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Abstract. Microarray technology has enabled scientists to monitor and process 
the expression of thousands of genes in parallel, within a single experiment. 
However, the efficient interpretation and validation of the analysis results, based 
on current medical and biological knowledge, remains a challenge. Most gene 
expression analysis approaches do not incorporate existing background knowl-
edge in the process, thus necessitating laborious manual interpretation. In this 
paper we propose a novel hybrid knowledge-driven approach for analyzing gene 
expression data which integrates currently available biological and medical 
knowledge within the actual clustering process. Existing published scientific in-
formation is correlated to create, validate and biologically interpret the resulting 
clusters. Some preliminary experimental results are supplied using a sample 
yeast genome data set. 

1   Introduction 

DNA microarray technology has made it possible to simultaneously monitor the ex-
pression levels of thousands of genes in parallel during important biological functions 
and across large collections of samples, providing insight into gene functionality and 
their regulatory mechanisms. Once the expression levels of the genes have been de-
termined, it is often an important task to identify and group together genes with simi-
lar expression patterns (coexpressed genes). The analysis of gene expression data with 
the ultimate goal of identifying genes that share similar expression patterns and group-
ing them together is known as cluster analysis [1]. 
   During clustering, data algorithms and statistical techniques are deployed in order to 
partition the gene expression data set in a manner that genes which share a similar 
behavior pattern under a given set of specific conditions are members of the same 
cluster. Ideally, the majority of genes in the data set should be placed in distinct non-
overlapping and biologically meaningful clusters. Such groups of genes are much 
more tractable to study by domain experts than raw expression data.  
   One of the primary goals of clustering is to attribute functions to unidentified genes 
and locate novel functions based on co-expression [2], [3], [4]. Relatedness in biologi-
cal function often implies similarity in expression behavior and vise-versa. The mem-
bership of a gene with unidentified functionality in a functional coherent cluster of 



coexpressed genes implies that it also shares the same functionality as the rest of the 
genes belonging in the cluster. Additionally, the examination of genes outside of the 
formed clusters may yield to the discovery of novel functionalities previously uniden-
tified [5]. 

2   Related Work 

Numerous clustering algorithms exist for the analysis and examination of gene expres-
sion data. Algorithms can be classified as first-generation and second-generation [6]. 
A brief overview of each group is provided in the next sections. 

2.1   First generation clustering algorithms  

First-generation clustering algorithms are existing traditional data clustering algo-
rithms which are applied to gene expression data sets. First generation algorithms 
include direct visual inspection [7], K-means clustering [8], Self Organizing Maps 
(SOM) [9] and hierarchical clustering [4]. Despite the fact that they have been devel-
oped outside the biological community, their application on gene expression data may 
yield biologically meaningful results.  
   However, very often these algorithms are associated with one or more user-defined 
parameters which may render their use very difficult. For example, both K-means and 
SOM require the total number of clusters to be predefined which may be very difficult 
if not impossible to be predicted. Additionally, even the slightest alteration in these 
parameters will yield major changes in the resulting clusters thus making extensive 
tuning a mandatory element of the process. 
   Finally, first-generation algorithms usually suffer from processing and memory 
constraints when applied to very large data sets. Recently, a number of algorithms 
were proposed to tackle these limitations and to include more domain-specific pa-
rameters. These algorithms are known as second-generation clustering algorithms. 

2.2   Second generation clustering algorithms 

Second-generation clustering algorithms have been proposed to address the shortcom-
ings and limitations of first-generation algorithms. Additionally, they often include 
domain-specific knowledge in the clustering process which tends to lead to more pre-
cise and biologically meaningful results. 
   Examples of second-generation algorithms include the self-organizing tree algorithm 
(SOTA) [10], quality-based [3] and adaptive quality-based clustering [11], model-
based clustering [12], simulated annealing [13], the cluster affinity search technique 
(CAST) [14], CLICK [15] and DHC [16]. 
   QT_Clust for example, was designed having cluster analysis of gene expression data 
in mind. As a quality-based algorithm, it produces clusters that have a quality guaran-



tee which ensures that all members of the cluster have similar expression patterns with 
all other members of the specific cluster. The quality guarantee is essentially a prede-
fined by the user threshold which represents the maximal distance between any two 
given points within the cluster.  

2.3   Result Interpretation 

One of the most significant tasks in the process of clustering gene expression data is 
the actual interpretation of the results [1], [17], [6]. The interpretation of co-expressed 
genes and coherent patterns mainly depends in associating existing domain knowledge 
with the current data set, which in itself presents several significant challenges. 
   The main limitation of many gene expression analytic approaches is the fact that 
they do not successfully incorporate domain knowledge about the genes into the actual 
process, compromising the quality of the results obtained. 
   Once the clustering algorithm has terminated, the challenge is to validate and inter-
pret the resulting clusters, define their boundaries and chose the optimal ones so that 
genes are divided forming non-overlapping biologically meaningful clusters. Typi-
cally, the cluster boundaries are manually defined and evaluated so that the selected 
clusters contain functionally relevant genes.  
   Several alternative solutions have been proposed for automatically defining the 
boundaries of the generated clusters based on several statistical criteria and parameters 
[12]. These however do not ensure that the final set of clusters selected contains bio-
logically meaningful group of genes and omit any existing relevant biological knowl-
edge in the process. 
   It has been argued that the effective integration of external information elements, 
such as functional information of the genes and upstream oligonucleotide sequence 
information, will drive the process of organizing and analyzing gene expression data 
in a more efficient and precise manner [18]. Published scientific text contains a dis-
tilled version of the most significant biological and medical discoveries and is a potent 
source of functional information for analytical algorithms. It is critical to include rele-
vant and comprehensive background literature to appropriately analyze such data sets 
and eventually understand them [19].  
   A number of solutions embracing this notion have been developed and take a litera-
ture-based approach to clustering gene expression data. These include the meta-
clustering of gene-expression data combined with existing literature [20], using gene 
annotation to judge cluster quality [21], profiling gene groups with based text informa-
tion and applying text-mining techniques for organizing and integrating large amounts 
of available information [22]. 

3   Framework Definition 

We propose a novel system framework which integrates the information located and 
obtained by the large number of medical and biological database systems available 



with the actual gene clustering process. Existing information about a genes molecular 
function, the biological process in which it takes part and the cellular component in 
which it resides is retrieved and encapsulated within the actual clustering process. 
Including the vast amounts of available literature within the analysis of gene expres-
sion data offers the opportunity to incorporate functional and other types of informa-
tion about the genes when creating, validating and interpreting the resulting gene clus-
ters.  
   Instead of assigning each gene randomly into a cluster, genes are initially grouped 
together according to function or biological process. Their respective gene expression 
vectors are then processed and genes are moved among the existing clusters until the 
algorithm terminates. The functional categorization of genes prior to the actual clus-
tering process effectively minimizes the number of iterations the algorithm is executed 
since functional similarity between genes often implies similar expression patterns and 
vise versa. In contrast with a conventional approach, genes are moved less times 
among the existing clusters since their initial categorization is not done at random but 
based on existing published knowledge instead.  

3.1   The underlying methodology 

The proposed methodology comprises two main steps which form an iterative process. 
First, the system processes the given expression data set and identifies all relevant 
entities and genes that are involved in the current experiment. Their respective bio-
logical knowledge is then retrieved from well-known available databases, is indexed 
and stored locally. More specifically, the system utilizes three distinct types of data-
bases: primary sequence databases (i.e. GenBank, DDJB), secondary sequence data-
bases (i.e. UNIgene, TIGR) and genomic databases (i.e. Ensembl, GDB).Information 
about the molecular function, biological process and cellular component in which each 
gene composing the experiment is retrieved in the form of widely accepted GO key-
words [23].  
   This ensures that relevant existing knowledge on the genes composing the given data 
set is taken into consideration. Alternatively, in the event that a certain gene has not 
been previously investigated and thus lacks any relevant background literature, homo-
logue associations can be identified and their respective literature retrieved. Addition-
ally, homologue associations act as secondary references during the assessment of the 
cluster functional coherence. 
   The retrieved information is utilized to calculate the functional similarity between 
the genes in the data set and initially place them accordingly. The expression data is 
initially sorted based on the genes functional category or biological process as dictated 
by the relevant GO annotations retrieved. In the event that a gene has no relevant 
information associated with it and no homologues can be identified, it is placed in a 
cluster randomly chosen.  
   The initial k number of clusters is calculated by scanning the functional distribution 
of the genes in the microarray and selecting the most overrepresented functional cate-
gories available from the resulting set. Genes that have an unknown biological process 



or category as well as outliers, which represent statistically underrepresented genes are 
randomly inserted into one of the existing clusters. A functional category is defined as 
overrepresented when the number of genes composing it is larger than the average 
number of genes forming all categories in the experiment.  
   Alternatively, k can be set to an initial value and then adjusted during the algorithm 
iterations by assessing the cluster functional similarity after each iteration, and com-
paring it to a predefined ‘quality’ threshold. Should the average functional coherence 

of the resulting clusters be below the threshold after a successful iteration, the value of 

k is shifted accordingly. This is discussed in more detail in the conclusions section of 

this paper.  

A number of existing distance and semimetric distance metrics, such as Euclidean 

distance, Spearman correlation and Manhattan distance, are defined and available for 

use [24]. In this case, we use the centered Pearson correlation similarity coefficient r, 
taking values between -1 and +1. The main reason for choosing it is the ability to 

detect exact opposite expression vectors (r = -1) and expression vectors that are com-

pletely uncorrelated and independent between them (r = 0).  

3.2   Gene Ontology terms 

Existing information about a gene is retrieved from the available sources in the form 

of GO annotation terms. The GO set consists of a widely accepted and standardized 

gene annotation vocabulary used by scientists in order to express and define in a clear 

and concise manner certain attributes about a specific gene [23],[25].  

   Each ontology is structured in a manner that specific terms are considered children 

of more broad terms. Additionally, in order to appropriately model biological data, the 

structure developed also supports many-to-many relationships such as potential node 

within the ontology can have many parents and many children, all connected with 

relationships between them. The selected terms are then organized into directed 

acyclic graphs, forming a complete network of interconnected terms describing spe-

cific genes properties.     

   An n x n term distance matrix is created which contains the absolute minimum 

distance between any two GO terms contained within the database. This is essential in 

order to calculate the functional similarity between two possible genes in the experi-

ment. This is achieved by sequentially parsing every possible path of the GO ontology 

using nested queries and inner joins and eventually creating a separate table with the 

distance information. Two GO terms are considered identical when they have a dis-

tance of zero. 

3.3 Gene functional similarity 

In order to calculate the functional similarity between the genes composing the mi-

croarray experiment, a functional distance matrix is created containing the distance 

between any two genes in the microarray experiment. Using the previously con-



structed term matrix, the functional distance between the specific genes composing the 
experiment is extracted and stored locally. Since GO terms essentially specify a genes 
biological function or goal, their relevant term graph distances reflect their actual 
biological similarity and are used as a metric to weight the relationships between 
them. This is mainly achieved due to the GO ontologies hierarchical structure and 
multiple parent-child relationships. 
   The example below illustrates the relationship between the GO annotation terms 
assigned to three separate yeast genes, more specifically APN1, CDC2 and LCD1 as 
extracted by the SGD [23]. Genes with a similar biological goal have a relatively 
small distance value between them: APN1 (DNA repair) and CDC2 (mismatch repair) 
have a distance of 1 ; genes  that do not share common or similar biological goals have 
a larger distance value of 8: LCD1 (establishment of protein localization) and CDC2 
(mismatch repair). 
   Utilizing the created functional similarity matrix, genes are initially grouped accord-
ing to their ‘annotation term distance’. This is achieved by randomly selecting one 

gene from each of the overrepresented functional categories and using it as a starting 

node for the initial groups. Using information extracted from the functional similarity 

matrix, genes are placed in each group according to their relevant distance. Genes 

which have an unknown molecular function (GO:0005554) or take part in an unknown 

biological process (GO:0000004) are randomly placed into one of the existing clusters.  

Table 1. A merged version of both matrices created: the generalized GO term distance matrix 
and the functional similarity matrix between the APN1, CDC2 and LCD1 yeast genomes  

 GO:0006281 
(APN1) 

GO:0006298 
(CDC2) 

GO:0045184 
(LCD1) 

GO:0006281 
(APN1) 

0 1 7 

GO:0006298 
(CDC2) 

1 0 8 

GO:0045184 
(LCD1) 

7 8 0 

3.4 Assessing cluster functional coherence 

The functional coherence of each cluster can be directly deducted by the distance 

between the GO annotation terms of the gene which compose it. As mentioned above, 

should two genes has identical or similar molecular functions or biological goals, the 

minimum absolute distance between their respective annotation terms will be rela-

tively small. In order to assess the functional coherence of each cluster, the arithmetic 

mean of the functional dispersion within the cluster (1).  
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   Functional coherence C is defined as the sum of the respective absolute path dis-
tances between all genes composing the cluster divided by the total number of paths 
contained in the specific cluster. Functional coherent clusters have a small coherence 
value while highly skewed clusters have higher C values. 

The above described approach operates under the hypothesis that the relevant func-
tionality of the genes / ORF’s composing the experiment has already been determined 

and mapped. During a typical microarray experiment however, a substantial number 

of genes have unknown or undetermined functionality in which case they are clustered 

solely on their relevant expression vectors. However, by assessing the functional co-

herency of a cluster, one can define the functional boundaries of a cluster with greater 

precision, giving a potential scientist greater insight into the exact function of an uni-

dentified gene within it. 

   Alternatively, the functional coherence of each cluster could be calculated by utiliz-

ing the Neighbor Divergence Per Gene (NDPG) [26], [27], [28]. NDPG uses avail-
able scientific literature (corpus) in order to compute an information theoretical score 

which indicates how functionally coherent the group of genes under investigation is.  

4   Experimental Validation 

An initial sample domain was assembled in order to validate the proposed methodol-

ogy and generate some preliminary experimental results. A subset consisting of 98 

genes extracted from the original Saccharomyces data set used by Eisen et. al. [4], 

[29] was created. The [29] data set contains expression data during the yeast sporula-

tion on 80 individual experiment conditions.  

   The genes within the data set were initially sorted and grouped together according to 

their broad biological goal. All existing knowledge was extracted from the SGD in the 

form of GO annotation terms and stored locally. The relevant paths between the exist-

ing genes were calculated and used to group the genes together into an initial group. 

Additionally, a small percentage of genes were intentionally mislabeled as participat-

ing in an unknown biological process in order to verify the algorithms ability to iden-

tify homologues.  

   The data set contained four overrepresented categories of annotated biological proc-

esses: DNA replication (GO:0006260), cell cycle (GO:0007049), protein biosynthesis 

(GO:0006412) and aerobic respiration (GO:0009060). 

Based on the identified overrepresented biological goals extracted from the data set 

the value of k was manually set to 5 and genes were grouped accordingly. Genes 

marked as unknown where randomly placed into one of the existing groups. K-means 

clustering was then deployed using the predefined groups and Pearson Correlation 



Coefficient as a distance metric. The algorithm terminated after 4 successful itera-
tions.  
   From the five resulting clusters, clusters 1, 2 and 5 display the largest functional 
coherence based on the genes biological goal. DNA replication is the dominating 
category in cluster 1, protein biosynthesis in cluster 2 and finally cell cycle in cluster 
5. The average coherence of the resulting clusters is 65.03%. Table 2 summarizes the 
characteristics of the resulting clusters. The calculated coherence metric can addition-
ally be used in order to prioritize the resulting clusters for further examination. 

Table 2. The resulting clusters and their characteristics 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

# of genes  26 18 17 27 10 

% of genes 27% 18% 17% 28% 10% 

GO:000626
0 

18 0 1 4 2 

GO:000704
9 

4 3 8 3 7 

GO:000641
2 

2 15 2 5 0 

GO:000906
0 

2 0 6 15 1 

C Score 2.7928 1.388 3.7785 4.032 2.52 

5   Future directions and conclusions 

In this paper we briefly examined the current methodologies and trends associated 
with the analysis of gene expression data obtained by performing microarray experi-
ments. One of the most significant steps in analyzing gene expression data is cluster-
ing which involves grouping together genes into distinct, non-overlapping and biologi-
cally meaningful clusters. Both traditional and second generation algorithms were 
briefly discussed.  
   Including the vast amounts of available biological information into the actual data 
clustering and gene expression analysis operations still remains one of the most sig-
nificant challenges. We propose a novel hybrid knowledge driven approach to cluster-
ing gene expression profiles which utilizes the relevant GO annotation terms associ-



ated with them. Genes are grouped together prior to clustering according to their mo-
lecular function, biological process or subcellular location. Additionally, the algorithm 
can also be deployed in order to assess the resulting clusters functional coherence. 
Finally, some preliminary experiments results obtained by a sample domain are also 
supplied and discussed.  
   One future direction currently developed is the design of a greedy functional quality 
algorithm for clustering gene expression data. Gene ontology annotation is used in 
order to judge the functional quality of the resulting clusters after each iteration. Using 
a predefined quality metric, the algorithm will be able to produce clusters that have a 
certain quality guarantee: the maximal functional distance between any two genes 
composing the cluster should not exceed a certain predefined threshold. This approach 
will eventually produce clusters with tightly related expression patterns and functional 
properties while discarding genes that do not appear to be coexpressed with any of the 
formed categories. Despite the fact that during microarray experiments the exact func-
tion of a substantial number of genes composing the dataset is undetermined, the 
above mentioned approach will explicitly narrow down the functional boundaries of a 
cluster, thus providing biologists with a more clear insight of the potential functional-
ity of such ambiguous genes. 
   Finally, a promising idea for future extension, enhancing the accuracy of the func-
tional coherence metric between the genes composing a cluster is the use of weighted 
word vectors. All annotation terms in the path from a specific gene to the topmost 
element of the hierarchy are tokenized and converted into a weighted word vector 
where each dimension represents the occurrence of a specific term. To quantify the 
functional similarity of any two genes, the cosine between their weighted word vectors 
is used. This will essentially offer a more precise view on the functional similarity 
between two individual genes. 
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