. Nasiri, B. Minaei-Bidgoli. Multi objective

association rule mining with genetic algorithm without

specifying minimum support and minimum confidence. Expert

Systems with Applications 2011, 38: 288-298.

[93] J. L. Olmo, J. M. Luna, J. R. Romero, S. Ventura. Mining

association rules with single and multi-objective grammar

guided ant programming. Integrated Computer-Aided

Engineering, 2013, 20(3): 217-234.

[94] http://archive.ics.uci.edu/ml/ UCI Machine Learning

Repository data sets. Accessed 27/6/18.

[95] J. M. Luna, J. R. Romero, S. Ventura. Design and behavior study

of a grammar-guided genetic programming algorithm for

mining association rules. Knowledge and Information Systems.

32(1): 53-76 (2012).

[96] J. M. Luna, J. R. Romero, S. Ventura. Grammar-based multi-

objective algorithms for mining association rules. Data

Knowledge and Engineering. 86: 19-37 (2013).

[97] J. M. Luna, J. R. Romero, C. Romero, S. Ventura. Reducing gaps

in quantitative association rules: A genetic programming free-

parameter algorithm. Integrated Computer-Aided Engineering

21(4): 321-337 (2014).

[98] M.J. del Jesus, J.A. Gámez, P. González, J.M. Puerta. On the

discovery of association rules by means of evolutionary

algorithms. WIREs DMKD 2011, 1, 397-415

