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Abstract. Advances in biological experiments, such as DNA microarrays, have produced large multidimensional data sets
for examination and retrospective analysis. Scientists however, heavily rely on existing biomedical knowledge in order to
fully analyze and comprehend such datasets. Our proposed framework relies on the Gene Ontology for integrating a priori
biomedical knowledge into traditional data analysis approaches. We explore the impact of considering each aspect of the Gene
Ontology individually for quantifying the biological relatedness between gene products. We discuss two figure of merit scores
for quantifying the pair-wise biological relatedness between gene products and the intra-cluster biological coherency of groups of
gene products. Finally, we perform cluster deterioration simulation experiments on a well scrutinized Saccharomyces cerevisiae
data set consisting of hybridization measurements. The results presented illustrate a strong correlation between the devised cluster
coherency figure of merit and the randomization of cluster membership.
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1. Introduction

Recent advances in biological experiments such as
DNA microarray technology have made it possible to
simultaneously monitor the expression levels of thou-
sands of genes in parallel, during important biologi-
cal processes and across large collections of samples,
providing insight into gene functionality and their reg-
ulatory mechanisms. Microarrays enable researchers
to identify and comprehend genes and their respec-
tive functions that would have otherwise remained un-
known.

Large scale experiments like this however, induce
and heavily rely on massive amounts of generated in-
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formation. The measured patterns during such exper-
iments are very often explained retrospectively by ex-
amining and analyzing the underlying biological prop-
erties of the respective gene products composing the
data set. Thus, the amount of scientific discoveries,
hypotheses and cross-references, stored mainly in raw
text format across a number of specialized systems, is
growing rapidly.

Existing biological knowledge is critical in order to
comprehend such data sets. Researchers have argued
towards the effectiveness of deploying computational
methods that incorporate external information sources
in order to assist the interpretation and organization of
such experiments [1]. External information sources
include ontology-based knowledge, primary and sec-
ondary sequence databases and medical literature. Pub-
lished scientific text contains a distilled version of the
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most biologically significant discoveries and is a po-
tent source of information for integrating in experi-
ments [37].

A number of solutions yielding high accuracy results
exist but they often rely on the integration of infor-
mation from a number of external information sources
such as MEDLINE, making them less flexible and per-
haps, in many cases, organism oriented. It is apparent
that solutions which solely rely on raw text only offer
a broader notion of similarity between gene products.
The raw text retrieved from such sources as MEDLINE,
often includes additional information which may not
be directly relevant to the scope of the research per-
formed, thus effectively lowering the overall accuracy
of the local information repository constructed.

On the other hand, Gene Ontology (GO) annotation
terms are specific and explicitly denote a gene product’s
molecular function, the biological process in which it
takes part in or the molecular component in which it
resides [2]. Thus, making extensive usage of the GO
annotation terms will provide more specific biomedi-
cal information and a more accurate measure on the
correlation between gene products.

The problem of existing knowledge integration is by
no means limited to the field of bioinformatics, but
overlaps across several scientific disciplines including
health informatics and biomedicine. A more detailed
overview of these approaches is provided in Section 2.
Our approach demonstrates that statistical text process-
ing techniques can be deployed solely on the GO and
the information therein, and yield fruitful results.

The main contribution of our work is:

– The construction of textual profiles for gene prod-
ucts based on a controlled and semantically strict
vocabulary, the GO. Given GO’s nature, the textu-
al profiles, which essentially describe a gene prod-
uct’s biological properties, have a higher degree of
consistency compared to other solutions.

– Our method provides a complete framework for
quantifying and assessing the intra-cluster biolog-
ical relatedness between both individual pairs of
gene products as well as clusters of gene products.

– In contrast to existing approaches, our method on-
ly requires the complete GO tree structure and does
not rely on external information sources. Given the
strict and semantically concise nature of the GO,
this effectively eliminates the problems caused due
to the lack of standards other solutions face. As a
direct implication, our approach requires substan-
tially less processing resources and time and mini-
mizes the amount of human intervention required.

– We validate our approach by performing experi-
ments on a well-known gene expression dataset
and illustrate the different variations of the correla-
tion of our figure of merit for a cluster’s biological
coherency and gene expression patterns.

– We further explore the impact that evidence codes
have on the developed framework by performing
an analysis exclusively based on TAS codes.

Throughout this paper, we make extensive use of the
term “gene products”; this refers to both protein cod-
ing genes and RNA genes. This is done in order to
keep terminology and semantics consistent, as much as
possible, with these defined and used in the Saccha-
romyces Genome Database and the GO. The remaining
of the paper is organized as follows: Section 2 reviews
related work. Section 3 details the methods used in the
proposed approach. Section 4 presents experimental
results. Section 5 discusses and evaluates the results
and concludes the paper with a general overview of the
contributions of the research performed.

2. Related work

Traditional, data-driven approaches for clustering
large scale data sets resulting from DNA microarray
gene expression experiments lack the fundamental abil-
ity to automatically assess and illustrate the character-
istics of the resulting clusters from a biological stand-
point [43]. Information retrieval [32], text mining [21]
and statistical natural processing methods [17,20] have
been recently deployed in order to quantify and assess
the pair-wise biological similarity between gene prod-
ucts. Additionally, similar approaches have been used
in order to discover and analyse the functional enrich-
ment of groups of gene products, such as clusters result-
ing from data clustering analysis [37]. Several of these
approaches take into consideration existing biomedical
knowledge and infuse it into the analysis process in or-
der to enable scientists to retrospectively scrutinize the
experimental results obtained.

In the scope of the research presented in this pa-
per, we can generally group existing approaches in-
to two main categories: data warehouse oriented ap-
proaches and ontology-based approaches. The first take
a data warehousing approach to collecting, indexing
and aggregating existing information from disparate
sources. The information collected is then normalized,
processed and transformed into a format that can be
integrated with existing experimental platforms. On-
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tology driven approaches mainly focus on exploiting
the information contained in biomedical ontologies for
the process of evaluating the results obtained from tra-
ditional data clustering operations. In the vast majority
of cases, the ontology used is the Gene Ontology [3,7,
14,16,17,22,30,44].

Raychaudhuri [37] developed the Neighbour Diver-
gence per Gene (NDPG) concept in order to assess
the functional coherency of a group of genes by utiliz-
ing existing knowledge from public repositories such
as MEDLINE [41]. Glenisson et al. [20] implement-
ed and presented a framework, TXTGate, based on
textual information for profiling groups of individual
genes. In their work, Nakken [32] described a method
of text analysis based on global and local analysis of
documents associated with pairs of genes and illus-
trate how their approach can be utilized for discover-
ing, identifying and annotating functional relationships
between them. In their study, Bolshakova [8] devel-
oped a knowledge-driven cluster validity assessment
system for results obtained by DNA microarray hy-
bridization measurement clustering experiments. In a
subsequent study of the authors [7], a comparison is
provided between the results obtained by well-known
statistical approaches of assessing cluster validity and
the results obtained by a GO-driven approach based on
Resnik’s [38] information content metric. More specif-
ically, the statistical validity approaches which were
analysed included Dunn’s index [18] and the silhou-
ette coefficient [25]. A similar line of attack was fol-
lowed by Couto [14,15] who studied the correlation be-
tween semantic similarities based on the GO and simi-
larities extracted from Pfam [5]. Similarly, Wang [44]
investigated the correlation between gene expression
and similarity based on information extracted from the
GO and the aspects composing it. More specifically,
common semantic similarity metrics such as Resnik,
Lin [28] and Jiang [24] were taken into consideration
and were found to yield similar results. In a subse-
quent study [3], the authors proposed and encouraged
the interdependence between semantic similarity and
other functional information resources. Finally, Sevil-
la [39] explored in depth the correlation between se-
mantic similarity using information extracted from the
GO and gene expression similarity, as measured from
DNA microarray hybridization experiments. The au-
thors used the Resnik, Lin and Jiang semantic simi-
larity metrics for quantifying the pair-wise GO-driven
similarity between gene products whereas the Pearson
correlation coefficient [23] was used for calculating the
similarity between individual gene expression profiles.

3. Methods

3.1. Biomedical ontologies

Ontologies are one of the most widely used means of
representing knowledge in the majority of life science
domains. An ontology is essentially an explicit speci-
fication of conceptualization: it describes concepts and
the relationships which exist between these concepts
within a certain domain in an explicit manner [33]. A
number of ontologies have been developed and have
been widely used in the bioinformatics field, such as
the Unified Medical Language System (UMLS) [6],
Medical Subject Headings (MeSH) [29], Microarray
Gene Expression Data (MGED) [9] and the Gene On-
tology (GO) [2]. Currently, the Gene Ontology is the
most widely used biomedical ontology and counts nu-
merous applications within the bioinformatics domain.
The GO consists of a widely accepted and standardized
gene annotation vocabulary used by scientists in order
to express and define in a clear and concise manner the
biological properties of gene products. The GO is com-
posed from three separate, orthogonal sub-ontologies
(referred to as aspects): molecular function, biologi-
cal process and cellular component. The individual as-
pects of the GO are structures in rooted direct acyclic
graphs with typed edges. Broader terms which describe
general biological notions are located in the top lev-
els of the ontology whereas more specific terms which
denote explicit information about particular biological
concepts are located in the lower levels [11]. Every
GO annotation term is assigned to a gene product and
a specific code, known as an evidence code, illustrates
the nature of the evidence on which this particular an-
notation was inferred from. The most informative ev-
idence code is Tractable Author Statement [30] while
the less informative code is Inferred from Electronic
Annotation [22].

3.2. Constructing gene textual profiles

For each gene product, we first construct a textual
profile. The textual profile essentially contains a de-
scription of the biological properties of the gene prod-
uct in raw text format. The driving hypothesis behind
our framework is that a high degree in semantic sim-
ilarity between the textual profiles of individual gene
products indicates a high degree of relatedness from a
biological standpoint.

Every GO term follows the true path rule (TPR)
which states: the pathway from a child term all the way
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up to its top-level parent(s) must always be true. As
a direct implication, annotation of a gene product with
a specific descendant attribute directly implies that the
gene product also holds all ancestor attributes. This
means that if a specific annotation term has been as-
signed to a gene product, all annotation terms which
lie in the path between the original term and the root of
the aspect also apply to the specific gene product.

By exploiting the TPR, we are able to construct more
accurate and concise gene textual profiles, since the
number of annotation terms associated with each gene
product is maximized. For every gene product, the path
from its assigned GO annotation term up to the root
node of the ontology is extracted. This effectively as-
signs a set of GO annotation terms to the gene product.
For every GO annotation term in the set, the definition
field is extracted and the textual information contained
within it is appended to the textual profile.

3.3. Vector space model representation

We encoded the individually constructed gene text
profiles using a bag-of-words, following the vector
space model paradigm [40]. Despite its simplicity, the
vector space model is considered as one of the driving
forces in the field of information retrieval [36] and has
gained numerous applications [34] and appraisals from
the scientific community [10]. The applicability of the
vector space model in the context of biological text has
been previously shown by attempting to recreate bio-
logical subgroups and applying text-based clustering
on a custom made data set of Saccharomyces cerevisiae
gene products [16].

In the vector space model representation, a docu-
ment is represented by a weighted vector (also known
as a profile) of which each individual component cor-
responds to a single term from the entire set of terms
within the constructed vocabulary [4]. A number of
popular indexing schemes, such as BOOL, IDF and
TF-IDF exist and were taken into consideration [26].
Due to the very large vocabulary constructed, a rise in
time and processing power requirements was observed
while indexing the textual profiles constructed. This is
due to that despite the fact that the cumulative number
of terms during large scale experiments such as this
is very high, the average number of terms composing
each individual textual profile remains relatively low
and is on average 200 terms long. Therefore, IDF was
chosen over TF-IDF, which is a reasonable choice for
indexing medium to small sized documents [21].

3.4. Quantifying biological similarity

Similarity between a pair of documents di and dj is
calculated by measuring the cosine of the angle between
the normalized weighted vectors representing the two
documents [31] where highly similar documents have
a cosine of one. Based on this notion, given two genes i
and j, represented by their previously constructed textu-
al profiles di, dj we define BIOsim as the cosine of the
angle between the normalized weighted vectors repre-
senting their individual textual profiles. Similarly, we
can also assess and quantify the biological relatedness
and coherency of a group of genes based on the same
metric notion. Given a group of genes, we can define
the cluster’s functional coherence, BIOCo, based on
the arithmetic mean of their normalized weighted vec-
tor representations. In the majority of gene expression
clustering experiments however, it becomes clear that a
small subset of gene products will exist which does not
have any annotation terms assigned to them. In order
to quantify this, we define the cluster coverage metric
as: the percentage of gene products, composing a clus-
ter, which have at least one annotation term assigned
to them which meets the experimental criteria and can
be utilized in the developed framework. Higher clus-
ter coverage scores with values closer to 100 denote a
higher amount of existing knowledge through textual
profiles available for extraction since more annotation
terms are present.

4. Results

4.1. Exploring the impact of GO evidence codes

We have previously shown the applicability of the
proposed framework in the context of DNA microar-
rays and gene expression measurement data. This was
achieved by performing experiments on the Eisen Sac-
charomyces cerevisiae data set [19]. More specifical-
ly, hierarchical clustering analysis was performed on
the original gene expression data set and the proposed
framework was deployed in order to identify the top
most functionally enriched clusters in the result set.
The experiments and results obtained are discussed in
detail in [17].

In order to validate the proposed figure of merit score
for quantifying the biological coherency of a group of
genes, a series of cluster deterioration simulation ex-
periments were performed on the Saccharomyces cere-
visiae gene expression data set used by Tavazoie [42].
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Table 1
The most highly functionally enriched clusters composing the data set

Cluster MIPS functional category (total ORFs)

1 Ribosomal proteins (206) Organization of cytoplasm (555)
Organization of chromosome structure(41)

2 DNA synthesis and replication (82) Nuclear organization (720)
Cell-cycle control and mytosis (312)
Recombination and DNA repair (84)

4 Mitochondrial organization (339) Respiration (79)
7 Cell-cycle control and mitosis (312)

Budding, cell polarity, filament formation (161)
DNA synthesis and replication (82)

8 TCA pathway (22) Carbohydrate metabolism (411)
14 Organization of centrosome (28) Nuclear biogenesis (5)

Organization of cytoskeleton (93)
30 Nitrogen and sulphur metabolism (75) Amino acid metabolism (203)

In their study, Tavazoie variance-normalize the expres-
sion profile of each ORF in the Cho data set and select
the 3,000 most variable ORF’s as their data set. The
hybridization measurements are distributed in 15 time
points across two Saccharomyces cerevisiae cell cycles.
The gene products are pre-clustered using the k-means
clustering algorithm, a partitional approach that min-
imizes the overall intra-cluster dispersion by iterative
reallocation of cluster members. The total number of
clusters k is set to 30 and the Euclidean distance metric
is used for quantifying the distance between expression
profiles in the experimental space.

As illustrated in Table 1, the most highly function-
ally enriched clusters in the original experiment were
clusters 1, 2, 4, 7, 8, 14 and 30. The most notable func-
tional enrichment can be observed in cluster 1 where
64 out of the total 164 gene products composing the
cluster encode ribosomal proteins. In their work, the
authors point out that the high number of clusters in the
data set leads to an overestimation of the underlying di-
versity of biological expression classes since members
of other clusters may participate in multiple classically
defined processes and therefore may not show signif-
icant enrichment in any one functional category. For
this reason, only the above seven identified functional-
ly enriched clusters were chosen as the data set used in
our experiments.

For each member of the above identified clusters, a
textual profile is constructed using information extract-
ed by its assigned GO annotation terms. The process of
producing textual profiles is described in more detail in
section 3 of this paper. Initially, annotation terms from
all three aspects of the GO (biological process, cellu-
lar component and molecular function) are taken into
consideration. Additionally, for the initial iteration of
the experiments, all evidence code annotations (apart
from IEA) were taken into consideration. The mapping

Table 2
the calculated BIOCo scores when taking in-
to consideration all three aspects of the Gene
Ontology

cluster coverage percentage BIOCo

1 94 0.858164
2 92 0.817790
4 95 0.763393
7 94 0.823816
8 90 0.768452
14 93 0.792274
30 97 0.777898

between gene products and GO terms was provided by
the Saccharomyces Genome Database (SGD) [12].

The cluster coverage score was calculated for each
individual cluster based on the percentage of its mem-
bers that were annotated with GO terms. The mean
cluster coverage score for the data set was 93.57%
which illustrates the fact that a very high amount of
a priori knowledge was taken into consideration since
the vast majority of cluster members had annotation
terms assigned to them. The BIOCo coherency figure
of merit score was calculated for each cluster and the
results are presented in Table 2. As expected, cluster 1
scored the highest BIOCo score (0.8581164) due to the
fact that it presented the highest functional enrichment
from all the remaining clusters in the data set. The
mean BIOCo score of the entire data set was calculated
to be equal to 0.80025 which clearly illustrates a certain
level of biological coherency since values closer to 1
depict a higher level of intra-cluster member similarity.

We further explore the impact that individual GO
annotation evidence codes have on the devised figure
of merit score by taking into consideration only TAS
evidence codes. TAS codes are considered to be of
the highest quality since the annotation can be traced
through well-scrutinized and published experimental
results [30]. The filtering is applied iteratively on each
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Table 3
The calculated BIOCo score when taking into
consideration TAS evidence cores from all
aspects of the Gene Ontology

cluster coverage percentage BIOCo

1 47.05 0.949890
2 28.15 0.595404
4 27.08 0.686708
7 30.35 0.751307
8 25.80 0.696457

14 17.02 0.761478
30 16.21 0.726763

Table 4
The calculated BIOCo score when tak-
ing into consideration TAS evidence cores
from the biological process aspect of the
Gene Ontology

cluster coverage percentage BIOCo

1 47.05 0.95123
2 21.35 0.68728
4 18.75 0.77629
7 19.64 0.87357
8 20.96 0.74473
14 12.76 0.90855
30 10.81 0.75910

cluster composing the data set, initially by taking into
consideration all three aspects of the GO. The results
obtained are illustrated in Table 3. A first striking ob-
servation is the decrease of the cluster coverage score
across all clusters composing the data set. This is due
to the fact that the number of annotations which are
assigned the TAS evidence code is substantially overall
lower. The mean calculated BIOCo score was 0.7382
and the mean calculated cluster coverage percentage
score across the data set was 27.38%. It becomes clear
first hand by comparing with the previously obtained
results involving all evidence codes that a lower clus-
ter coverage percentage score translates into a smaller
amount of a priori knowledge taken into consideration
by the framework.

Next, each aspect of the GO is taken into considera-
tion individually. We deploy the presented framework
by utilizing the biological process, molecular func-
tion and cellular component aspects individually and
present the results obtained.

When taking into consideration GO annotation terms
from the biological process aspect, illustrated in Ta-
ble 4, the mean cluster coverage score of the data
was 21.61%. The calculated mean BIOCo score was
0.8143. When the molecular function aspect is exclu-
sively selected, illustrated in Table 5, the mean cluster
coverage score drops to 10.44% whereas the calculat-
ed mean BIOCo score across the data set is 0.80050.

Table 5
The calculated BIOCo score when taking in-
to consideration TAS evidence cores from the
molecular function aspect of the Gene Ontol-
ogy

cluster coverage percentage BIOCo

1 1.68 1
2 13.59 0.49002
4 10.41 0.73790
7 23.21 0.784859
8 6.45 0.848914
14 4.25 1
30 13.51 0.77331

Table 6
The calculated BIOCo score when taking
into consideration TAS evidence cores from
the cellular component aspect of the Gene
Ontology

cluster coverage percentage BIOCo

1 4.20 1
2 1.94 1
4 4.16 1
7 0 0
8 0 0

14 6.38 1
30 0 0

Clusters 1 and 14 scored a BIOCo value of 1 due to
the very low number of gene products with annotation
terms that were taken into consideration. Both clusters
contained only two gene products that were assigned
GO annotation terms from the molecular function as-
pect and using a TAS evidence code. This is successful-
ly illustrated by the very low cluster coverage score the
clusters had of 1.68% and 4.25% respectively. Final-
ly, the cellular component aspect of the GO is utilized
exclusively which reduces the number of available an-
notation terms to the system drastically, thus lowering
the amount of a priori knowledge taken into consider-
ation. The results obtained are illustrated in Table 6.
The mean cluster coverage score was 2.38% and the
mean BIOCo score amongst the members of the data
set was 0.57. Clusters 7, 8 and 30 had no annotation
terms available matching the experimental criteria set
and thus both BIOCo and cluster coverage scores was
null.

By performing an overall examination of the results
obtained, we reach the conclusion that despite the fact
that annotation terms assigned a TAS evidence code
are of the highest possible quality, the overall existing
number of annotations is very low. This renders their
exclusive usage for determining the functional enrich-
ment of clusters very difficult and scientists should po-
tentially explore the possibility of expanding the set of
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allowed evidence codes in order to increase the amount
of a priori knowledge taken into consideration. Fur-
thermore, we have shown how the calculated cluster
coverage score produced for each group of genes can
act as a confidence metric on how accurate the BIOCo
score is. Lower cluster coverage values denote that
a small subset of the available GO annotation terms
matched the experimental criteria and that the calcu-
lated coherency score only took a portion of the avail-
able a priori biomedical knowledge into consideration.
Higher values denote that a larger number of annota-
tion terms were used and thus the BIOCo score illus-
trates the relatedness between the majority of cluster
members. This indicates that the produced figure of
merit score is more accurate both from an information
content and biological information perspective.

4.2. Cluster deterioration simulation experiments

In order to further validate the devised figure of mer-
it score for quantifying the intra-cluster biological co-
herency of a group of gene products, we performed a
series of cluster deterioration simulation experiments.
The experiments were performed on the set of clusters
previously discussed which are summarized in Table 1.

The following steps were followed during those ex-
periments sequentially and on an iterative basis.

1. A fixed percentage, known as jitter, of the total
members of an individual cluster, known as the
source cluster, is chosen randomly. This results
in a subset of cluster members.

2. Excluding the cluster utilized in step 1, a cluster
is selected from the data set randomly. This is
known as the target cluster.

3. The subset of elements selected in the first step
from the source cluster is moved into the target
cluster.

4. The subset of elements is removed from the
source cluster.

5. The mean BIOCo figure of merit score is calcu-
lated for the entire data set.

Steps 1 to 4 of the above described procedure are
repeated until all clusters composing the data set are
randomized by the predefined jitter percentage. In or-
der to prevent the skewing of the resulting measure-
ments, each iteration is performed 100 times and the
mean BIOCo value calculated across the set of itera-
tions is taken into consideration. The devised figure of
merit directly depends on the members of a cluster and
their respective GO annotation terms. By randomizing

Table 7
the calculated BIOCo scores during the performed
cluster deterioration simulation experiments

jitter perc. MF BP BP (TAS)

0 0.770065 0.797546 0.805008
10 0.766186 0.791980 0.766555
20 0.765232 0.791268 0.731079
30 0.761397 0.786322 0.713222
40 0.745276 0.783128 0.700680
50 0.738823 0.777850 0.693147

the membership of each cluster and effectively reas-
signing members of one cluster to another, a natural
degradation of the figure of merit should be observed,
correlated with the jitter percentage.

The experiments were performed on two separate
phases. During the first phase, the identified dominant
functional groups present in the cluster are indicated
from the MIPS are validated. For this reason, anno-
tation terms from the molecular function aspect of the
GO were used. In the second phase, we focus on the
underlying biological processes the gene products’ take
part in and therefore annotation terms from the biolog-
ical process aspect of the GO are exclusively taken into
consideration.

4.2.1. MIPS functional groupings
In order to validate the MIPS functional groupings

present in the set of clusters, the gene textual profiles
were reconstructed. This time however, only annota-
tion terms from the molecular function aspect of the
GO were considered. Additionally, in order to maxi-
mize the efficiency of the information contained within
each individual textual profile, all annotation evidence
codes were taken into consideration (with the exception
of IEA).

The mean BIOCo score for the clusters composing
the data set was calculated to 0.77006453. This is sig-
nificantly lower than the previously calculated BIOCo
score which was obtained by taking into consideration
annotation terms from all three aspects of the GO in-
clusive. This decrease is due to the fact that the number
of gene products which have been annotated with terms
which belong to the molecular function aspect of the
GO is substantially lower. The score is however still
indicative of the clusters functional enrichment. We
deteriorate the cluster membership gradually by 10%
intervals up to 50%. The results obtained are summa-
rized in Table 7.

We can clearly observe a strong degradation of the
BIOCo figure of merit score in correlation with the jit-
ter cluster membership randomization factor applied to
each cluster. Reshuffling the members of each cluster



246 S.C. Denaxas and C. Tjortjis / A GO-driven semantic similarity measure

Fig. 1. Degradation of the BIOCo score across all experimental conditions during cluster membership deterioration simulation experiments.

essentially breaks the dominant MIPS functional cate-
gories. The higher the jitter randomization percentage,
the lower the BIOCo score value becomes, thus validat-
ing the ability of the devised figure of merit measure for
quantifying and assessing the intra-cluster biological
relatedness.

4.2.2. Underlying biological process validation
In the second phase of our experiments, we attempt

to validate the underlying biological processes that are
present within each cluster composing the data set. For
this reason, the textual profiles created for each gene
product at this step only contain annotation terms from
the biological process aspect of the ontology exclusive-
ly. In order to maximize the amount of information
included in the profiles, all evidence codes are taken
into consideration (with the exception of IEA). This
proven to be a greater challenge compared to exclu-
sively including molecular function annotation terms
as described in the previous phase of our experiments.
This is due to the fact that in contrast with the function-
al groupings extracted by the MIPS database presented
earlier, biological process annotation terms have a more
diverse nature and no strikingly evident sub-groupings
could be observed in the data set.

The mean BIOCo of the data set was calculated to
be 0.797546 which illustrates a rather high measure of
intra-cluster biological relatedness. This comes to val-
idate the basic assumption under which scientists oper-
ate in the context of gene expression experiments which
states that co-expressed gene products are also likely so
share common biological properties such as taking part
in the same biological process. Using the same process
as described earlier, the cluster membership of the da-
ta set is gradually randomized by increasing the jitter

score. The results are presented in Table 7 and illustrat-
ed in Fig. 1. Once again, a strong reverse correlation
can be observed between the BIOCo figure of merit
score and the jitter randomization percentage, indica-
tive of the measures ability to quantify the intra-cluster
biological relatedness successfully and accurately.

Finally, in order to further explore the impact that
evidence codes have in the context of the devised ap-
proach. The above described cluster deterioration sim-
ulation experiments are carried out by exclusively se-
lecting only annotation terms which belong to the bi-
ological process aspect of the GO and have been as-
signed a TAS evidence code. Despite the fact that it
was shown previously in this paper that using TAS evi-
dence codes exclusively does not yield accurate results
for detecting the functional enrichment of clusters, we
feel that this phase of the experiment also validates the
devised figure of merits ability to correctly identify and
quantify such relationships. The results are presented
in Table 7 and illustrated in Fig. 1.

We calculated the Pearson Product-MomentCorrela-
tion Coefficient (PMCC) r of the measured (jitter, BIO-
Co) pairs of values for each aspect of the GO individu-
ally in order to quantify the correlation between the jit-
ter cluster membership degradation percentage and our
figure of merit score. For the MF data, r = −0.93749,
for the BP data r = −0.98808 and for the BP (TAS) da-
ta, r = −0.95944. All PMCC values obtained indicate
a strong negative correlation between the two values.
Similarly, we calculate the coefficient of determination
r2 which is the ratio of the explained variation to the
total variation and denotes the strength of the linear
association between the two values. For the MF data,
r2 = 0.879, for the BP data r2 = 0.976 and for the
BP (TAS) data, r2 = 0.920. Once again, the obtained
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values indicate a strong correlation between the jitter
percentage and the BIOCo figure of merit.

Our experiments show a strong inverse correlation
between the percentage of membership randomization
and the BIOCo figure of merit value. As the percentage
of cluster members which get removed gets higher, the
BIOCo score gets lower. This is the case for both
biological process and molecular function aspects of
the GO. We believe that this constitutes as a strong
indication that the devised figure of merit score can
correctly and accurately identify and quantify intra-
cluster coherency from a biological standpoint using a
priori knowledge originating from the GO.

5. Conclusion

In this paper we described a framework for integrat-
ing a priori biomedical knowledge into traditional data
analysis approaches. More specifically, the GO is uti-
lized as a potent information source of existing knowl-
edge regarding the biological properties of individual
gene products. We present a figure of merit score for
quantifying the pair-wise relatedness of gene products
from a biological perspective. This is further expanded
for creating a figure of merit score for assessing the
biological coherency of groups of gene products. The
later is complemented by a confidence score which de-
notes the amount of information that was taken into
consideration when calculating the coherency score.

We present the results obtained by deploying the
above described framework on a well scrutinized da-
ta set consisting of Saccharomyces cerevisiae gene ex-
pression measurements. Through experiments, we dis-
play the impact of considering each aspect of the GO
individually for quantifying the biological coherency
of clusters resulting from traditional data analysis ap-
proaches. We furthermore perform cluster deteriora-
tion simulation experiments on previously identified
functionally enriched clusters of gene products. We
present the results which illustrate a strong correlation
between cluster membership randomization and the bi-
ological coherency figure of merit score in our devel-
oped framework.
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