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Abstract 

This paper presents ongoing work on using data 
mining to evaluate a software system’s maintainability 
according to the ISO/IEC-9126 quality standard. More 
specifically it proposes a methodology for knowledge 
acquisition by integrating data from source code with 
the expertise of a software system’s evaluators A 
process for the extraction of elements from source code 
and Analytical Hierarchical Processing for assigning 
weights to these data are provided; K-Means 
clustering is then applied on these data, in order to 
produce system overviews and deductions. The 
methodology is evaluated on Apache Geronimo, a 
large Open Source Application Server; results are 
discussed and conclusions are presented together with 
directions for future work. 

1. Introduction 
 
Software maintenance is considered a very 

important and complex stage in software lifecycle 
typically consuming 50-70% of the total effort 
allocated to a software system according to [11], [15]. 
Given this fact, maintenance processes can be 
considered as an area of competitive advantage. There 
are several studies for evaluating a system’s 
maintainability and controlling the effort required to 
carry out maintenance activities [18], [1], [2]. 
According to ISO/IEC-9126 [ref International 
Standards Organization and International 
Electrotechnical Commission] maintainability is the 
capability of a software product to be modified [6]. 
Evaluating such a characteristic is a difficult process as 
many contradictory criteria must be considered in order 
to reach a decision [12]. On the other hand data mining 
and its capacity to deal with large volumes of data and 
to uncover hidden patterns has been proposed as a 
means to support the evaluation and assessment of the 

maintainability of industrial scale software systems 
[7],[8]. 

The scope of this work is to present a methodology 
that facilitates the evaluation of a software product’s 
maintainability according to the ISO/IEC-9126 
software engineering quality standard. The intuition of 
this methodology is to integrate measurement data 
extracted from source code’s elements with the 
expertise of a system’s evaluators by providing them 
the ability to define a number of attributes suitable for 
such evaluation. For this reason: 
•  Metrics are extracted from elements of system’s 

source code. 
•  Relative weights are assigned to these metrics by 

employing the Analytical Hierarchy Process, 
reflecting their importance on evaluating 
maintainability. 

•  Data mining clustering is applied on the derived 
ISO/IEC-9126’s maintainability values, in order to 
provide the evaluator with a quick and rough grasp 
of the system. 

We attempt to evaluate the usefulness of this 
methodology by employing as test-bed, Geronimo, an 
open source application server used in real life 
industrial applications. The remaining of this paper is 
organized as follows: Section 2 reviews existing work 
in the area of data mining and software evaluation. 
Section 3 outlines the proposed method for extracting 
elements and metrics from Java source code, the 
assignment of relative weights by employing 
multicriteria analysis methods and the clustering 
method. Section 4 assesses the accuracy of the output 
of the proposed framework, analyses its results and 
outlines deductions from its application. Finally, 
conclusions and directions for future work are 
presented in Section 5. 



2. Background 
 
Developing software systems of any size which do 

not need to be changed is unattainable [15]. Such 
systems, once in use, need to be functional and flexible 
in order to operate correctly and fulfill their mission, as 
new requirements emerge. Consequently, software 
systems remain subject to changes and maintenance 
throughout their lifetime. Software inspection and 
evaluation is required by maintenance engineers in 
order to identify problematic files or modules; and to 
assess their maintainability [11]. 

 
2.1 Previous Work 

 
Data mining and its ability to deal with vast 

amounts of data, has been considered a suitable 
solution in assisting software maintenance, often 
resulting in remarkable results [10], [19], [20], [21]. 

Data mining techniques have been used previously, 
for identification of subsystems based on associations 
(ISA methodology) [10]. This approach provides a 
system abstraction up to the program level as it 
produces a decomposition of a system into data 
cohesive subsystems by detecting associations between 
programs sharing the same files. 

Clustering has also been used to support software 
maintenance and systems knowledge discovery. A 
method for grouping Java code elements together 
according to their similarity was proposed in [13]. It 
focuses on achieving a high level system 
understanding. The method derives system structure 
and interrelationships, as well as similarities among 
systems components, by applying cluster analysis on 
data extracted from source code. Hierarchical 
Agglomerative Clustering was employed to reveal 
similarities between classes and other code elements 
thus facilitating software maintenance and Java 
program comprehension. 

An approach for the evaluation of dynamic 
clustering was presented in [13]. The scope of this 
solution was to evaluate the usefulness of providing 
dynamic dependencies as input to software clustering 
algorithms. This method was applied to Mozilla, a 
large open source software system with more than four 
million lines of C/C++. 

All these approaches employ data mining 
techniques only to recover the structure of a software 
system. On the other hand [14] is employing clustering 
for predicting software modules’ fault proneness and 
potential noisy modules. k-Means and Neural – Gas 
algorithms were employed in order to group together 
modules with similar software measurements. A 

software engineering expert inspected the derived 
clusters and labelled them as fault prone or not. 

Finally [7] presents a methodology that uses 
clustering for both recovering the structure of a 
software artifact and assessing its maintainability. It 
does that by creating an input model which considers 
as program’s entities’ attributes both metrics (e.g. 
Chidamber and Kemerer metrics suite) and elements 
from source code data (e.g. class name, method name, 
superclass etc.). 

The value of this work that differentiates it from 
what presented above, is that we don’t cluster raw 
software measurement data. Instead, we provide the 
evaluator the ability to employ a Multicriteria Analysis 
(MA) method, the Analytical Hierarchy Process 
(AHP), for assigning relative weights to the extracted 
metrics in order to reflect their importance on 
evaluating maintainability. This helps incorporating the 
evaluator’s domain expertise with the measurement 
data extracted from source code, which may lead to 
more accurate and interesting clustering results. 

 
 2.2 ISO/IEC-9126 Maintainability 
 
According to ISO/IEC-9126, maintainability is the 

capability of the software to be modified. These 
modifications can be corrective, adaptive or perfective 
in order for software to comply with new requirements 
and functional specifications [6]. They also can happen 
without scheduling (emergency). Maintainability is 
characterized by the following five sub-characteristics: 

•  Analysability, which defines the ability of 
software to be diagnosed for deficiencies or 
causes of failures or for parts to be modified 
[6]. 

•  Changeability, which defines how easy, is to 
perform a specified modification [6]. 

•  Stability, which shows how capable software is 
to remain stable after being modified [6]. 

•  Testability, which defines the ability of 
software to be validated [6]. 

•  Maintainability Compliance, which defines 
how easy, is for the software to comply with 
standards or conventions relating to 
maintainability [6]. 

This set of maintainability’s sub-characteristics can 
be classified in a hierarchical tree which consists of the 
characteristic of maintainability, its sub-characteristics 
and metrics. Maintainability is on the tree’s highest 
level while metrics are on the lowest. Maintainability is 
analysed in sub-characteristics which in turn can be 
evaluated by using metrics. This is depicted on Figure 
1. 

 



 
Figure 1: ISO/IEC-9126 Maintainability Hierarchy 

 
  2.3. Multicriteria Analysis 
 
Multicriteria Analysis (MA) is a procedure aiming 

at supporting decision makers whose problem involves 
numerous and conflicting evaluations with many and 
diverse parameters. As a basic principle, MA 
highlights these conflicts and facilitates finding a way 
to come to a compromise in a transparent process. A 
very common example is the decisions made by a 
government. Before a new policy applies; several types 
of after-effects such as morals and ethics, economy and 
environmental protection are taken in mind. The 
implementation of MA using certain elements of 
subjectiveness makes recommendations that approach 
the expected results with more accuracy. The ethical 
point is very important; for example, when one is 
making a decision that seriously impact on other 
people as opposed to a personal decision. Some of the 
MA models are [4]: 

•  Analytic Hierarchy Process (AHP) 
•  Multi-Attribute Global Inference of Quality 

(MAGIQ) 
•  Goal Programming 
•  ELECTRE (Outranking) 
•  Data Envelopment Analysis 
In our problem’s context, evaluating the software 

quality parameters reduces the problem to a 
multicriteria problem. According to the software’s 
objectives some notion of subjectiveness is needed, in 
our case study maintainability, in order to evaluate 
properly all the ISO/IEC-9126 software engineering 
quality standard. We have adopted analytic hierarchy 
process (AHP) [14], presented in a following section, 
for simplicity and accuracy purposes. 

 
 

3. Description of the proposed 
Methodology 

 
This section presents the proposed methodology 

which: 
•  Extracts elements and metrics from Java 

source code. 
•  Assigns weights to the selected metrics in 

order to reflect their importance on evaluating a 
system’s maintainability according to ISO/IEC-
9126 quality standard. 

•  Applies the clustering data mining technique 
on the derived maintainability values. 

 
3.1 Data Extraction Process 

 
The objective of the data extraction process is two-

fold: 
•  To extract appropriate elements and metrics 

from Java source code. Elements include native 
source code attributes and help describing the 
software architecture and its characteristics. On 
the other hand, metrics depict quantitatively, 
thoroughly and more effectively the system 
under evaluation. 

•  To aggregate the extracted data, choose a 
refined subset of them, and store it in a 
relational database system for further analysis 
and evaluation. 

Native attributes depend on the system’s 
programming paradigm and may include: 

•  ids and names of packages 
•  class-files, definition files, names of classes 
•  structure blocks (e.g. loop blocks, if blocks, 

exception blocks, etc) 
Moreover, metrics provide additional and valuable 

information concerning the system under evaluation. 
This information will help to further describe the 



software system’s entities. In §3.4 we further describe 
the selected metrics and we justify why we think they 
are important in facilitating the evaluation of a 
system’s maintainability according to ISO/IEC-9126. 
All of the above collected elements and metrics are 
stored permanently into appropriate structured XML 
files, with every XML file corresponding to a source 
code file. 

For simplicity reasons, not all of the above 
described elements are analyzed. Some of them are 
more important and describe more effectively the 
characteristics of the system under evaluation, while 
others contain very detailed information that is not 
needed. For this reason, a refined subset of the 
extracted data is chosen to be stored for further 
analysis and elaboration. This subset should be fine-
grained in order to provide the flexibility to easily 
assess the software system and on the same time to 
contain all the necessary information for this 
evaluation. Based on this requirement, only the 
calculated metrics and their associated class elements 
are chosen to be stored and further analyzed. All the 
detailed elements are discarded because the 
information that provide exists chunked in the 
calculated metrics. 

The chosen elements and metrics need to be 
extracted and stored permanently for further analysis 
and evaluation. For this reason, a relational database 
system was chosen, as it provides ease of use, 
reliability and effective search over the stored 
information. As mentioned before, all of the collected 
elements are at first stored into XML files, with every 
XML file corresponding to a source code file. The 
extraction method must be transparent to the 
underlying relational database, for portability reasons. 

That is why it employs cutting-edge software tools that 
facilitate the mapping of XML elements and nodes into 
any relational database. This mapping provides the 
ability for the proposed methodology to be independent 
of any underlying relational database. Figure 2 depicts 
the general architecture of data extraction and 
preparation module. 

 
Figure 2 – Architecture of data extraction and 

preparation module 
3.2 Metrics Description 

 
As software demonstrates regular behaviour and 

trends, these can be measured [9]. The evaluation of a 
system’s maintainability according to ISO/IEC-9126 
requires the collection of such metrics in order to 
provide a systematic approach for code evaluation 
based on a set of predefined rules. This enables the 
stakeholders of a software product (i.e., management, 
software engineers, end users) to track status, control 
costs, and make decisions related to their tasks. These 
metrics can also be useful as indicators for identifying 



S/N Metric Formula Purpose Entity 

Applied 

5 Number of 
Polymorphic 
methods (NOP) 

NOP=A 
 
A=Number of the member methods that 
exhibit polymorphic behavior. 

It is a measure of the overridden (or virtual) methods 
of an Object Oriented software system. 

Class 

6 Depth Of Inheritance 
Tree (DIT) 

DIT=A 
 
A=Distance from top 

It provides for each class a measure of the 
inheritance levels from the object hierarchy top 

Class 

7 Number Of Children 
(NOC) 

NOC=A 
 
A=Number of the immediate descendants 
of the class. 

It measures the number of the immediate 
descendants of the class 

Class 

8 Lack of Cohesion in 
Methods (LCOM) 

LCOM=A 
 
A=Number of member methods of a class 
C that access the same member data [14]. 

It measure if a class of the system has all its methods 
working together in order to achieve a single, well-
defined purpose. 

Class 

9 Afferent (inward) 
Coupling (Ca) 

Ca=A 
 
A=Number of packages depend on the 
package under examination 

It measures the number of packages that depend on 
the package under examination [13]/ 

Class 

3.3 Weights Assignment 
 
As mentioned in §2.3, we have adopted the 

analytic hierarchy process (AHP) for the weights 
assignment. AHP is a decision making technique that 
allows consideration of both qualitative and 
quantitative aspects of decisions [14]. It reduces 
complex decisions to a series of one-on-one 
comparisons and then synthesizes the results. 
Compared to other techniques, like ranking or rating 
techniques, AHP emulates the human ability to 
compare single properties of alternatives. It not only 
helps decision makers choose the best alternative, but 
also provides a clear rationale for the choice. 

In a systematic way AHP compares a list of 
objectives or alternatives. When used in the systems 
engineering process, AHP can be a powerful tool for 
comparing alternative design concepts. Assuming 

that a set of objectives has been established; and that 
we are trying to establish a normalized set of weights 
to be used when comparing alternatives using these 
objectives. AHP forms a pairwise comparison matrix 
A, where the number in the i-th row and j-th column 
gives the relative importance of objective O(i) as 
compared with O(j). Values that usually are used are 
in a 1–9 scale, with a(i,j) = 1 if the two objectives are 
equal in importance,  a(i,j) = 3 if O(i) is weakly more 
important than O(j),  a(i,j) = 5 if O(i) is strongly more 
important than O(j),  a(i,j) = 7 if O(i) is very strongly 
more important than O(j), and  a(i,j) = 9 if O(i) is 
absolutely more important than O(j). After this 
procedure the comparison matrix is normalized and 
its eighenvalues are computed. These eighenvalues 
play the role of coefficients/weights when someone 
wants to evaluate the alternatives for the examined 
objectives. 

Figure 3: ISO/IEC-9126 Maintainability Metrics Hierarchy 
 



In our case we aim to evaluate maintainability from 
a set of employed metrics (see previous section and 
Figure 3.). We apply AHP procedure in each level of 
the maintainability metrics hierarchy. At the first level 
we evaluate the characteristics (analyzability, 
changeability, etc) from the extracted metrics and at 
the second level we evaluate maintainability from the 
characteristics by applying AHP procedure again. So at 
first level we construct a pairwise comparison table for 
each one of the characteristics reflecting the expert’s 
knowledge of how much each metric influences each 
characteristic. Then by applying the normalization and 
extraction of eighenvalues upon each matrix we find 
the weight of each metric for calculating a score for 
each characteristic. At the higher level a pairwise 
comparison table is constructed too reflecting the 
expert’s knowledge of how much each characteristic 
influences maintainability; and the weights are 
calculated by normalization and eighenvalues 
extraction.   

There are several possibilities for evaluating 
different systems: 

• Evaluation of all the systems utilizing the same 
weights produced by the subjectivity of one 
software expert. 

• Evaluation of all the systems utilizing the 
average weights produced by the subjectivity of 
several software experts. 

• Evaluation of each system independently 
utilizing the weights produced by the 
subjectivity of a software expert that focuses to 
the characteristics of its system. 

 
3.4 Clustering Maintainability Values 

 
The primary objective of employing the clustering 

data mining technique is to facilitate a software 
system’s evaluator to obtain a general but illuminating 
view of it that may lead him/her to draw useful 
conclusions concerning its maintainability. Clustering 
in general, is useful for Similarity/Dissimilarity 
analysis; in other words it analyzes what data points in 
a given dataset are close to each other. In our case, 
mutually exclusive groups of classes, member data or 
methods are created according to their similarities, and 
hence the time required to assess the maintainability of 
a software system is reduced. This is helpful especially 
when the system under evaluation is very large. A 
project manager or an engineer might only be an expert 
of a part of the system and cannot state of the quality 
of the whole of it. Another contribution of using the 
clustering technique is that it helps discovering 
programming patterns and “unusual” or outlier cases 
which may require attention. Clustering also facilitates 
the dimensionality reduction, since high dimensional 
data are replaced with a group (cluster) label. 

For this purpose, k-Means clustering has been 
chosen to be implemented and performed. The 
particular algorithm is a simple clustering method that 
has the following characteristics: 
•  It shows optimal results. 
•  It is general, as it can work for any distance 

desired and requires no training phase. 
•  Finally, the algorithm’s speed is very appealing in 

practice as well, especially in the case of a large 
number of variables. 

k-Means clustering is a commonly used partitioning 
algorithm. Each cluster is represented by the mean 
value of the objects in the cluster. As a result, cluster 
similarity is measured based on the distance between 
the object and the mean value of the input data in a 
cluster. It is an iterative algorithm in which objects are 
moved among clusters until a desired set is reached. 
The steps of the algorithm can be described as follows 
[3]: 

Given a set of n objects t1, t2,...,tn and a number k of 
desired clusters 

assign initial values for means m1,m2,...,mk 
repeat 
assign each item ti to the cluster with the closest 

mean; 
calculate new cluster mean; 
until means m1, m2,..,mk do not change 
The squared-error criterion is used to measure the 

sum of the squares of the distance between each object 
and the mean. The sum should be minimized in order 
to obtain a good clustering result. It is obvious that the 
smaller the sum, the more tightly the objects are 
clustered around the mean value (centroid), and 
clustering is more precise. The squared-error criterion 
can be expressed by the formula in Eq. (1): 

 
where dist is the standard Euclidean (L2) distance 

between two objects in Euclidean space; p is an object 
belonging to the ith cluster Ci, and ci is the mean of the 
cluster. The algorithm is suitable for discovering 
spherical-shaped clusters in small to medium size 
databases. However, its main problems are that it is 
sensitive to noise and to the initial partitioning. As 
many possible initial partitions lead to many different 
results, the final clustering is influenced by the initial 
partition, which is indicated by the user input [5]. 
 
 
4. Results Evaluation 

 
The evaluation of Apache Geronimo’s 

maintainability according to ISO/IEC-9126, involved 
the study of 1440 classes. Figure 4 depicts the clusters 



derived from clustering the maintainability values of 
Geronimo’s classes. The higher the values on axis X 
the less maintainable the classes are. Table 2 presents 
statistics for the derived clusters. 

 
Figure 4: Apache Geronimo ISO/IEC-9126 

Maintainability Clusters 
 

Table 2: Clusters Statistics 
S/N 

Population Percentage Mean 
Standard 
Deviation 

0 419 29% 1.10 0.29 
1 130 9% 2.45 0.60 
2 7 0.004% 13.75 2.27 
3 856 59% 0.39 0.16 
4 28 1.996% 5.02 1.55 

Cluster 3, which has the biggest population, 
contains classes that their maintainability values range 
between 0 and 0.9. This shows that the vast majority of 
Geronimo’s classes are highly maintainable. 
Furthermore, clusters 0, 1 and 4 contain classes that 
their maintainability values range from 0.9 – 2, 2 - 4 
and 4 – 9.2 respectively, which can be considered good 
in terms of maintainability. 

However, outliers are detected in cluster 2, which 
consists of only seven (7) classes that have the lowest 
maintainability values. These classes are: 

1.  KernelManagementHelper.java, a class of 
1024 Lines Of Code (LOC). 

2.  TradeDirect.java, a class of 2312 LOC. 
3.  ClientApp.java, a class of 1633 LOC. 
4.  CdrInputStream.java, a class of 1569 LOC. 
5.  CdrOutputStream.java, a class of 1241 LOC. 
6.  ASN1Encodable.java, a class of only 62 LOC. 
7.  DERobject.java, a class of only 38 LOC. 
Table 3 presents the metric values for the classes in 

cluster 2. 
A further study on these values indicates that the 
classes in cluster 2 are grouped in two categories: 

•  The first category includes the first five classes 
that have the following characteristics: 

•  They don’t follow the principle of low 
coupling/high cohesion. On the contrary they 
exhibit low cohesion and high coupling. 

•  They are highly complex. 
•  All of them have polymorphic methods; which 

indicates that encapsulation is not applied in 
these classes. 

•  The second category includes the classes 
ASN1Encodable and DERObject that are 
difficult to maintain for different reasons. More 
specifically these two classes have the 
following characteristics: 

•  Interestingly they are not complex, and their 
size is very small unlike the classes on the first 
category. They also follow the principle of low 
coupling/high cohesion. 

•  They have an excessive number of children. 
This indicates probably that these classes are 
fundamental elements of Apache Geronimo’s 
structure. 

•  The number of classes depending on them (Ca) 
is big. 

Table 4 presents statistics for the metrics of Apache 
Geronimo’s classes in clusters 0, 1, 3 and 4. This table 
indicates that: 
•  The lower the metric values the higher the 

probability of low maintainability. 
•  There is limited use of inheritance as shown by 

the low DIT and NOC values. 
•  The majority of the classes follow the low 

coupling/high cohesion principle. 
•  Most of the classes exhibit low complexity. 
•  The design property of encapsulation is applied to 

most of the classes. 
 

5. Conclusions and Future Work 
 
This section presents conclusions drawn by 

evaluating the proposed methodology. Directions for 
future work are also discussed here. 

 
5.1 Conclusions concerning the Methodology 

 
The aim of this work was to present a methodology 

that facilitates the evaluation of a software product’s 
maintainability according to the ISO/IEC-9126 
software engineering quality standard. The first step 
toward that was to develop a two-level extraction 
process that collects appropriate elements and metrics 
from Java source code, aggregates them and stores a 
refined subset of the aggregated data in a relational 
database system for further analysis and evaluation. 

 
 
 



Table 3: Cluster 2 Metrics 
S/N WMC NPM DAM CBO POM DIT NOC LCOM Ca 

1 9.15 11.13 1.62 17.40 40.00 0.72 0.00 42.69 0.00 

2 11.58 4.52 1.62 35.65 30.00 0.72 0.00 45.21 0.51 

3 10.68 0.32 1.62 2.99 2.50 0.72 0.00 81.97 2.53 

4 18.38 11.45 1.62 14.37 20.00 0.72 0.00 64.96 9.61 

5 14.77 11.29 1.62 13.14 12.50 0.72 0.00 47.82 9.61 

6 0.42 0.81 0.00 0.33 0.00 0.72 149.49 0.27 26.30 

7 0.28 0.48 0.00 0.00 0.00 1.44 76.27 0.18 52.10 
 

Table 4: Cluster 0, 1, 3 and 4 Metrics Statistics 
 Min. Max. Mean Median Stand. Dev. 

WMC 0.07 12.55 0.96 0.55 1.20 

NPM 0.00 8.71 0.98 0.65 1.17 

DAM 0.00 1.62 1.00 1.62 0.76 

CBO 0.00 16.54 0.95 0.41 1.54 

POM 0.00 37.50 0.93 0.00 2.88 

DIT 0.72 3.60 1.00 0.72 0.49 

NOC 0.00 70.17 0.85 0.00 3.87 

LCOM 0.00 26.84 0.81 0.11 2.43 

Ca 0.00 81.94 0.93 0.00 3.28 
 
During the first step the collected data are stored 
permanently into appropriate structured XML files, 
with every XML file corresponding to a source code 
file. At the second step, the more important elements 
and metrics are chosen to form a refined subset that is 
mapped transparently into a relational database system. 

The second step towards our goal was the adoption 
of the Analytic Hierarchy Process (AHP) for weights 
assignment to the collected metrics, in order to reflect 
their importance on evaluating a system’s 
maintainability according to ISO/IEC-9126 software 
engineering quality standard. The weight assignment 
process constructs a pair wise comparison for the set of 
employed metrics and by applying the normalization 
and extraction of eighenvalues it finds the weight of 
each metric for calculating a maintainability score.  

The last step was the application of k-Means 
clustering algorithm on the derived ISO/IEC-9126’s 
maintainability values, in order to facilitate a software 
system’s evaluator to obtain a general but illuminating 
view of it that may lead him/her to draw useful 
conclusions concerning its maintainability. During the 
clustering process, mutually exclusive groups of 
classes, member data or methods are created according 
to their similarities, and hence the time required to 
assess the maintainability of a software system is 
reduced. 

The application of the proposed methodology has 
been proved to be time and performance efficient. The 
extraction process, which is the most time-consuming 
part of this methodology, analyzed the 1440 classes of  

 
Apache Geronimo and stored the corresponding 
metrics and elements in a limited amount of time. A 
domain expert previewed the stored metrics and 
assigned easily and efficiently the corresponding 
weights, according to his priorities and concerns. After 
the clustering application, the resulted clusters proved 
to be representative of the code artifacts, helping the 
domain expert to identify relations between specific 
metrics and global maintainability as well as spot 
individual outlier classes that may need 
reconsideration. 

 
5.2 Future Work 

 
We consider the following various alternatives in 

order to enhance the proposed methodology: 
 

5.2.1 Systems’ components clustering based on their 
dynamic dependencies. This research work presented 
the analysis of static dependencies between the 
components of the system. It would be of great interest 
to attempt to evaluate the usefulness of analysing the 
dynamic dependencies of a software system’s artifacts. 
 
5.2.2 Integration of more data mining algorithms. 
The proposed framework integrates the -Means 
algorithm. However it may be useful if more custom 
data mining algorithms were integrated in this 
framework. This would result in a complete system for 
automated program and system comprehension. An 
example is the integration of hierarchical clustering 
algorithms that they do not need the user to define the 
number of the desired output clusters. 
 
5.2.3 Tune the methodology for other programming 
languages. The proposed methodology processes 
information derived only from Java source code files 
(.java). It is of great interest to extract information 
from other programming languages like C, C++, Cobol 
and Borland Delphi. 
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