
A Data Mining Methodology for Evaluating Maintainability according to
ISO/IEC-9126 Software Engineering-Product Quality Standard

P. Antonellis1 D. Antoniou1Y. Kanellopoulos1,2C. Makris1E. Theodoridis1C. Tjortjis2 N.Tsirakis1

1. University Of Patras, Department of Computer Engineering and Informatics, Greece
2. The University Of Manchester, School of Computer Science, U.K.

adonel@ceid.upatras.gr antonid@ceid.upatras.gr Yiannis.Kanellopoulos@postgrad.manchester.ac.uk
makri@ceid.upatras.gr theodori@ceid.upatras.gr christos.tjortjis@manchester.ac.uk tsirakis@ceid.upatras.gr

Abstract

This paper presents ongoing work on using data
mining to evaluate a software system’s maintainability
according to the ISO/IEC-9126 quality standard. More
specifically it proposes a methodology for knowledge
acquisition by integrating data from source code with
the expertise of a software system’s evaluators A
process for the extraction of elements from source code
and Analytical Hierarchical Processing for assigning
weights to these data are provided; K-Means
clustering is then applied on these data, in order to
produce system overviews and deductions. The
methodology is evaluated on Apache Geronimo, a
large Open Source Application Server; results are
discussed and conclusions are presented together with
directions for future work.

1. Introduction

Software maintenance is considered a very

important and complex stage in software lifecycle
typically consuming 50-70% of the total effort
allocated to a software system according to [11], [15].
Given this fact, maintenance processes can be
considered as an area of competitive advantage. There
are several studies for evaluating a system’s
maintainability and controlling the effort required to
carry out maintenance activities [18], [1], [2].
According to ISO/IEC-9126 [ref International
Standards Organization and International
Electrotechnical Commission] maintainability is the
capability of a software product to be modified [6].
Evaluating such a characteristic is a difficult process as
many contradictory criteria must be considered in order
to reach a decision [12]. On the other hand data mining
and its capacity to deal with large volumes of data and
to uncover hidden patterns has been proposed as a
means to support the evaluation and assessment of the

maintainability of industrial scale software systems
[7],[8].

The scope of this work is to present a methodology
that facilitates the evaluation of a software product’s
maintainability according to the ISO/IEC-9126
software engineering quality standard. The intuition of
this methodology is to integrate measurement data
extracted from source code’s elements with the
expertise of a system’s evaluators by providing them
the ability to define a number of attributes suitable for
such evaluation. For this reason:
• Metrics are extracted from elements of system’s

source code.
• Relative weights are assigned to these metrics by

employing the Analytical Hierarchy Process,
reflecting their importance on evaluating
maintainability.

• Data mining clustering is applied on the derived
ISO/IEC-9126’s maintainability values, in order to
provide the evaluator with a quick and rough grasp
of the system.

We attempt to evaluate the usefulness of this
methodology by employing as test-bed, Geronimo, an
open source application server used in real life
industrial applications. The remaining of this paper is
organized as follows: Section 2 reviews existing work
in the area of data mining and software evaluation.
Section 3 outlines the proposed method for extracting
elements and metrics from Java source code, the
assignment of relative weights by employing
multicriteria analysis methods and the clustering
method. Section 4 assesses the accuracy of the output
of the proposed framework, analyses its results and
outlines deductions from its application. Finally,
conclusions and directions for future work are
presented in Section 5.

2. Background

Developing software systems of any size which do

not need to be changed is unattainable [15]. Such
systems, once in use, need to be functional and flexible
in order to operate correctly and fulfill their mission, as
new requirements emerge. Consequently, software
systems remain subject to changes and maintenance
throughout their lifetime. Software inspection and
evaluation is required by maintenance engineers in
order to identify problematic files or modules; and to
assess their maintainability [11].

2.1 Previous Work

Data mining and its ability to deal with vast

amounts of data, has been considered a suitable
solution in assisting software maintenance, often
resulting in remarkable results [10], [19], [20], [21].

Data mining techniques have been used previously,
for identification of subsystems based on associations
(ISA methodology) [10]. This approach provides a
system abstraction up to the program level as it
produces a decomposition of a system into data
cohesive subsystems by detecting associations between
programs sharing the same files.

Clustering has also been used to support software
maintenance and systems knowledge discovery. A
method for grouping Java code elements together
according to their similarity was proposed in [13]. It
focuses on achieving a high level system
understanding. The method derives system structure
and interrelationships, as well as similarities among
systems components, by applying cluster analysis on
data extracted from source code. Hierarchical
Agglomerative Clustering was employed to reveal
similarities between classes and other code elements
thus facilitating software maintenance and Java
program comprehension.

An approach for the evaluation of dynamic
clustering was presented in [13]. The scope of this
solution was to evaluate the usefulness of providing
dynamic dependencies as input to software clustering
algorithms. This method was applied to Mozilla, a
large open source software system with more than four
million lines of C/C++.

All these approaches employ data mining
techniques only to recover the structure of a software
system. On the other hand [14] is employing clustering
for predicting software modules’ fault proneness and
potential noisy modules. k-Means and Neural – Gas
algorithms were employed in order to group together
modules with similar software measurements. A

software engineering expert inspected the derived
clusters and labelled them as fault prone or not.

Finally [7] presents a methodology that uses
clustering for both recovering the structure of a
software artifact and assessing its maintainability. It
does that by creating an input model which considers
as program’s entities’ attributes both metrics (e.g.
Chidamber and Kemerer metrics suite) and elements
from source code data (e.g. class name, method name,
superclass etc.).

The value of this work that differentiates it from
what presented above, is that we don’t cluster raw
software measurement data. Instead, we provide the
evaluator the ability to employ a Multicriteria Analysis
(MA) method, the Analytical Hierarchy Process
(AHP), for assigning relative weights to the extracted
metrics in order to reflect their importance on
evaluating maintainability. This helps incorporating the
evaluator’s domain expertise with the measurement
data extracted from source code, which may lead to
more accurate and interesting clustering results.

 2.2 ISO/IEC-9126 Maintainability

According to ISO/IEC-9126, maintainability is the

capability of the software to be modified. These
modifications can be corrective, adaptive or perfective
in order for software to comply with new requirements
and functional specifications [6]. They also can happen
without scheduling (emergency). Maintainability is
characterized by the following five sub-characteristics:

• Analysability, which defines the ability of
software to be diagnosed for deficiencies or
causes of failures or for parts to be modified
[6].

• Changeability, which defines how easy, is to
perform a specified modification [6].

• Stability, which shows how capable software is
to remain stable after being modified [6].

• Testability, which defines the ability of
software to be validated [6].

• Maintainability Compliance, which defines
how easy, is for the software to comply with
standards or conventions relating to
maintainability [6].

This set of maintainability’s sub-characteristics can
be classified in a hierarchical tree which consists of the
characteristic of maintainability, its sub-characteristics
and metrics. Maintainability is on the tree’s highest
level while metrics are on the lowest. Maintainability is
analysed in sub-characteristics which in turn can be
evaluated by using metrics. This is depicted on Figure
1.

Figure 1: ISO/IEC-9126 Maintainability Hierarchy

 2.3. Multicriteria Analysis

Multicriteria Analysis (MA) is a procedure aiming

at supporting decision makers whose problem involves
numerous and conflicting evaluations with many and
diverse parameters. As a basic principle, MA
highlights these conflicts and facilitates finding a way
to come to a compromise in a transparent process. A
very common example is the decisions made by a
government. Before a new policy applies; several types
of after-effects such as morals and ethics, economy and
environmental protection are taken in mind. The
implementation of MA using certain elements of
subjectiveness makes recommendations that approach
the expected results with more accuracy. The ethical
point is very important; for example, when one is
making a decision that seriously impact on other
people as opposed to a personal decision. Some of the
MA models are [4]:

• Analytic Hierarchy Process (AHP)
• Multi-Attribute Global Inference of Quality

(MAGIQ)
• Goal Programming
• ELECTRE (Outranking)
• Data Envelopment Analysis
In our problem’s context, evaluating the software

quality parameters reduces the problem to a
multicriteria problem. According to the software’s
objectives some notion of subjectiveness is needed, in
our case study maintainability, in order to evaluate
properly all the ISO/IEC-9126 software engineering
quality standard. We have adopted analytic hierarchy
process (AHP) [14], presented in a following section,
for simplicity and accuracy purposes.

3. Description of the proposed
Methodology

This section presents the proposed methodology

which:
• Extracts elements and metrics from Java

source code.
• Assigns weights to the selected metrics in

order to reflect their importance on evaluating a
system’s maintainability according to ISO/IEC-
9126 quality standard.

• Applies the clustering data mining technique
on the derived maintainability values.

3.1 Data Extraction Process

The objective of the data extraction process is two-

fold:
• To extract appropriate elements and metrics

from Java source code. Elements include native
source code attributes and help describing the
software architecture and its characteristics. On
the other hand, metrics depict quantitatively,
thoroughly and more effectively the system
under evaluation.

• To aggregate the extracted data, choose a
refined subset of them, and store it in a
relational database system for further analysis
and evaluation.

Native attributes depend on the system’s
programming paradigm and may include:

• ids and names of packages
• class-files, definition files, names of classes
• structure blocks (e.g. loop blocks, if blocks,

exception blocks, etc)
Moreover, metrics provide additional and valuable

information concerning the system under evaluation.
This information will help to further describe the

software system’s entities. In §3.4 we further describe
the selected metrics and we justify why we think they
are important in facilitating the evaluation of a
system’s maintainability according to ISO/IEC-9126.
All of the above collected elements and metrics are
stored permanently into appropriate structured XML
files, with every XML file corresponding to a source
code file.

For simplicity reasons, not all of the above
described elements are analyzed. Some of them are
more important and describe more effectively the
characteristics of the system under evaluation, while
others contain very detailed information that is not
needed. For this reason, a refined subset of the
extracted data is chosen to be stored for further
analysis and elaboration. This subset should be fine-
grained in order to provide the flexibility to easily
assess the software system and on the same time to
contain all the necessary information for this
evaluation. Based on this requirement, only the
calculated metrics and their associated class elements
are chosen to be stored and further analyzed. All the
detailed elements are discarded because the
information that provide exists chunked in the
calculated metrics.

The chosen elements and metrics need to be
extracted and stored permanently for further analysis
and evaluation. For this reason, a relational database
system was chosen, as it provides ease of use,
reliability and effective search over the stored
information. As mentioned before, all of the collected
elements are at first stored into XML files, with every
XML file corresponding to a source code file. The
extraction method must be transparent to the
underlying relational database, for portability reasons.

That is why it employs cutting-edge software tools that
facilitate the mapping of XML elements and nodes into
any relational database. This mapping provides the
ability for the proposed methodology to be independent
of any underlying relational database. Figure 2 depicts
the general architecture of data extraction and
preparation module.

Figure 2 – Architecture of data extraction and

preparation module
3.2 Metrics Description

As software demonstrates regular behaviour and

trends, these can be measured [9]. The evaluation of a
system’s maintainability according to ISO/IEC-9126
requires the collection of such metrics in order to
provide a systematic approach for code evaluation
based on a set of predefined rules. This enables the
stakeholders of a software product (i.e., management,
software engineers, end users) to track status, control
costs, and make decisions related to their tasks. These
metrics can also be useful as indicators for identifying

S/N Metric Formula Purpose Entity

Applied

5 Number of
Polymorphic
methods (NOP)

NOP=A

A=Number of the member methods that
exhibit polymorphic behavior.

It is a measure of the overridden (or virtual) methods
of an Object Oriented software system.

Class

6 Depth Of Inheritance
Tree (DIT)

DIT=A

A=Distance from top

It provides for each class a measure of the
inheritance levels from the object hierarchy top

Class

7 Number Of Children
(NOC)

NOC=A

A=Number of the immediate descendants
of the class.

It measures the number of the immediate
descendants of the class

Class

8 Lack of Cohesion in
Methods (LCOM)

LCOM=A

A=Number of member methods of a class
C that access the same member data [14].

It measure if a class of the system has all its methods
working together in order to achieve a single, well-
defined purpose.

Class

9 Afferent (inward)
Coupling (Ca)

Ca=A

A=Number of packages depend on the
package under examination

It measures the number of packages that depend on
the package under examination [13]/

Class

3.3 Weights Assignment

As mentioned in §2.3, we have adopted the

analytic hierarchy process (AHP) for the weights
assignment. AHP is a decision making technique that
allows consideration of both qualitative and
quantitative aspects of decisions [14]. It reduces
complex decisions to a series of one-on-one
comparisons and then synthesizes the results.
Compared to other techniques, like ranking or rating
techniques, AHP emulates the human ability to
compare single properties of alternatives. It not only
helps decision makers choose the best alternative, but
also provides a clear rationale for the choice.

In a systematic way AHP compares a list of
objectives or alternatives. When used in the systems
engineering process, AHP can be a powerful tool for
comparing alternative design concepts. Assuming

that a set of objectives has been established; and that
we are trying to establish a normalized set of weights
to be used when comparing alternatives using these
objectives. AHP forms a pairwise comparison matrix
A, where the number in the i-th row and j-th column
gives the relative importance of objective O(i) as
compared with O(j). Values that usually are used are
in a 1–9 scale, with a(i,j) = 1 if the two objectives are
equal in importance, a(i,j) = 3 if O(i) is weakly more
important than O(j), a(i,j) = 5 if O(i) is strongly more
important than O(j), a(i,j) = 7 if O(i) is very strongly
more important than O(j), and a(i,j) = 9 if O(i) is
absolutely more important than O(j). After this
procedure the comparison matrix is normalized and
its eighenvalues are computed. These eighenvalues
play the role of coefficients/weights when someone
wants to evaluate the alternatives for the examined
objectives.

Figure 3: ISO/IEC-9126 Maintainability Metrics Hierarchy

In our case we aim to evaluate maintainability from
a set of employed metrics (see previous section and
Figure 3.). We apply AHP procedure in each level of
the maintainability metrics hierarchy. At the first level
we evaluate the characteristics (analyzability,
changeability, etc) from the extracted metrics and at
the second level we evaluate maintainability from the
characteristics by applying AHP procedure again. So at
first level we construct a pairwise comparison table for
each one of the characteristics reflecting the expert’s
knowledge of how much each metric influences each
characteristic. Then by applying the normalization and
extraction of eighenvalues upon each matrix we find
the weight of each metric for calculating a score for
each characteristic. At the higher level a pairwise
comparison table is constructed too reflecting the
expert’s knowledge of how much each characteristic
influences maintainability; and the weights are
calculated by normalization and eighenvalues
extraction.

There are several possibilities for evaluating
different systems:

• Evaluation of all the systems utilizing the same
weights produced by the subjectivity of one
software expert.

• Evaluation of all the systems utilizing the
average weights produced by the subjectivity of
several software experts.

• Evaluation of each system independently
utilizing the weights produced by the
subjectivity of a software expert that focuses to
the characteristics of its system.

3.4 Clustering Maintainability Values

The primary objective of employing the clustering

data mining technique is to facilitate a software
system’s evaluator to obtain a general but illuminating
view of it that may lead him/her to draw useful
conclusions concerning its maintainability. Clustering
in general, is useful for Similarity/Dissimilarity
analysis; in other words it analyzes what data points in
a given dataset are close to each other. In our case,
mutually exclusive groups of classes, member data or
methods are created according to their similarities, and
hence the time required to assess the maintainability of
a software system is reduced. This is helpful especially
when the system under evaluation is very large. A
project manager or an engineer might only be an expert
of a part of the system and cannot state of the quality
of the whole of it. Another contribution of using the
clustering technique is that it helps discovering
programming patterns and “unusual” or outlier cases
which may require attention. Clustering also facilitates
the dimensionality reduction, since high dimensional
data are replaced with a group (cluster) label.

For this purpose, k-Means clustering has been
chosen to be implemented and performed. The
particular algorithm is a simple clustering method that
has the following characteristics:
• It shows optimal results.
• It is general, as it can work for any distance

desired and requires no training phase.
• Finally, the algorithm’s speed is very appealing in

practice as well, especially in the case of a large
number of variables.

k-Means clustering is a commonly used partitioning
algorithm. Each cluster is represented by the mean
value of the objects in the cluster. As a result, cluster
similarity is measured based on the distance between
the object and the mean value of the input data in a
cluster. It is an iterative algorithm in which objects are
moved among clusters until a desired set is reached.
The steps of the algorithm can be described as follows
[3]:

Given a set of n objects t1, t2,...,tn and a number k of
desired clusters

assign initial values for means m1,m2,...,mk
repeat
assign each item ti to the cluster with the closest

mean;
calculate new cluster mean;
until means m1, m2,..,mk do not change
The squared-error criterion is used to measure the

sum of the squares of the distance between each object
and the mean. The sum should be minimized in order
to obtain a good clustering result. It is obvious that the
smaller the sum, the more tightly the objects are
clustered around the mean value (centroid), and
clustering is more precise. The squared-error criterion
can be expressed by the formula in Eq. (1):

where dist is the standard Euclidean (L2) distance

between two objects in Euclidean space; p is an object
belonging to the ith cluster Ci, and ci is the mean of the
cluster. The algorithm is suitable for discovering
spherical-shaped clusters in small to medium size
databases. However, its main problems are that it is
sensitive to noise and to the initial partitioning. As
many possible initial partitions lead to many different
results, the final clustering is influenced by the initial
partition, which is indicated by the user input [5].

4. Results Evaluation

The evaluation of Apache Geronimo’s

maintainability according to ISO/IEC-9126, involved
the study of 1440 classes. Figure 4 depicts the clusters

derived from clustering the maintainability values of
Geronimo’s classes. The higher the values on axis X
the less maintainable the classes are. Table 2 presents
statistics for the derived clusters.

Figure 4: Apache Geronimo ISO/IEC-9126

Maintainability Clusters

Table 2: Clusters Statistics
S/N

Population Percentage Mean
Standard
Deviation

0 419 29% 1.10 0.29
1 130 9% 2.45 0.60
2 7 0.004% 13.75 2.27
3 856 59% 0.39 0.16
4 28 1.996% 5.02 1.55

Cluster 3, which has the biggest population,
contains classes that their maintainability values range
between 0 and 0.9. This shows that the vast majority of
Geronimo’s classes are highly maintainable.
Furthermore, clusters 0, 1 and 4 contain classes that
their maintainability values range from 0.9 – 2, 2 - 4
and 4 – 9.2 respectively, which can be considered good
in terms of maintainability.

However, outliers are detected in cluster 2, which
consists of only seven (7) classes that have the lowest
maintainability values. These classes are:

1. KernelManagementHelper.java, a class of
1024 Lines Of Code (LOC).

2. TradeDirect.java, a class of 2312 LOC.
3. ClientApp.java, a class of 1633 LOC.
4. CdrInputStream.java, a class of 1569 LOC.
5. CdrOutputStream.java, a class of 1241 LOC.
6. ASN1Encodable.java, a class of only 62 LOC.
7. DERobject.java, a class of only 38 LOC.
Table 3 presents the metric values for the classes in

cluster 2.
A further study on these values indicates that the
classes in cluster 2 are grouped in two categories:

• The first category includes the first five classes
that have the following characteristics:

• They don’t follow the principle of low
coupling/high cohesion. On the contrary they
exhibit low cohesion and high coupling.

• They are highly complex.
• All of them have polymorphic methods; which

indicates that encapsulation is not applied in
these classes.

• The second category includes the classes
ASN1Encodable and DERObject that are
difficult to maintain for different reasons. More
specifically these two classes have the
following characteristics:

• Interestingly they are not complex, and their
size is very small unlike the classes on the first
category. They also follow the principle of low
coupling/high cohesion.

• They have an excessive number of children.
This indicates probably that these classes are
fundamental elements of Apache Geronimo’s
structure.

• The number of classes depending on them (Ca)
is big.

Table 4 presents statistics for the metrics of Apache
Geronimo’s classes in clusters 0, 1, 3 and 4. This table
indicates that:
• The lower the metric values the higher the

probability of low maintainability.
• There is limited use of inheritance as shown by

the low DIT and NOC values.
• The majority of the classes follow the low

coupling/high cohesion principle.
• Most of the classes exhibit low complexity.
• The design property of encapsulation is applied to

most of the classes.

5. Conclusions and Future Work

This section presents conclusions drawn by

evaluating the proposed methodology. Directions for
future work are also discussed here.

5.1 Conclusions concerning the Methodology

The aim of this work was to present a methodology

that facilitates the evaluation of a software product’s
maintainability according to the ISO/IEC-9126
software engineering quality standard. The first step
toward that was to develop a two-level extraction
process that collects appropriate elements and metrics
from Java source code, aggregates them and stores a
refined subset of the aggregated data in a relational
database system for further analysis and evaluation.

Table 3: Cluster 2 Metrics
S/N WMC NPM DAM CBO POM DIT NOC LCOM Ca

1 9.15 11.13 1.62 17.40 40.00 0.72 0.00 42.69 0.00

2 11.58 4.52 1.62 35.65 30.00 0.72 0.00 45.21 0.51

3 10.68 0.32 1.62 2.99 2.50 0.72 0.00 81.97 2.53

4 18.38 11.45 1.62 14.37 20.00 0.72 0.00 64.96 9.61

5 14.77 11.29 1.62 13.14 12.50 0.72 0.00 47.82 9.61

6 0.42 0.81 0.00 0.33 0.00 0.72 149.49 0.27 26.30

7 0.28 0.48 0.00 0.00 0.00 1.44 76.27 0.18 52.10

Table 4: Cluster 0, 1, 3 and 4 Metrics Statistics
 Min. Max. Mean Median Stand. Dev.

WMC 0.07 12.55 0.96 0.55 1.20

NPM 0.00 8.71 0.98 0.65 1.17

DAM 0.00 1.62 1.00 1.62 0.76

CBO 0.00 16.54 0.95 0.41 1.54

POM 0.00 37.50 0.93 0.00 2.88

DIT 0.72 3.60 1.00 0.72 0.49

NOC 0.00 70.17 0.85 0.00 3.87

LCOM 0.00 26.84 0.81 0.11 2.43

Ca 0.00 81.94 0.93 0.00 3.28

During the first step the collected data are stored
permanently into appropriate structured XML files,
with every XML file corresponding to a source code
file. At the second step, the more important elements
and metrics are chosen to form a refined subset that is
mapped transparently into a relational database system.

The second step towards our goal was the adoption
of the Analytic Hierarchy Process (AHP) for weights
assignment to the collected metrics, in order to reflect
their importance on evaluating a system’s
maintainability according to ISO/IEC-9126 software
engineering quality standard. The weight assignment
process constructs a pair wise comparison for the set of
employed metrics and by applying the normalization
and extraction of eighenvalues it finds the weight of
each metric for calculating a maintainability score.

The last step was the application of k-Means
clustering algorithm on the derived ISO/IEC-9126’s
maintainability values, in order to facilitate a software
system’s evaluator to obtain a general but illuminating
view of it that may lead him/her to draw useful
conclusions concerning its maintainability. During the
clustering process, mutually exclusive groups of
classes, member data or methods are created according
to their similarities, and hence the time required to
assess the maintainability of a software system is
reduced.

The application of the proposed methodology has
been proved to be time and performance efficient. The
extraction process, which is the most time-consuming
part of this methodology, analyzed the 1440 classes of

Apache Geronimo and stored the corresponding
metrics and elements in a limited amount of time. A
domain expert previewed the stored metrics and
assigned easily and efficiently the corresponding
weights, according to his priorities and concerns. After
the clustering application, the resulted clusters proved
to be representative of the code artifacts, helping the
domain expert to identify relations between specific
metrics and global maintainability as well as spot
individual outlier classes that may need
reconsideration.

5.2 Future Work

We consider the following various alternatives in

order to enhance the proposed methodology:

5.2.1 Systems’ components clustering based on their
dynamic dependencies. This research work presented
the analysis of static dependencies between the
components of the system. It would be of great interest
to attempt to evaluate the usefulness of analysing the
dynamic dependencies of a software system’s artifacts.

5.2.2 Integration of more data mining algorithms.
The proposed framework integrates the -Means
algorithm. However it may be useful if more custom
data mining algorithms were integrated in this
framework. This would result in a complete system for
automated program and system comprehension. An
example is the integration of hierarchical clustering
algorithms that they do not need the user to define the
number of the desired output clusters.

5.2.3 Tune the methodology for other programming
languages. The proposed methodology processes
information derived only from Java source code files
(.java). It is of great interest to extract information
from other programming languages like C, C++, Cobol
and Borland Delphi.

Acknowledgements

This research work has been supported by GSRT
(General Secretariat of Research and Technology) and
Dynacomp S.A. within the program “P.E.P of Western
Greece Act 3.4”. We would also like to thank Brian
Cope from IBM UK for his useful comments
concerning the evaluation of Geronimo Software.

References
1. Arisholm E., Lionel C. Briand, Audun Foyen, “Dynamic

Coupling Measurement for Object-Oriented Software”,
IEEE Transactions on Software Engineering, vol. 30,
No. 8, August 2004, pp. 491-506

2. Bandi R, Vijay K. Vaishnavi, Daniel E. Turk,
“Predicting Maintenance Performance Using Object
Oriented Design Complexity Metrics”, IEEE
Transactions on Software Engineering, vol. 29, No. 1,
January 2003, pp. 77-87

3. Dunham M.H., Data Mining, Introductory and
Advanced Topics, Prentice Hall, 2002.

4. Figueira, Jose; Greco, Salvatore; Ehrgott, Matthias
Multiple Criteria Decision Analysis:State of the Art
Surveys Series: International Series in Operations
Research & Management Science , Vol. 78 Figueira,
Jose; Greco, Salvatore; Ehrgott, Matthias (Eds.) 2005.

5. Han J., M. Kamber, Data Mining: Concepts and
Techniques, Academic Press, 2001.

6. ISO/IEC 9126-1, Software Engineering – Product
Quality International Standard, Geneva 2001

7. Kanellopoulos Y., Dimopoulos T., Tjortjis C. and
Makris C., “Mining Source Code Elements for
Comprehending Object-Oriented Systems and
Evaluating Their Maintainability” to appear at the ACM
SIGKDD Explorations v8.1, Special Issue on Successful
Real-World Data Mining Applications, June 2006.

8. Kanellopoulos Y., Makris C. and Tjortjis C., “An
Improved Methodology on Information Distillation by
Mining Program Source Code”, to appear at Elsevier
Data & Knowledge Engineering, 2006.

9. Lehman M.M., “Programs, Life Cycles, and Laws of
Software Evolution”, Proc. IEEE, Vol. 68, No 9, 1980,
pp. 1060 - 1076.

10. Oca C. M. and D. L. Carver, “Identification of Data
Cohesive Subsystems Using Data Mining Techniques”,
Proc. Int'l Conf. Software Maintenance (ICSM 98),
1998, pp.16-23.

11. Pigoski T.M., Practical Software Maintenance: Best
Practices for Managing your Software Investment,
Wiley Computer Publishing, 1996.

12. Roger P.S., “Software Engineering, A Practitioner’s
Approach”, McGraw – Hill International Edition 2005.

13. Rousidis D., C. Tjortjis, “Clustering Data Retrieved
from Java Source Code to Support Software
Maintenance: A Case Study”, Proc. IEEE 9th European
Conf. Software Maintenance Reengineering (CSMR
05), 2005, pp. 276-279

14. Saaty T.. Multicriteria Decision Making: The Analytic
Hierarchy Process, Vol. 1, AHP Series, RWS
Publications, 502 pp., 1990

15. Sommerville, Software Engineering, 6th ed., Harlow,
Addison-Wesley, 2001.

16. Spinellis D: “Code Quality: The Open Source
Perspective“, Addison-Wesley, 2006

17. Stamelos I., Vlahavas I., Refanidis I., Tsoukias A.:
“Knowledge Based Evaluation of Software Systems: A
Case Study”, Elsevier Information and Software
Technology, Vol. 42, No 5, April 2000, pp. 333-345

18. Sutherland J., “Business Objects in Corporate
Information Systems”, ACM Computing Survey, vol.
27, 1995,pp 274-276

19. Tjortjis C., L. Sinos and P.J. Layzell, “Facilitating
Program Comprehension by Mining Association Rules
from Source Code”, Proc. IEEE 11th Int’l Workshop
Program Comprehension (IWPC 03), 2003, pp. 125-
132.

20. Xiao C., V. Tzerpos, “Software Clustering on Dynamic
Dependencies”, Proc. IEEE 9th European Conf.
Software Maintenance Reengineering (CSMR 05),
2005, pp. 124-133.

21. Zhong S., T.M. Khoshgoftaar, and N. Seliya,
“Analyzing Software Measurement Data with
Clustering Techniques”, IEEE Intelligent Systems, Vol.
19, No. 2, 2004, pp. 20-27.

